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Let G be a 4-fold transitive group on Ω = {1, 2 , , n}, H=G1234

the subgroup of G consisting of all the elements fixing the four letters
1, 2, 3 and 4 and let N be the normalizer of H in G. Let Δ denote
the set of all the letters fixed by H. Then N fixes Δ and it induces
a permutation group JVΔ on Δ. From the Jordan's theorem [5] (cf. [4],
Theorem 5. 8. 1) and the Witt's lemma [8], we have one of the following
four cases :

CASE I. ΛΓΔ - S4 ,

CASE II. N* = S5 ,

CASE III. N* =A6,

CASE IV. JVΔ = Af
u

u

Here Mn denotes the Mathieu group of degree 11. (For the Mathieu
groups we refer to [8].)

The purpose of this paper is to show that, except in CASE I, G
must be one of the known groups. Namely we shall prove the following
theorem.

Theorem. // N* = S59 A6 or M n , then G must be S5, A6 or Af
respectively.

We shall state here the Witt's lemma in full because of its im-
portance in the following.

Lemma (Witt). Let G be a t-fold transitive group on Ω and H the
subgroup of G consisting of all the elements fixing t letters. Suppose that
a subgroup U of H is conjugate in H to every group V which lies in H
and which is conjugate to U in G. Then the normalizer of U in G is
t-fold transitive on the set of the letters left fixed by U.

The typical examples of U satisfying the assumption are H itself
and Sylow ^-subgroups of H.

In the proof of the theorem, we also make use of the fact ([4],
p. 80) that a 4-fold transitive group of degree less than 35 is, except



328 H. NAGAO

the symmetric and alternating groups, one of the four Mathieu groups.

NOTATION. For a set X let | X\ denote the number of the elements
of X. For a set S of permutations on Ω the set of the letters left
fixed by S will be denoted by /(S). If a subset Δ of Ω is a fixed block
of S, i.e. if ΔS = Δ, then the restriction of S on Δ will be denoted by
SΔ. For a permutation group G on Ω the subgroup of G consisting of
all the elements fixing the letters i,j, - ,k will be denoted by G, ,/,.*•
For a premutation x let a^x) denote the number of /-cycles (cycles of
length ί) of x. So a^x) is the number of the letters left fixed by x.

1. CASE III. N*=A6, |Δ | - 6 .

Throughout the remainder of this paper it will be assumed that G
is a 4-fold transitive group on Ω={1, 2 , , n}, H denotes G1 >2 >3 >4, N is
the normalizer of H in G and Δ denotes I(H).

In this section, we treat the case in which N*=A6 and prove the
following

Proposition 1. // N*=A6 then G must be A6.

Proof. Let us first consider the map

φl :i ->G1(2 3 ,

from Ω— {1, 2, 3} into the set of subgroups of G. Let /(G1>2>3>l )
= {1, 2, 3, i,j, k}. Then the inverse image φTl(Glf2>3fi) consists of three
letters i, j and k. Hence we have

( 1 ) n = 0 (mod 3) .

Now let a be an involution of G and let r=\I(a)\. Then, by
Proposition 1 in [6], we have

( 2 ) n = r2 + 2.

Suppose that r > 4. Then we may assume that a fixes the three letters
1, 2 and 3. Consider the map

from 7(Λ) -{1,2,3} into the set of subgroups of G, and let /(G l f 2 f 8 f ί)
= {1, 2, 3, i, y, &} . Since <z normalizes G l f2pS>ί and it is an even permuta-
tion on /(Gj 2 3 , ), / and & belong to /(#). Hence each inverse image of
φz consists of three letters, and we have

( 3 ) r = 0 (mod 3) .
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From (2) and (3) we have

n = 2 (mod 3).

which conflicts with (1).
Thus it is shown that r<3 and n = r2 + 2<ll. Then, by the

remark at the end of the introduction, G must be A6.

2. CASE IV. N*=Mn, Δ = l l .

In this section, we shall prove the following

Proposition 2. // N*=NU then G must be Mn.

We proceed by way of contradiction. From now on it will be as-
sumed that G is a counter-example to the proposition with the least
possible degree and all elements belong to G.

