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Let G be a 4-fold tranmsitive group on Q={1,2,--,n}, H=G, ,, ,
the subgroup of G consisting of all the elements fixing the four letters
1,2,3 and 4 and let N be the normalizer of H in G. Let A denote
the set of all the letters fixed by H. Then N fixes A and it induces
a permutation group N* on A. From the Jordan’s theorem [5] (cf. [4],
Theorem 5. 8.1) and the Witt’s lemma [8], we have one of the following
four cases: ’

Case I. N°=3S,,
Case IL. N* =S,,
Case IIl. N* = A,,
Case IV. N* = M,.

Here M,, denotes the Mathieu group of degree 11. (For the Mathieu
groups we refer to [8].)

The purpose of this paper is to show that, except in CASE I, G
must be one of the known groups. Namely we shall prove the following
theorem.

Theorem. [f N“=S,, A, or M,, then G must be S;, A, or M,
respectively.

We shall state here the Witt’s lemma in full because of its im-
portance in the following.

Lemma (Witt). Let G be a t-fold transitive group on Q and H the
subgroup of G consisting of all the elements fixing t letters. Suppose that
a subgroup U of H is conjugate in H to every group V which lies in H
and which is conjugate to U in G. Then the normalizer of U in G is
t-fold transitive on the set of the letters left fixed by U.

The typical examples of U satisfying the assumption are H itself
and Sylow p-subgroups of H.

In the proof of the theorem, we also make use of the fact ([4],
p. 80) that a 4-fold transitive group of degree less than 35 is, except
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the symmetric and alternating groups, one of the four Mathieu groups.

NOTATION. For a set X let | X| denote the number of the elements
of X. For a set S of permutations on  the set of the letters left
fixed by S will be denoted by I(S). If a subset A of Q is a fixed block
of S, i.e. if AS=A, then the restriction of S on A will be denoted by
S2. For a permutation group G on Q the subgroup of G consisting of
all the elements fixing the letters 4, j, ---, & will be denoted by G; ; .. &-
For a premutation x let a;(x) denote the number of i-cycles (cycles of
length ¢) of x. So «,(x) is the number of the letters left fixed by x.

1. Case III. N*=A4, |A|=6.

Throughout the remainder of this paper it will be assumed that G
is a 4-fold transitive group on Q={1,2,.-,n}, H denotes G, ,,,, N is
the normalizer of H in G and A denotes I(H).

In this section, we treat the case in which N*=A, and prove the

following
Proposition 1. If N*=A, then G must be A,.
Proof. Let us first consider the map
Pt =Gy,

from Q—{1,2,3} into the set of subgroups of G. Let I(G,,, )
=1{1,2,3,4,j,k}. Then the inverse image @7(G,, ;) consists of three
letters ¢, j and k. Hence we have

(1) n=0 (mod 3).

Now let @ be an involution of G and let »=|I(a)|. Then, by
Proposition 1 in [6], we have

(2) n=ri2.

Suppose that » >4. Then we may assume that a fixes the three letters
1,2 and 3. Consider the map

P, —> Gl,z 3,i
from I(a)-{1,2,3} into the set of subgroups of G, and let I(G,,, ;)
=1{1,2,3,4,j,k}. Since a normalizes G, ,,; and it is an even permuta-

tion on I(G, ,, :), 7 and k belong to I(z). Hence each inverse image of
@, consists of three letters, and we have

(3) r=0 (mod 3).
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From (2) and (3) we have
n=2 (mod 3).

which conflicts with (1).
Thus it is shown that »<3 and n=7"+2<11. Then, by the
remark at the end of the introduction, G must be A;.

2. Casg IV. N*=M,, A=11.

In this section, we shall prove the following
Proposition 2. If N*=N,, then G must be M,.

We proceed by way of contradiction. From now on it will be as-
sumed that G is a counter-example to the proposition with the least
possible degree and all elements belong to G.

By a series of steps we shall show that every element of order 4
has no 2-cycles. Then it will be shown that there is a subgroup of H
which satisfies the assumption of the Witt’s lemma. From this fact we
have # <11, which contradicts the assumption for G.

