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1. Introduction

Let z'= be a translation plane of order p” with p a prime. Let G be a
subgroup of the translation complement and A a subset of /.. with |A|=p+1.
7 is said to be A-transitive if the following conditions are satisfied (V. Jha [4]):

(i) G leaves A invariant and acts transitively on /.-A.

(ii) G fixes at least two points of A.

(iii) G has a normal Sylow p-subgroup.

On A-transitive planes, V. Jha has proved the following theorem.

Theorem (V. Jha [4]). If #'= is A-transitive with |A|=p-+1, then =
has order p* and A=m,N l.. where =, is a subplane of order p.

If (z'=, A, G) satisfies the conditions (i) and (ii) above, = is said to be
weakly transitive.

In his paper [4], V. Jha has conjectured that weakly transitive planes are
the Hall planes of order p? the Lorimer-Rahilly plane of order 16 and the John-
son-Walker plane of order 16.

In this paper we prove the following theorems on weakly transitive planes.

Theorem 1. Let z'= be a translation plane of order p” with p a prime and
A a subset of L. with |A|=p-+1. If a subgroup G of the translation complement
of = leaves A invariant and acts transitively on l.—A, then one of the following
holds.

(1) OyG) is semiregular on A—{A} for some point ASA.

(ii) 7 has order p*.

(i) 7 has order p* and G is transitive on A.

The Lorimer-Rahilly plane of order 16 and the Johnson-Walker plane
of order 16 are examples of the case (i). The Hall planes of order p* and the
plane of order 25 constructed by M.L. Narayana Rao and K. Satyanarayana in
[6] are examples of the case (ii). The desarguesian plane of order 27 is an
example of the case (iii).

As an immediate corollary we have the following.
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Theorem 2. Suppose (z'=, A, G) with |A|=p+1 is weakly transitive.
If 0,(G) =1, then = has order p* and A=F(0,(G)) N l.

We note that if z'~is A-transitive, then it satisfies the assumption of
Theorem 2.

2. Proof of Theorem 1

We prove Theorem 1 by way of contradiction. Assume that (z'=, A, G) is
a counterexample such that "+ | G| is minimal. Therefore 7 >3 and O,(G)=1.

Throughout the paper we use the following notations.

T: the group of translations of =

M(=0,(G)): the maximal normal p-subgroup of G

F(H): the fixed structure consisting of points and lines of = fixed by a
nonempty subset H of G.

n,: the highest power of a prime p dividing a positive integer #

T: l.—A.

Other notations are taken from [1] and [2].

Lemma 1. F(M) is a subplane of = of order p and A=F(M)N ..

Proof. Let K be the pointwise stabilizer of A in G and assume that
M<K. We denote by G the restriction of Gon A. Clearly G[>M=+1 and
as |A|=p+1, M is a Sylow p-subgroup of G. By the Schur-Zassenhaus’ theo-
rem (Theorem 6.2.1 of [1]), there is a subgroup L of G such that K<L and
|G: L|=p, G=ML.

Set N=MNK. We have N=1, for otherwise = satisfies (i) of Theorem
1, contrary to the minimality of . As GD>K, G[>N. It follows from the
transitivity of G on T that N is 4-transitive on T'.

Let ¥ be the set of N-orbits on I". Since there is no nontrivial homology
of order p, N acts faithfully on I'. As N=1 and |T'|,=p, |¥|=|T|/p=p""
—1. Hence ¥ coincides with the set of M-orbits on TI'.

Since G=ML, L is transitive on ¥ by the last paragraph. Hence L is
transitive on I as N<<L. From this (z'=, A, L) satisfies (ii) or (iii) of Theorem
1 by the minimality of (z'=, A, G). Therefore (z'=, A, G) also satisfies (ii)
or (iii) of Theorem 1. This is a contradiction. Thus M<K.

Since F(M)NT=¢, F(M)NIl.=A, so that F(M) is a subplane of = of
order p.

Lemma 2. If p=2, then r is even.

Proof. Assume p=2. Let x be an involution in M. Since F(x) contains
A by Lemma 1, F(x) is a subplane of z. By a Baer’s theorem (Thoerem 4.3
of [2]), F(x) is of order /2. Thus 7 is even.
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Lemma 3. Let t be a prime p-primitive divisor of p"*—1 and let x be a
nontrivial t-element of G. If x centralizes M, then F(x) N\ A=¢.