By a series of steps we shall show that every element of order 4
has no 2-cycles. Then it will be shown that there is a subgroup of H
which satisfies the assumption of the Witt's lemma. From this fact we
have n < 11, which contradicts the assumption for G.

(i) Let x be an involution and r=\I(x)\. Then

For the proof, see Proposition 1 in [6].

(ii) If an element x fixes at least four letters, then

(a, (x) - 2)(al (x) - 3) = 0 (mod 72).

As a special case, the degree n satisfies the relation

(n-2)(n-3) = 0 (mod 72).

Proof. We may assume that {1,2}c/(#). For a subset {iί9 Q of
/(*)—{1,2}, x normalizes G l f 2 f ί l f f 2 . Let Δ' = /(Glf 2> ,lp , 2)= {1,2, *„ ί2 , ,
i j . Since #Δ / is an element of Mn fixing the four letters 1, 2, f\, ί2, it
is the unit. Hence Δ'c/(#). Consider the map

<P {*!> *2} ~*Gl,2,ilti2

from the family of the subsets of /(#)—{!, 2} consisting of two letters
into the set of subgroups of G. By the consideration above, each
inverse image of φ consists of 9C2 subsets.
Hence we have

/ *)-3) Ξ Q ^ m o d ^ ^
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which implies our assertion.
(iii) If an element x has a 2-cycle, then

Proof. Let us first assume that a2(x)>2. We may assume that
* = ( ! , 2)(&, /)••-. Then * normalizes G1>2> k ,. Let Δ' '=/(G l f 2 * /). Since
(jt:Δ/)2 is an element of Mπ fixing the four letters 1, 2, &, /, it is the unit,
and hence x*' is an involution of Mn. Therefore <*!(#)> 3. Now, for a
subset {fj, ί2} of /(*), let Δ" = /(G1<2ff lp ,2). Then, by the same argument
as above, we can see that Λ:Δ// is an involution of Mn and hence it is
of the following form :

* Δ " = (1, 2XιιXι2Xί.X*1, /,)(*„ /2X*,, /,) .

Considering the map

from the family of the subsets of I(x) consisting of two letters into the
family of the sets of three 2-cycles of x different from (1, 2), we have,
in the same way as in the proof of Proposition 1 in [6], the following
relation :

This implies our assertion.
Next assume that a2(x) = l. If al(x}>2y then, in the same way as

above, we can see that a2(x)>3. Hence a^(x) must be 0 or 1 and in
either case our relation holds.

(iv) If x is an element of order 4, then x has no 2-cycles.

Proof. We assume, by way of contradiction, that α2(#)>0. Then
from (iii) we have

( 1 ) CT2θc)== «,(*)(«.(*)-!) + ! .

Let s—a^x) and r=a1(x2). Then from (1)

(2) r = s+2az(x) = s2 + 2.

Let us first assume that s>4. Then by (ii)

(s-2}(s-3) = 0 (mod 72)
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and

( 3 ) (r-2)(r-3) = 0 (mod 72).

Since 5—2 and 5—3 are relatively prime, s—2=0 (mod 9) or s—3=0
(mod 9). If S-2ΞΞO (mod 9), then

(r-2)(r-3) = s\s2-l) =f= 0 (mod 9),

which contradicts (3). Hence s=3 (mod 9). In the same way we have
5 = 3 (mod 8), and hence s = 3 (mod 72). Therefore from (2) we have

( 4 ) r = 11 (mod 72).

On the other hand, since n = r2 + 2 by (i) and (w-2)(»-3) = 0 (mod 72)
by (ii), r2(r2-l)=0 (mod 72). But, by (4),

r\r2-l) = 1Γ(1Γ-1) = 48 ΞJΞ 0 (mod 72),

which is a contradiction.
Next assume that s=a1(x)<3. Then, from (2), r must be one of

the following numbers: 2,3,6 or 11. If r=2 or 3 then n = r2 + 2<ll
and G must be Mίτ which contradicts the assumption for G. If r=6
then

(r-2Xr-3) = 12 =£ 0 (mod 72),

which conflicts with (ii). If r = l l , then w-r 2 + 2-123 and

(«-2)(n-3) =1=0 (mod 72),

which conflicts also with (ii).