(i) Let x be an involution and »=|I(x)|. Then

n=r4+2.

For the proof, see Proposition 1 in [6].
(ii) If an element x fixes at least four letters, then

(a,(x)—2) e, (%)—3) = 0 (mod 72).
As a special case, the degree » satisfies the relation
n—2)(n—-3)=0 (mod 72).

Proof. We may assume that {1,2} cI(x). For a subset {i,, 7} of
I(x)—{1,2}, x normalizes G, ,; ;. Let A’=IG, ,; ;,)=1{12,1, i,
i}. Since x*’ is an element of M, fixing the four letters 1, 2,1, i,, it
is the unit. Hence A’CI(x). Consider the map

P {iu 12} - Gl,z,il, iy

from the family of the subsets of I(x)— {1, 2} consisting of two letters
into the set of subgroups of G. By the consideration above, each
inverse image of @ consists of ,C, subsets.

Hence we have

(@) =2)@(5)=3) _ g (mod ,C,)
2 9~2/
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which implies our assertion.
(iii) If an element x has a 2-cycle, then

a(x) = o, (x) (e, (x)— 1) +1
2

Proof. Let us first assume that «,(x)>2. We may assume that
x=(1,2)k, 7). Then x normalizes G, , ; ;. Let A’=I(G, , s ). Since
(x*')? is an element of M, fixing the four letters 1,2, &, /, it is the unit,
and hence x*’ is an involution of M,,. Therefore a,(x)>3. Now, for a
subset {i,, i,} of I(x), let A”=I(G, , ; ;). Then, by the same argument
as above, we can see that x*” is an involution of M,, and hence it is
of the following form :

22 = (1, 2)(6)(0,) ) sy L) sy L) ks, 1) -
Considering the map
@ iy, i} = {(ky, 1), (ke, 1), (R, 1)}

from the family of the subsets of I(x) consisting of two letters into the
family of the sets of three 2-cycles of x different from (1, 2), we have,
in the same way as in the proof of Proposition 1 in [6], the following
relation :

L (1) 1) = L a@e(n—1)

This implies our assertion.
Next assume that a,(x)=1. If a,(x)>2, then, in the same way as
above, we can see that «,(x)>3. Hence «,(x) must be O or 1 and in

either case our relation holds.
(iv) If x is an element of order 4, then x has no 2-cycles.

Proof. We assume, by way of contradiction, that o,(x)>0. Then
from (iii) we have

(1) a,(x) = (@) (%)—1) 4
i 2

Let s=a,(x) and r=a,(2?). Then from (1)
(2) r = s+2a,(x) = s°+2.
Let us first assume that s>4. Then by (ii)

(s—2)(s—3)=0  (mod 72)
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and
(3) r—2)r—3)=0 (mod 72).

Since s—2 and s—3 are relatively prime, s—2=0 (mod 9) or s—3=0
(mod 9). If s—2=0 (mod 9), then

(r—2)r—3)=s%(s*-1) =0 (mod 9),

which contradicts (3). Hence s=3 (mod 9). In the same way we have
s=3 (mod 8), and hence s=3 (mod 72). Therefore from (2) we have

(4) r=11  (mod 72).

On the other hand, since #=7*+2 by (i) and (n—2)(2—3)=0 (mod 72)
by (ii), 7"(#*—1)=0 (mod 72). But, by (4),

r’(r—1)=11°(11"-1) =48 £ 0 (mod 72),

which is a contradiction.

Next assume that s=«,(x¥)<3. Then, from (2), » must be one of
the following numbers: 2,3,6 or 11. If =2 or 3 then n=r*+2<11
and G must be M,, which contradicts the assumption for G. If r=6
then

r—2)r—3)=12=%=0 (mod 72),
which conflicts with (ii). If »=11, then n=7*+2=123 and
n—2)Yn-3)=x=0 (mod 72),

which conflicts also with (ii).
(v) Let P be a 2-subgroup of G and ¢ an arbitrary central involu-
tion of P. If there is an element x of order 4 in P then I(x)=I(c).