Proof. Let A€F(x)NA and set U=T(4), the set of translations of T
with center 4. Clearly |U|=p". By Lemma 1, |Cy(M)|=p as U is regular
on the set of affine points on the line O4. Set R=<{x>. Since R normalizes
Cy(M) and ¢t f'p—1, Cy(R) contains Cy(M).

If Cy(R)=+=Cy(M), R acts trivially on U/Cy(R) as |U/Cy(R)|<p"™' and ¢
is a p-primitive divisor of p'—1. Hence [R, U]=1 by Theorem 5.3.2 of
[1]. Therefore x is a homology with axis O4 and so t|(p"'—1, p'—1)=p—1,
a contradiction. Thus Cy(R)=Cy(M).

By Theorem 5.2.3 of [1], U=Cy(R)X[U, R]. Since M centralizes R
and normalizes U, it also normalizes [U, R]. Hence 13=Cy, p(M)<Cy(M)=
Cy(R), a contradiction. Thus F(x) N A=¢.

Lemma 4. Ifr=3, then p=—1 (mod 4).

Proof. By a Baer’s theorem and Lemma 1, p+2 and |M|=p as r=3.
Assume p=1 (mod 4) and let ¢ be an odd prime dividing p+1. Clearly ¢ is
a prime p-primitive divisor of p"~'—1=p?—1. Since |M|=p and tfp—1,
a Sylow t-subgroup R of G centralizes M. Applying Lemma 3, R is semi-
regular on A. As p+1||G| and ¢ is arbitrary, the length of each G-orbit on
A is divisible by (p+1)/2. Since = is a counterexample of Theorem 1, G has
two orbits of length (p+1)/2 on A.

Let S be a Sylow 2-subgroup of G and let X F(S)NA. Set z,=F(M),
Sy=:=S,1.) and K=:G,, the pointwise stabilizer of A in G. Since M is a non-
trivial normal subgroup of G, =, is G-invariant and isomorphic to PG(2, p).
The restriction of Aut(PG(2, p)) on the line at infinity is isomorphic to PGL
(2,p) in its usual 2-transitive permutation representation. Hence G/K is
isomorphic to a subgroup of PGL(2,p). As |G/K]| is divisible by (p+1)/2,
G/K is isomorphic to a subgroup of the dihedral group of order 2(p+1) by
a Dickson’s theorem (Theorem 14.1 of [5]). Since G/K is not transitive on A,
|G/K|=(p+1)/2 or p+1. Therefore |S: SNK|=1 or 2. Hence SNK is
semiregular on F(M)N(OX—{0, X}) and so |SNK]||(p—1),. From this,
[S|<2(p—1),. But,as SNK=*1, Sy=%1and so |S/S,|>|T"|,=2(p—1),. This
implies | S| >4(p—1),, a contradiction.

Lemma 5. Let S be a 2-group acting faithfully on an elementary abelian
p-group W of order p” with p'=—1 (mod4). If an element xS inverts W,
then S=<{x> X S, for a subgroup S, of S.

Proof. We may assume that S<GL(r,p) and x= —I, where I is the
unit matrix of degreer. Since 7 is odd, det(x)=(—1)"=—1 and so x& SL(r, p).
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Since 2[p—1 and 4/ p—1, <x>XSL(r,p) is a normal subgroup of GL(r,p)
of odd index. Thus S=<{x>XS;, where S;=S8 NSL(r, p).

Lemma 6. Let S be a Sylow 2-subgroup of G. If r=3, then the length
of every S-orbit on A is divisible by |A|,.

Proof. By Lemma 4, p=—1 (mod 4). Since G is transitive on T, |[T'|=
p(*—1)| |G| and so 2(p+4-1),| | S/S,|, where S is a Sylow 2-subgroup of G
and S;=3S(,;,). Hence |Sy|>2X%|S,| for some point X&A. Here Sy denotes
the stabilizer of X in S. Let YEF(S;)N(A—{X}).

First we show that S;==1. Assume that S;=1 and let # be an involution
in Z(Sy). By a Baer’s theorem, any involution in S is a homology. Hence
either u is a (X, OY)-homology or u is a (Y, OX)-homology. In either case
Cs(u)<Sy. AsucZ(Sy), Cs()=Sy. In particular |Sy|>4.