(v) Let P be a 2-subgroup of G and c an arbitrary central involu-
tion of P. If there is an element x of order 4 in P then I(x) = I(c).

Proof. Since x commutes with cy x takes the letters of I(c) into
themselves and it takes also the 2-cycles of c into themselves. If x
fixes a 2-cycle (ί, j) of c, then by (iv) x fixes the two letters i and j .
Then xc is of order 4 and has a 2-cycle (/, j \ which contradicts (iv).
Thus x fixes no 2-cycles of c, and hence I(x)dl(c). On the other hand,
from (iv), it follows that I(x2) = I(x) and, by (i), the two involutions x2

and c fix the same number of letters. Therefore we have I(x) = I(c).
(vi) Let P be a Sylow 2-subgroup of H=G1234. Then P con-

tains an element of order 4.

Proof. Since JVΔ = MU, G contains at least one element x of order
4. If P contains no elements of order 4? then |/(#)(< 3. Since |/(ΛΓ)|
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= |7(jt2)| by (iv) and x2 is an involution, we have «<11. Hence G must
be M n, which contradicts the first assumption for G.

(vii) Let P be a Sylow 2-subgrouρ of H, c a central involution of
P and let I(c)= {1, 2 ,-•-, r}. Then C7= Pj 2 ... r satisfies the assumption
in the Witt's lemma.

Proof. Let a be an element of order 4 in P. Then from (v) I(ά)
= {l,2, ,r} and #<=[/. Now assume that V=x'1UxdH for # e G and
let P' be a Sylow 2-subgroup of H containing V. Then there is an
element h of H such that P' = h~lPh. Let U/ = h~1Uhy a'=h~lah and
7(β /)={Γ,2 /,-,r /}. Then, since 7(0') = I(ά)\ t/' = PV,2',..., r' Since*- 1**
is an element of order 4 in P', we have I(x~^ax) = I(a'} by (v). Hence
V fixes each letter in 7(# ') and we have Va U. Compairing the orders
we have V— U'.

(viii) Let U be as in (vii) and let Γ = 7(C7). Then |Γ | =11.

Proof. Let M be the normalizer of U in G. By (vii) and the Witt's
lemma, MΓ is a 4-fold transitive group on Γ. Since Mx 2 3 4 cί7,

f § 3, 4) Π7(ί7) = 7((MΓ)lf 2, 8. 4)

and hence |7((MΓ) l f 2 ( 3 f 4) | >11. On the other hand, as stated in the in-
troduction, \I((MΓ\ 2 3 4)| is not greater than 11. Therefore |7((MΓ)lf 2> 3§ 4)|
= 11, and by the minimal nature of the degree of G, M Γ must be Mu.
Hence | Γ | = 1 1 .

Now let c be as in (vii) and let \I(c)\ =r. Then by (viii) r < l l . If
r < 3 then n<ll and G must be M n , which contradicts the assumption
for G. If r>4, then by (ii)

( r-2)(r-3) = 0 (mod 72).

Hence r = l l and n = 123. But then

(n-2)(n-3) ^ 0 (mod 72),

which conflicts with (ii)

3. CASE II. N* = S5, Δ | = 5.

In this section, we shall prove the following

Proposition 3. If N* = S5> then G must be S5.

We proceed by way of contradiction. From now on it will be as-
sumed that G is a counter-example to the proposition with the least
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possible degree and all elements belong to G.
The proof in this case is rather involved. As in CASE IV, we shall

first show that every element of order 4 has no 2-cycles.
We first remark that G can not be a symmetric group since N* = S5

and G is not S5.
(i) The degree n is odd.

Proof. Consider the map

from Ω— {1, 2, 3} into the set of subgroups of G. Let /(G l f 2 f 3 f ί )
= {1, 2, 3, ί, /'} . Then the inverse image φ~\Glf23i) consists of two
letters / and /'. Hence n — 3 is even and n is odd.

(ii) Let a be an involution of G. If r = a1(a)>4 then

r = 3 (mod 6) .