Proof. Since x commutes with ¢, x takes the letters of I(c) into
themselves and it takes also the 2-cycles of ¢ into themselves. If x
fixes a 2-cycle (i, j) of ¢, then by (iv) x fixes the two letters { and j.
Then xc is of order 4 and has a 2-cycle (4, j), which contradicts (iv).
Thus x fixes no 2-cycles of ¢, and hence I(x)CI(c). On the other hand,
from (iv), it follows that I(x*)=1I(x) and, by (i), the two involutions x*
and ¢ fix the same number of letters. Therefore we have I(x)=I(c).

(vi) Let P be a Sylow 2-subgroup of H=G, ,,,. Then P con-
tains an element of order 4.

Proof. Since N*=M,,, G contains at least one element x of order
4. If P contains no elements of order 4, then |I(x)|<3. Since |[I(x)|
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=|I(x%)] by (iv) and x* is an involution, we have #<11. Hence G must
be M,,, which contradicts the first assumption for G.

(vii) Let P be a Sylow 2-subgroup of H, ¢ a central involution of
P and let I(c)={1,2,-+,7}. Then U=P,, .., satisfies the assumption
in the Witt’s lemma.

Proof. Let @ be an element of order 4 in P. Then from (v) I(a)
={1,2,-,7} and acU. Now assume that V=x"'UxCH for x&G and
let P’ be a Sylow 2-subgroup of H containing V. Then there is an
element % of H such that P'=hi"'Ph. Let U'=h"'Uh, a’=h""'ah and
I(@)={1,2",---,7"}. Then, since I(a")=I1(a)*, U =P’y y .. ,. Since x7'ax
is an element of order 4 in P/, we have I(x'ax)=I(a’) by (v). Hence
V fixes each letter in I(a’) and we have VC U’. Compairing the orders
we have V=U".

(viii) Let U be as in (vii) and let '=I(U). Then |T"|=11.

Proof. Let M be the normalizer of U in G. By (vii) and the Witt’s
lemma, M* is a 4-fold transitive group on I'. Since M, ,, ,CH,

I(H)CIM, , 5 JNI(U) = I(MT),, 5,5, )

and hence |I((MT), ,, ., |>11. On the other hand, as stated in the in-
troduction, |I((MT), , , ,)| is not greater than 11. Therefore |[I(M ™), 2,3,
=11, and by the minimal nature of the degree of G, M* must be M,,.
Hence |[T'|=11.

Now let ¢ be as in (vii) and let [I(c)|=r. Then by (viii) »r<11. If
r<3 then #<11 and G must be M,,, which contradicts the assumption
for G. If >4, then by (ii)

r—2)(r—3)=0 (mod 72).
Hence =11 and #=123. But then
n—2)n—3)=*=0 (mod 72),

which conflicts with (ii)

3. Casg II. N*=S,, |A|=5.
In this section, we shall prove the following
Proposition 3. If N*=S,, then G must be S;.

We proceed by way of contradiction. From now on it will be as-
sumed that G is a counter-example to the proposition with the least
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possible degree and all elements belong to G.

The proof in this case is rather involved. As in CAsgE IV, we shall
first show that every element of order 4 has no 2-cycles.

We first remark that G can not be a symmetric group since N*=3S;
and G is not S,.

(i) The degree n is odd.

Proof. Consider the map
¢:i__)G1,2,3,i

from O-—{1,2,3} into the set of subgroups of G. Let I(G,, ;)
={1,2,3,4,7}. Then the inverse image 9 XG,,, 5 ;) consists of two
letters 7 and /*. Hence #—3 is even and #» is odd.

(ii) Let a be an involution of G. If »=a,(a)>4 then

r=3 (mod 6) .
Proof. We may assume that {1, 2,3} CI(a). Consider first the map
‘p1:i_)G1,z,a,i

from I(a)—{1,2,3} to the set of subgroups of G. Let I(G, ,, )
={1,2,3,4,i}. Then @ normalizes G, ., and hence i’ lies in I(a).
Therefore each inverse image of @, consists of two letters. Hence »—3
is even and 7 is odd.