We note that either Sy oyy=1 or Sy oyy=1, for otherwise S,=1 by Lemma
422 of [2]. Let A€{X, Y} such that S =1, where {B}={X, Y} —{4}.
Then Sy acts faithfully on T(4). In particular every involution in .S fixes
no affine point on OA—{O}. Therefore every involution in Sy inverts T(A4).
From this Sy has exactly one involution. But, by Lemma 5, Sy contains a
subgroup isomorphic to Z,X Z,, a contradiction. Thus S,#1.

Let 2 be an involution in S,. Since O is the only affine fixed point of =z,
z inverts T. As (p—1),=2, <2> is a unique Sylow 2-subgroup of G(_).

Set V==Sx. If Vixopn=1, then V acts faithfully on 7(Y) and moreover
z inverts 7(Y). By Lemma 5, V' contains a subgroup U such that z& U and
U is isomorphic to Z,X Z,. By Lemma 4.22 of [2], we obtain a contradiction.
Hence Vx or)*1.

Let u be an involution in V(g oy). Then, as u&Z(V), we have Cs(u)=V.
Assume |V|>4. V=V/<u> normalizes T(Y) and =z inverts T(Y). Hence
V=<zZ>x L for a subgroup L of V with u€L by Lemma 5. Since L, =1
and u€L, L acts faithfully on T(X) and # inverts 7(X). Hence L=<{u>XxZ
for a subgroup Z of L by Lemma 5. As |L|=4, Z contains an involution.
Therefore Z;_)F1 or Zy 0x)+1, a contradiction. Thus |V |=4.

As V<Sy and F(V)Nl.={X, Y}, we have V=S,. Since V is isomor-
phic to Z, X Z, and Cs(u)=V, S is dihedral or semidihedral by a lemma of [7].
Therefore any involution in S is S-conjugate to an involution in V. Hence,
if Sq=+1 for some QE A, then Q=X? or Y* for some s&S. Thus |Sy|=|V|=4.
Therefore |Q%]| =>2|T|,/4=(p+1), for all QEA.

Lemma 7. r=3.
Proof. Assume that =3. Let ¢ be an odd prime dividing p+1. Then
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t is a prime p-primitive divisor of p—1. Let R be a Sylow ¢-subgroup of G.
Since G is transitive on T, p(p*—1)=|T'| | |G| and so R=+1. By Lemma 1,
|M|=p as r=3. Hence R centralizes M. Applying Lemma 3, R acts semi-
regularly on A. Since ¢ is arbitrary, using Lemma 6 we have that G acts transi-
tively on A. As z is a counterexample, this is a contradiction. Thus we
we have the lemma.

Lemma 8. There exists a prime p-primitive divisor t of p'—1 such that
t||G| and t 4 |Co(M)].

Proof. |G| is divisible by pr'—1 as |T| l |G|. By Lemmas 1 and 7,
r—1>3 and by Lemma 2, (p,r—1)=(2,6). It follows from a Zsigmondy’s
theorem (Theorem 6.2 of [5]) that there exists a prime p-primitive divisor ¢ of
Pr—l__l.
Assume t| |C4(M)| and let R be a Sylow z-subgroup of C4(M). By Lemma
3, R is semiregular on A. Hence ¢|p+1 and so ¢|p*—1. Since ¢ is a p-primi-
tive divisor of p"~'—1, we have r—1=2, contrary to Lemma 7.

Lemma 9. Each M-orbit on T is of length p.

Proof. Since p||T'|, p°’4 |T'| and M is 4-transitive on T, using Lemma 1
each M-orbit on T" has length p.

Proof of Theorem 1.

Let ¢ be a prime as in Lemma 8 and let R be a Sylow t-subgroup of G.
By Lemma 8, R=#1 and acts faithfully on M. Since ¢ is a p-primitive divisor
of pr~'—1, we have |M|>p""'. Hence, by Proposition 6.12 of [3], p"=16.
From this, p=2, =7 and |M|>8.

Let A<T and set N=M,. By Lemma 1, F(N)DAU{4}. Therefore
F(N) is a subplane of order 4. Let B€l.,—F(N)Nl.. Clearly F(Ny)=n=
and so Ny;=1. By Lemma 9, |M: N|=2and |N: Ny|=2. Hence |M|=4,
a contradiction. Thus we have Theorem 1.
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