Proof. We may assume that {1, 2, 3} c/(#). Consider first the map

from I(ά)— {1,2,3} to the set of subgroups of G. Let /(G l f 2 f 3 f ί )
= {1, 2, 3, /, /'}. Then a normalizes G1 2 3 , and hence /' lies in /(#).
Therefore each inverse image of φ1 consists of two letters. Hence r—3
is even and r is odd.

For a 2-cycle (ky /) of <z, consider next the map

from the family of the subsets of I(ά) consisting of two letters into the
set of subgroups of G. Let I(Gk / ^ >f 2) = {k, /, ι\, i2, /3}. Then, since #
normalizes GΛ / ̂  /2, /3 lies in I(ά) and the inverse image φΐl(Gk / ^ , 2)
consists of three subsets {ιΊ, ι2}, {ίΊ, /3}, {ί2,/3}

Hence we have

r(r~1^ = 0 (mod 3),

( 1 ) r(r-l)ΞΞ 0 (mod 6).

In the same way, considering the map

from the family of the subsets of I(a)— {1, 2} consisting of two letters
into the set of subgroups of G, we have
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( 2 ) ( r _2)(r-3) = 0 (mod 6).

From (1) and (2) it follows that r=0 (mod 6) or r=3 (mod 6). But,
since r is odd, we have

r = 3 (mod 6).

(iii) If u is an element of order 3, then u fixes just two letters.

Proof. Assume first that s = a1(u)^0. For a 3-cycle (kyl,m) of u,
consider the map

?>!: i -» Gk / m i

from I(u) into the set of subgroups of G. Then u normalizes Gk / m ,
and, in the same way as in the proof of (ii), we have

( 1 ) s = 0 (mod 2).

Let us assume now that s>3. Then, by (1), 5 is not less than 4. We
may assume that {1, 2, 3} c/(w). Consider the map

φz: i - > G l f 2 f 3 f ί

from /(«)—{!, 2, 3} into the set of subgroups of G. Then, in the same
way as above, we have

s-3 ΞΞ 0 (mod 2),

which conflicts with (1). Thus it is shown that s<2. By (1) 5 is not
1. Hence s = 0 or 2 and n = 0 (mod 3) or n = 2 (mod 3) according as
s = 0 or s = 2.

Since N* = S5 there is an element x of the following form :

* = (1X2X3,4, 5 ) - .

Let the order of x be 3km, where m is prime to 3. Then k>ί and
v = x*k~lm is an element of order 3 fixing two letters 1 and 2. Hence
n = 2 (mod 3) and 5 must be equal to 2.

(iv) Let u be an element of order 3 fixing the two letters 1 and
2. If an involution a commutes with u then a has the 2-cycle (1,2).
The order of NG(u)Γ\G1>2 is odd.

Proof. If a does not have the 2-cycle (1, 2), then a fixes 1 and 2.
Let the 3-cycles of u fixed by a be
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Then I(ά)= {1, 2, i19jί9 9 kt} and hence r=a1(ά) = 3t + 2. Since n is odd,
r is odd and hence / must be odd. Let t = 2t' + l. Then

r = 6/' + 5 = 5 (mod 6),

which contradicts (ii). Therefore a is of the form # = (1, 2) , and this
shows also that NG(u)Γ\Glf2 is of odd order.

(v) Let x be an element which has a 3-cycle. Then the order of
x is 3m, where m is prime to 3. Every cycle of x with length greater
than 2 has a length divisible by 3. Further a1(x) = 2 or 0 and if
a1(x) = 2 then x is of odd order and if a1(x) = 0 then a2(x) = ~L.

Proof. Let the order of x be 3km, where m is prime to 3. Then,
by the assumption, k>l and u = x3k~lm is of order 3. If k>l then
#ι(w)>3, which contradicts (iii). Hence k = l. If x has a cycle of length
/ which is greater than 2 and prime to 3, then a^u^l, which contra-
dicts (iii). Therefore every cycle of x with length greater than 2 has
a length divisible by 3. By the similar reason, a2(x)<l and if α^^ΦO
then ctι(x)<2 and a2(#) = 0. Therefore if α ^ ^ Φ O then «!(#) = 2 since
w^2 (mod 3) by (iii), and then x is of odd order by (iv). If a1(x) = 0
and I(u)={i,j} then x has a 2-cycle (/,./). Hence a2(x) = l.