For a 2-cycle (k, /) of a, consider next the map

P, {iy, 1} — Gk,l, i1, iy

from the family of the subsets of I(a) consisting of two letters into the
set of subgroups of G. Let I(G, ,: :;)=1k [ i, 1,,1;}. Then, since a
normalizes Gg ; ;, ;,, i, lies in I(a) and the inverse image @3;'(G : ;i +,)
consists of three subsets {i,, 7.}, {Z,, i}, {i,, is}.

Hence we have

D=0 (med3),

(1) rr—1)=0 (mod 6).
In the same way, considering the map
Ps - {il) Zz} g Gl, 2,4y, 49

from the family of the subsets of I(a)— {1, 2} consisting of two letters
into the set of subgroups of G, we have



334 H. Nagao

(2) (r—2)r—3)=0  (mod 6).

From (1) and (2) it follows that »=0 (mod 6) or »=3 (mod 6). But,
since 7 is odd, we have

r=3 (mod 6).
(iii) If # is an element of order 3, then « fixes just two letters.

Proof. Assume first that s=a,(#)%0. For a 3-cycle (%, [, m) of u,
consider the map
P> Gt i
from I(x) into the set of subgroups of G. Then u normalizes G, ; ,. :
and, in the same way as in the proof of (ii), we have
(1) s=0 (mod 2).

Let us assume now that s>3. Then, by (1), s is not less than 4. We
may assume that {1,2, 3} cI(#). Consider the map

Pyl _901'2,3,:'

from I(u)— {1, 2, 3} into the set of subgroups of G. Then, in the same
way as above, we have

s—3=0 (mod 2),

which conflicts with (1). Thus it is shown that s<2. By (1) s is not
1. Hence s=0 or 2 and #=0 (mod 3) or #=2 (mod 3) according as
s=0 or s=2.

Since N*=S, there is an element x of the following form :

x = (1)(2)3, 4, 5)-+- .

Let the order of x be 3%*#, where m is prime to 3. Then k>1 and
v=2x"*""" is an element of order 3 fixing two letters 1 and 2. Hence
n=2 (mod 3) and s must be equal to 2.

(iv) Let # be an element of order 3 fixing the two letters 1 and
2. If an involution @ commutes with # then « has the 2-cycle (1, 2).
The order of Ng(#)NG, , is odd.

Proof. If @ does not have the 2-cycle (1, 2), then a fixes 1 and 2.
Let the 3-cycles of # fixed by a be

(il’jly kl) »°° %y (it» jty kt) .
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Then I(a)=1{1,2,4,,7,,-*, b} and hence r=a,(a)=3f+2. Since » is odd,
7 is odd and hence # must be odd. Let £{=2#+1. Then

ry =6'+5=5 (mod 6),

which contradicts (ii). Therefore a is of the form a=(1, 2)---, and this
shows also that N;(#)NG, , is of odd order.

(v) Let x be an element which has a 3-cycle. Then the order of
x is 3m, where m is prime to 3. Every cycle of x with length greater
than 2 has a length divisible by 3. Further «,(x)=2 or 0 and if
o,(x)=2 then x is of odd order and if «,(x)=0 then a,(x)=1.

Proof. Let the order of x be 3*m, where m is prime to 3. Then,
by the assumption, £>1 and #=x*"" is of order 3. If k>1 then
o, (#)>3, which contradicts (iii). Hence £=1. If x has a cycle of length
! which is greater than 2 and prime to 3, then «,(#)>/, which contra-
dicts (iii). Therefore every cycle of x with length greater than 2 has
a length divisible by 3. By the similar reason, a,(x¥)<1 and if «,(x)+0
then «,(x)<2 and a,(x)=0. Therefore if a,(x)=+0 then «a,(x)=2 since
n=2 (mod 3) by (iii), and then x is of odd order by (iv). If «,(x)=0
and I(u)={i,j} then x has a 2-cycle (i,7). Hence a,(x)=1.

(vi) All involutions of G are conjugate.

Proof. Let @ and b be two given involutions, and assume that
IG, , . 0)=11,23,4,5} for simplicity. Taking a conjugate if necessary,
we may assume that a=(1, 2)(3,4)---. Then & normalizes G, , , , and
hence it fixes the letter 5. Thus « is of the form

a = (1’ 2)(3, 4)(5)' .
In the same way we may assume that & is of the form
b = (1, 2)(3)(4, 5)-- .

Then ba=(1)(2)3, 4,5)--- and, by (v), it is of odd order. Therefore, by
[4], Lemma 5.8.1, ¢ and b are conjugate.
(vil) If a is an involution, then «,(a)>3.

Proof. Since N*=S,, there is an element of the form (1)(2)(3)
(4, 5)---. Now (vii) follows at once from (vi).
(viii) All involutions of G, , are conjugate in G, ,.

Proof. Let @ and & be two given involutions of G,,. As in the
proof of (vi) we may assume that ¢ and b are of the following forms:
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a = (1)(2)(3)(4, 5)-+-,
b = (1)(2)(3, 4)(5)-- .

Then ba=(1)2)(3,4,5)-- is of odd order and hence a power of ba

transforms « into b.
(ix) For a given invalution «, there is an element of order 3 such

that ¢7'ua=u"'. And then we is an involution.

Proof. Assume that I(G, , ; )=1{1,2,3,4,5}. Then we may assume
that @ is of the form

a = (1)(2)3, 4)(5)-+ .

By the quadruple transitivity of G, there is an involution b of the form
(2)3)(4,5)--. Then b normalizes G, ,, and hence b fixes IG, 5 . 5)-
By the assumption I(G, , ,,)=I(G, ,;)=1{1,23,4,5}. Therefore b
must be of the form

b = (1)(2)(3)(4, 5) -+ .

Now, by (v), ba=(1)(2)3, 4, 5)--- is of order 3m, where m is prime to 3.
Since @ (ba)a=ab=(ba)’, u=(ba)" is a desired element. The rest of
the statement is clear.

(x) All elements of order 3 are conjugate. If # is an element of
order 3, then N;(u) is transitive on Q— I(«).

Proof. We first remark that, since G is 3-fold transitive, the follow-
ing follows from the results of Frobenius [2], [3]:

(1) S = 161,

In the following, we shall consider the sum above. By (v), an element
x with 3-cycle is expressed uniquely as a product of an element % of
order 3 and a 3-regular element (i.e. an element of order prime to 3)
y which commute with each other. It is then easy to see that a,(x)

equals _;,a;"( »), where af(y) denotes the number of the fixed letters of
y belonging to Q— I(u).
Let us assume that
u = (1)(2)3, 4, 5)--

is a fixed element of order 3 and let T=Q—I(w)={3,4,---,#n}. Then
Ng(u) induces a permutation group Ng(#)T on I'. Since G is not a
symmetric group, Ng(#) is isomorphic to N;(%)T. Let af(y) denotes
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a,(y7F) for yeNg(u) and let ¢ be the number of the sets of transitivity
of Ng(u)F. If x is a 3-singular element (i.e. an element of order divi-
sible by 3) of Ng;(u), then, by (v), af(x)=0. If y is a 3-regular element
of Ng;(u), then, as remarked above,

(2) o, (wy) = %a;*(y) :

Now, by [4], Theorem 16. 6.13,
> )ai“(x) = t|Ng(@)'| = ¢|Ng(w)| .

IEN g%

Since af(x) vanishes for a 3-singular element x, we have, from (2),
(3) SY ay(uy) = +INo ()],

where in the left y ranges over all 3-regular elements of Ng(u).
Now let the conjugate classes of G consisting of elements of order
3 be {u}, {u},-, {#s}. Then, from (3), we have

— 1G] / _1
(4) 2 %) = 23 AT G () 3 IGI(25t),
where in the second y ranges over all 3-regular elements of N;(%;) and
in the last #; is the number of sets of transitivity of N;(%;) which are
cantained in Q—1I(%;). From (1) and (4), we have k=1 and ¢,=1.