(vi) All involutions of G are conjugate.

Proof. Let a and δ be two given involutions, and assume that
I(Gιt 2, 3, 4)= {!> 2, 3, 4, 5} for simplicity. Taking a conjugate if necessary,
we may assume that #=(1, 2)(3, 4) . Then <z normalizes G1>2>3>4 and
hence it fixes the letter 5. Thus a is of the form

* = (1,2)(3,4)(5) .

In the same way we may assume that b is of the form

* = (1,2)(3)(4,5) . .

Then te = (l)(2)(3,4,5) and, by (v), it is of odd order. Therefore, by
[4], Lemma 5. 8. 1, a and b are conjugate.

(vii) If a is an involution, then α 1(^)>3.

Proof. Since N* = S5, there is an element of the form (1)(2)(3)
(4, 5) . Now (vii) follows at once from (vi).

(viii) All involutions of G12 are conjugate in G1 2.

Proof. Let a and b be two given involutions of Gl 2. As in the
proof of (vi) we may assume that a and b are of the following forms :
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α = (l)(2X3)(4,5) .,

b = (1X2X3, 4)(5) . .

Then ba = (l)(2)(3, 4, 5) is of odd order and hence a power of ba
transforms a into b.

(ix) For a given invalution a, there is an element of order 3 such
that a~lua=u~l. And then ua is an involution.

Proof. Assume that 7(G1§ 2 3> 4) = {1, 2, 3, 4, 5} . Then we may assume
that a is of the form

* = (1)(2)(3,4)(5) .

By the quadruple transitivity of G, there is an involution b of the form
(2X3X4,5) — . Then b normalizes G2 3 4 5 and hence b fixes /(G2 3 4 5).
By the assumption 7(G2 3> 4§ 5) - 1(0, 2> 3> 4) - {1, 2, 3, 4, 5} . Therefore b
must be of the form

* = (1X2X3X4,5)-.

Now, by (v), te = (l)(2)(3,4, 5)— is of order 3m, where m is prime to 3.
Since a~l(bά)a = ab = (baY\ u = (bά)m is a desired element. The rest of
the statement is clear.

(x) All elements of order 3 are conjugate. If u is an element of
order 3, then NG(u) is transitive on Ω — I(u).

Proof. We first remark that, since G is 3-fold transitive, the follow-
ing follows from the results of Frobenius [2], [3] :

( 1 ) Σ « . ( * ) = -f | G | .
*e<? 3

In the following, we shall consider the sum above. By (v), an element
x with 3-cycle is expressed uniquely as a product of an element u of
order 3 and a 3-regular element (i. e. an element of order prime to 3)
y which commute with each other. It is then easy to see that α3(#)

equals _ .af(y\ where a?(y) denotes the number of the fixed letters of
o

« = (1)(2)(3,4,5)

y belonging to Ω—
Let us assume that

is a fixed element of order 3 and let Γ = Ω — I(u)= {3, 4 , , n}. Then
NG(u) induces a permutation group NG(u)Γ on Γ. Since G is not a
symmetric group, NG(u} is isomorphic to NG(u)Γ. Let af(y) denotes
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αι(.yr) for y^NG(u) and let t be the number of the sets of transitivity
of NG(u)Γ. If £ is a 3-singular element (i. e. an element of order divi-
sible by 3) of NG(u\ then, by (v), a?(x) = Q. If y is a 3-regular element
of NG(u), then, as remarked above,

(2) at(uy) = -i

Now, by [4], Theorem 16. 6. 13,

Since α?(*) vanishes for a 3-singular element x, we have, from (2),

(3) Σ /

where in the left y ranges over all 3-regular elements of NG(u).
Now let the conjugate classes of G consisting of elements of order

3 be {wj, {u2} , , {uk}. Then, from (3), we have

(4) Σ*»(*) = Σ . .(Σ'
' 3

where in the second y ranges over all 3-regular elements of NG(ug) and
in the last t{ is the number of sets of transitivity of NG(uί) which are
cantained in Ω — /(«*)• From (1) and (4), we have k = \ and tl = l.

(xi) Let u be an element of order 3 and suppose that I(u) = {1, 2} .
Then the order of NG(u} is divisible by 2 to the first power, and NG(u)

j 2 is transitive on {3, 4, •••,«}.