(xi) Let » be an element of order 3 and suppose that I(x)= {1, 2}.
Then the order of N(u) is divisible by 2 to the first power, and N («)
NG, , is transitive on 3,4, -, n}.

Proof. Since N*=S,, there is an element of the form
(1’ 2)(3’ 4’ 5)' .

This shows that, for some element v of order 3, the order of N;(v) is
even. Hence, by (x), the order of N;(u) is also even. Now, by (iv),
Ne;®)NG, , is of odd order. Hence Ng(#)+Ns(u)NG, , and |Ng(u):
N;@®)NG, ,|=2. This proves the first half.

Since Ng(u) is transitive on TI'={3,4,---,n} by (x), if Ne(®)NG, ,
is intransitive on T, then I" is the union of the two sets of transitivity
of N¢(®)NG, , and hence |T'| is even. This contradicts (i).

(xii) Let @ be an involution of G. Then N;(a) is 3-fold transitive
on I(a).

Proof. We may assume that {1,2} CcI(a). Since G is doubly tran-
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sitive and, by (viii), the cyclic subgroup <a> of G, , satisfies the as-
sumption for U in the Witt’s lemma, N;(a) is doubly transitive on I(a).
To prove the 3-fold transitivity, let # be an element of order 3 such
that ¢ 'ua=u""'. We may assume that

Let N¥%() be the subgroup of G consisting of all the elements x such
that ¥ 'ux=u or «™" and let K*=N¥wu)NG, , and K=N;(u)NG, ,. Then
|[K*:K|=2 and K is of odd order, and hence <a> is a Sylow 2-
subgroup of K*. Let I'={3,4, ---,n}. Then K* and K fix T" and, since
KT is transitive, (K*)' is also transitive. Therefore, by the Witt’s
lemma, Ng(@)NK* is transitive on I(a)—{1,2}. Since Ng(a)NK*
CNg(@) NG, ,, Ne(@)NG, , is transitive on I(a)—{1,2}. This shows
that Ng(a) is 3-fold transitive on I(a).
(xiii) An element of order 4 has no 2-cycles.

Proof. Let x be an element of order 4 and assume that x has a
2-cycle. Since » is odd, we may assume that

x = (1)2 3)--.

Then x* is an involution and {1, 2, 3} cI(x*). Let r=a,(x*). Then, by
(i), =0 (mod 3).
Now, by (xii), there is an element z in Ng(x?) such that

z = .
312...
Let y=z"'xz. Then
¥y =(1,2)@3)-
and y*=x". Since
Xy = (1) 2) 3)"' )

we can apply (v) to xy. If xy fixes a letter of I(x*), then, since
a,(xy)<2 and all cycles of xy are of length divisible by 3, we have
r=1 or 2 (mod 3). This is a contradiction. If xy has a 2-cycle in
I(x*), then in the same way we have =2 (mod 3), which is also a con-
tradiction. Therefore the fixed letters or the letters of 2-cycle of xy
appear in some 4-cycles of x.

Let as first assume that xy fixes letter ¢, and x=(i,, i,, 7,, 4,)--.
Then, since xy fixes 7, and x°=)°, y must be of the form

Yy = (Z.:z’ il) iu is)"'
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and xy fixes the four letters 7, i,, 7, and 7,. This conflicts with (v).
Next assume that xy has a 2-cycle (z,, k). Then we may assume
that x and y are of the forms

X = (ily iz; ia; iA)"' ’
Yy = (i'u kl) iu ka) .

If &, lies in {i,, i, i,, ¢,} then k, and k, must be 7, and 7, respectively.
Then xy has the two 2-cycles (¢, ;) and (i,, 7,), which conflicts with (v).
Hence %, must appear in another 4-cycle and we may assume that

x = (in iz: ia: i4)(k1’ kz: ka’ k4)"' .

Then, since xy takes k, to i,, y must be of the form

y = (izy kn i4, ka)(kZ’ in ku 13)

and xy has the two 2-cycles (i, k,), (i,, k,), which conflicts with (v).

Next we shall consider a relation between the degree #» and the
number of the fixed letters of an involution. In this part we make
use of the celebrated theorem of Feit and Thompson and a theorem of
Brauer.

(xiv) The order of H=G, , , , is prime to n—2.

Proof. Let p=+1 be a common prime divisor of #—2 and |H| and
P a Sylow p-subgroup of H. Let N’ denote the normalizer of P in G
and let A’ denote I(P). Then, by the Witt’s lemma, (N)* is a 4-fold
transitive group and the number of the fixed letters of (N')*, , ;, is not
less than 5. Hence, by Proposition 1 and 2 and by the minimal nature
of the degree of G, (N")* must be one of the following groups: S, A4,
or M,,. Since every set of transitivity of P in Q—A’ is of length divi-
sible by p, we have that one of the numbers #—5, —6 or n—11 is
divisible by p. On the other hand, »—2 is also divisible by p. There-
fore p must be 2 or 3. But, by (i), » can not be 2. If p=3, then H
contains an element of order 3, which conflicts with (iii).

(xv) Let r be the number of the fixed letters of an involution.
Then

n=rr—2)+2.

Proof. Let us assume that #=(1)(2)(3, 4, 5)--- is an element of order
3. Let L=Ns(u), K=LNG, , and let L*=N¥(«) be the subgroup con-
sisting of all the elements x such that x'‘wx=w# or #™'. Then, by (xi),
K is a normal subgroup of odd order in L* and |L:K|=2, and, by
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(ix), |L*¥:L|=2. It is now easy to see that a Sylow 2-subgroup of L*
is a four group. By the theorem of Feit and Thompson [1] K is
solvable. Let W=KNG,,,. Since every element of W commutes
with », WcH=G, ,,,. By (i), |K: W|=n—2 and, by (xiv), it is
prime to the order of W. Hence there is a Hall subgroup U of order
n—2 in K, and then U is regular on {3,4,---,#}. By the fundamental
theorem of P. Hall, we have L*=N;«(U)K. Let V be a Sylow 2-
subgroup of N «(U). Then V is also a Sylow 2-subgroup of L* and
hence it is a four group. Now we may assume that V consists of the
unit and the three involutions of the following forms :

a, = (1, 2)(3)(4)(5) -,
a, = (1)(2)(3)4, 5)---,
a, a.a, = (ly 2)(3)(4; 5)'" ’

where @, commutes with %, and @, and @, transform # into its inverse.

The four group V induces a group of automorphism of U, and
hence we can apply a theorem of Brauer ([7], (1.1)). Let f; be the
number of the elements of U left invariant by «; (i=1, 2, 3), and let f,
be the number of the elements of U left invariant by V. Then we
have

fifofs = f3lU| = fi(n—2).

Now U is regular on {3,4,---,n} and each q; fixes the letter 3. Hence
f; is equal to the number of the fixed letters of «; belonging to
{3,4,--,n}. Therefore we have f,=f,=7» and f,=r—2. On the other
hand, f, is a divisor of |[U|=#z—2 and hence it is odd. Furthermore
it is a common divisor of f,=# and f,=»—2. Hence we have f,=1
and 7(r—2)=n—2.

The rest of the proof is similar to (v)~(viii) in the proof of Pro-
position 2.

Let P be a Sylow 2-subgroup of H =G, ;4,4 ¢ a central involution
of P and let I(c)=1{1,2,---,7}. If P contains no elements of order 4,
then <3 and n=7r(r—2)+2<11. Then G must be S,. Hence P con-
tains an element of order 4 and then U=P, , .., satisfies the assump-
tion of the Witt’s lemma. Let M=N;(U) and I'=I(U). Then MT is
a 4-fold transitive group and (MT),,,, fixes at least five letters.
Therefore, by Proposition 1 and 2 and by the minimal nature of the
degree of G, |T'| must be 5,6 or 11. Thus we have »<11. Since =3
(mod 6), »=3 or 9. If »=9 then MT=M,, and the involution ¢ is a 2-
cycle. But this is impossible. Hence »=3 and n#=11. Then G=M,,



MuULTIPLY TRANSITIVE GROUPS IV 341

which contradicts the first assumption for G.
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