Proof. Since N* = S5, there is an element of the form

This shows that, for some element v of order 3, the order of NG(υ) is
even. Hence, by (x), the order of NG(u) is also even. Now, by (iv),
NG(u)Γ\Glt2 is of odd order. Hence NG(u)*NG(u)Γ\Glt2 and \NG(u):
NG(u)Γ\GΪt2\=2. This proves the first half.

Since NG(u) is transitive on Γ = {3, 4 , , n} by (x), if NG(u)ΠGlf2

is intransitive on Γ, then Γ is the union of the two sets of transitivity
of ΛfG(w)ΠG1>2 and hence |Γ | is even. This contradicts (i).

(xii) Let a be an involution of G. Then Λ̂ G (a) is 3-fold transitive
on I(ά).

Proof. We may assume that {1, 2}c/(0). Since G is doubly tran-
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sitive and, by (viii), the cyclic subgroup <α> of G± 2 satisfies the as-
sumption for U in the Witt's lemma, NG(ά) is doubly transitive on I(ά).
To prove the 3-fold transitivity, let u be an element of order 3 such
that a'1ua=u~1. We may assume that

iί = (l)(2)(3,4,5) .

Let N%(u} be the subgroup of G consisting of all the elements x such
that x~lux = u or u'1 and let K*=N%(u}Γ\G1>2 and K=NG(u)Γ\Glt2. Then
\K*:K\=2 and K is of odd order, and hence <#> is a Sylow 2-
subgroup of /f*. Let Γ= {3, 4, — , «}. Then /f* and /Γ fix Γ and, since
ίΓΓ is transitive, (K*)τ is also transitive. Therefore, by the Witt's
lemma, NG (a) Π K* is transitive on I(ά) - {1, 2} . Since Λ^ (a) Π K"*
c 7VG (a) Π G! > 2 , J/VG (0) Π Glf 2 is transitive on I(ά) — {1, 2} . This shows
that NG(ά) is 3-fold transitive on I(ά).

(xiii) An element of order 4 has no 2-cycles.

Proof. Let x be an element of order 4 and assume that x has a
2-cycle. Since w is odd, we may assume that

Then x2 is an involution and {1, 2, 3} c I(x2). Let r=«1(Λ:2). Then, by
(ii), r=Q (mod 3).

Now, by (xii), there is an element z in NG(x2} such that

/123

* = (312.

Let y = z~lxz. Then

j = (l,2)(3)

and / = #2. Since

^ = (1,2,3)-,

we can apply (v) to xy. If xy fixes a letter of /(r2), then, since
al(xy)<2 and all cycles of xy are of length divisible by 3, we have
r=l or 2 (mod 3). This is a contradiction. If xy has a 2-cycle in
7(jt2), then in the same way we have r=2 (mod 3), which is also a con-
tradiction. Therefore the fixed letters or the letters of 2-cycle of xy
appear in some 4-cycles of x.

Let as first assume that xy fixes letter il and x = (iί9 ι"2, ιa, i4) .
Then, since xy fixes ί\ and X2=y2

y y must be of the form

y = (iz, *Ί> «4, ϋ
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and xy fixes the four letters ily i2y i3 and /4. This conflicts with (v).
Next assume that xy has a 2-cycle (i19 k^. Then we may assume

that x and y are of the forms

x = (/!, ι'2, ι3, i4) ,

If &j lies in {ί\, ι'2, /3, ί'J then ^x and &3 must be /3 and i1 respectively.
Then xy has the two 2-cycles (ily ί3) and (/2, i4), which conflicts with (v).
Hence ^ must appear in another 4-cycle and we may assume that

X \ ^ ι , ^ 2 9 ^3> ^4/\™l> ™2 > ™3 > *M/ *" *

Then, since jry takes &x to il9 y must be of the form

y = (^2, /?!, 2 4 , K^)\K2y 119 « 4 , ^ J ' "

and jςy has the two 2-cycles (i19 kj, (iz, k2\ which conflicts with (v).

Next we shall consider a relation between the degree n and the
number of the fixed letters of an involution. In this part we make
use of the celebrated theorem of Feit and Thompson and a theorem of
Brauer.

(xiv) The order of H=G1 2 3 ^ is prime to n — 2.

Proof. Let ^ Φ l be a common prime divisor of n — 2 and \H\ and
P a Sylow ^-subgroup of H. Let N' denote the normalizer of P in G
and let Δ' denote /(P). Then, by the Witt's lemma, C/V')Δ/ is a 4-fold
transitive group and the number of the fixed letters of (Λ^/)Δ/ι>2,3,4 is not
less than 5. Hence, by Proposition 1 and 2 and by the minimal nature
of the degree of G, (N'Y* must be one of the following groups: S5, A6

or M n . Since every set of transitivity of P in Ω — Δx is of length divi-
sible by p, we have that one of the numbers n — 5, n — 6 or n — ίί is
divisible by p. On the other hand, n — 2 is also divisible by p. There-
fore p must be 2 or 3. But, by (i), p can not be 2. If p = 3, then H
contains an element of order 3, which conflicts with (iii).

(xv) Let r be the number of the fixed letters of an involution.
Then

Proof. Let us assume that « = (1)(2)(3, 4, 5) is an element of order
3. Let L=NG(u\ ϋΓ=LΓlG l f2 and let L*=N%(u} be the subgroup con-
sisting of all the elements x such that x~1ux = u or u"1. Then, by (xi),
K is a normal subgroup of odd order in L* and \L:K\=2, and, by
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(ix), |L* :L\ =2. It is now easy to see that a Sylow 2-subgroup of L*
is a four group. By the theorem of Feit and Thompson [1] K is
solvable. Let W=KnGlf2t3. Since every element of W commutes
with u, WdH=G1234. By (xi), \K:W\=n-2 and, by (xiv), it is
prime to the order of W. Hence there is a Hall subgroup U of order
n — 2 in Ky and then U is regular on {3, 4, •••,»}. By the fundamental
theorem of P. Hall, we have L* = NL*(U}K. Let V be a Sylow 2-
subgroup of NL*(U). Then V is also a Sylow 2-subgroup of L* and
hence it is a four group. Now we may assume that V consists of the
unit and the three involutions of the following forms :

^ = (1,2X3X4X5)-,

*, = (1X2X3X4, 5). ,

Λ8 = Λ A = (l,2)(3)(4,5) - ,

where a1 commutes with u, and a2 and #3 transform u into its inverse.
The four group V induces a group of automorphism of U, and

hence we can apply a theorem of Brauer ([7], (1. 1)). Let /,- be the
number of the elements of U left invariant by at (ί = l, 2, 3), and let /0

be the number of the elements of U left invariant by V. Then we
have

/S|ϋΊ =fl(n-Z).

Now U is regular on {3, 4, ,w} and each #,- fixes the letter 3. Hence
ft is equal to the number of the fixed letters of a{ belonging to
{3, 4, •••,»}. Therefore we have / 1 = / 3 = r and f2 = r— 2. On the other
hand, /0 is a divisor of \U\=n — 2 and hence it is odd. Furthermore
it is a common divisor of f1 = r and f2 = r—2. Hence we have /0 = 1
and r2(r-2) = n-2.

The rest of the proof is similar to (v)— (viii) in the proof of Pro-
position 2.

Let P be a Sylow 2-subgroup of 11=0, 234ί c a central involution
of P and let /(£)= {1, 2, , r}. If P contains no elements of order 4,
then r<3 and n = r\r-2) + 2<ll. Then G must be SB. Hence P con-
tains an element of order 4 and then U=P1 2 ... r satisfies the assump-
tion of the Witt's lemma. Let M=NG(U) and Γ = I(U). Then MΓ is
a 4-fold transitive group and (M 1 ^ 2 3 4 fixes at least five letters.
Therefore, by Proposition 1 and 2 and by the minimal nature of the
degree of G, | Γ | must be 5, 6 or 11. Thus we have r < l l . Since r=3
(mod 6), r = 3 or 9. If r = 9 then MΓ = MU and the involution cr is a 2-
cycle. But this is impossible. Hence r = 3 and « = 11. Then G = Mn,
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which contradicts the first assumption for G.
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