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Abstract
A new proof of the homogeneity of isoparametric hypersurfaces with six simple

principal curvatures [4] is given in a method applicable to the multiplicity two case.

1. Introduction

The classification problem of isoparametric hypersurfacesis remaining in some cases
of four and six principal curvatures ([3], [5], [9]). The homogeneity in the case (g, m) =
(6, 1) was proved by Dorfmeister-Neher [4]. A shorter proof was given in [7], but some
argument was insufficient (pointed out by Xia Qiaoling). Moreover, we found it difficult
to extend the method to the case (g, m) = (6, 2).

In the present paper, we show that a delicate change of signs of some vectors at
anti-podal points on a leaf, which is related to the back ground symmetry caused by a
spin action, is essential. This investigation is also indispensable to attack on the case
m = 2. Before treating this overwhelmingly difficult case, a complete short proof for
m = 1 will give us an overview how to settle the problem in the case m = 2 [9].

§2–§5 consist of reviews of [6] and [7]. We do not repeat the proofsin [6],
but give those of [7] in a refined manner. The shape operators of each focal sub-
manifold M� consist of anS1-family of isospectral transformations with simple eigen-
values�p3, �1=p3, 0. There are many suchS1-families (see§2), but in §6–§9, we
narrow down them by using both local and global properties ofisoparametric hyper-
surfaces, and conclude that non-homogeneous cases cannot occur.

2. Preliminaries

We refer readers to [11] for a nice survey of isoparametric hypersurfaces. Here
we review fundamental facts and the notation given in [6]. Let M be an isoparametric
hypersurface in the unit sphereSn+1, with a unit normal vector field� . We denote the
Riemannian connection onSn+1 by Õ, and that onM by O. The principal curvatures
of M are given by constants�1 � � � � � �n, and the curvature distribution for� 2 f��g
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696 R. MIYAOKA

is denoted byD�(p), m� = dim D�(p). In our situation, D� is completely integrable
and a leafL� of D� is an m�-dimensional sphere ofSn+1. Choose a local orthonormal
frame e1, : : : , en consisting of unit principal vectors corresponding to�1, : : : , �n. We
express

(1) Õe�e� = 3���e� + ��Æ��� , 3
�� = �3��
 ,

where 1� �, �, � � n, using the Einstein convention. The curvature tensorR��
 Æ of
M is given by

(2)
R��
 Æ = (1 +����)(Æ�
 Æ�Æ � Æ�
 Æ�Æ)

= e�(3Æ�
 )� e�(3Æ�
 ) +3��
3Æ�� �3��
3Æ�� �3���3Æ�
 +3���3Æ�
 .

From the equation of Codazzi, we obtain

(3) e�(��) = 3���(�� � ��), for � 6= �,

and if ��, �� , �
 are distinct, we have

(4) 3
��(�� � �
 ) = 3�
�(�� � ��) = 3��
 (�
 � ��).

Moreover,

(5) 3
ab = 0, 3
aa = 3
bb, if �a = �b 6= �
 and a 6= b,

hold, and since�� is constant onM, it follows from (3),

(6) 3
�� = 0 if �
 6= ��.

When the numberg of principal curvatures is six, the multiplicitym of �i is in-
dependent ofi and takes values 1 or 2 [1]. In the following, let (g, m) = (6, 1). As is
well known, �i = cot(�1 + (i � 1)�=6), 1� i � 6, 0< �1 < �=6, modulo� . Since the
homogeneity is independent of the choice of�1, we take

�1 =
�
12

= ��6, �2 =
�
4

= ��5, �3 =
5�
12

= ��4

so that

(7) �1 = ��6 = 2 +
p

3, �2 = ��5 = 1, �3 = ��4 = 2�p3.

Note that we choose�i 2 (��=2, �=2). By (5) and (6), a leafL i = L i (p) of Di (p) =
D�i (p) is a geodesic of the corresponding curvature sphere.
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For a = 6 or 1, define the focal mapfa : M ! S7 by

fa(p) = cos�a p + sin�a�p,

which collapsesLa(p) into a point p̄ = fa(p). Then we have

(8) d fa(ej ) = sin�a(�a � � j )ej ,

where the right hand side is considered as a vector inTp̄S7 by a parallel translation in
S7. We always use such identification. The rank offa is constant and we obtain the
focal submanifoldMa of M:

Ma = fcos�a p + sin�a�p j p 2 Mg.
By (8), the tangent space ofMa is given byTp̄Ma =

L
j 6= a D j (q) for any q 2 f �1

a ( p̄).
An orthonormal basis of the normal space ofMa at p̄ is given by

(9) �q = �sin�aq + cos�a�q, �q = ea(q)

for any q 2 La(p) = f �1
a ( p̄).

Now, the connection̄O on Ma is induced from the connectioñr, that is

1

sin�a(�a � � j )
r̃ej X = Ōej X̃ + Ō?

ej
X̃, � j 6= �a,

where X is a tangent field onS7 in a neighborhood ofp, and X̃ is the one nearp̄
translated fromX. Note thatŌ?

ej
X̃ denotes the normal component inS7. In particular,

we have for j 6= a,

Ōej ẽk =
1

sin�a(�a � � j )

X
ł 6= a

3l
jkel ,(10)

Ō?
ej

ẽk =
1

sin�a(�a � � j )
f3a

jkea + sin�a(1 +� j�a)Æ jk�pg,(11)

using h� j �p� p, �pi = sin�a(1+� j�a). In the following, we identifyẽk with ek. Denote
by BN the shape operator ofMa with respect to the normal vectorN. Then from (10)
and (11), we obtain:
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Lemma 2.1 ([6] (Lemma 3.1)). When we identify T̄pMa with
L5

j =1 Da+ j (p) where
the indices are modulo6, the second fundamental tensors B�p and B�p at p̄ are given
respectively by

B�p =

0
BBBBBBBB�

p
3 0 0 0 0

0
1p
3

0 0 0

0 0 0 0 0

0 0 0 � 1p
3

0

0 0 0 0 �p3

1
CCCCCCCCA

,

B�p =

0
BBBBB�

0 ba+1 a+2 ba+1 a+3 ba+1 a+4 ba+1 a+5

ba+1 a+2 0 ba+2 a+3 ba+2 a+4 ba+2 a+5

ba+1 a+3 ba+2 a+3 0 ba+3 a+4 ba+3 a+5

ba+1 a+4 ba+2 a+4 ba+3 a+4 0 ba+4 a+5

ba+1 a+5 ba+2 a+5 ba+3 a+5 ba+4 a+5 0

1
CCCCCA,

where

(12) b jk =
1

sin�a(�a � � j )
3a

jk =
1

sin�a(� j � �a)
3k

ja , a = 6, 1.

In fact, from (11) it follows B�p(ej ) = � j ej , where fora is, say 6,

(13) � j =
1 +� j�6�6� � j

, �1 =
p

3 =��5, �2 =
1p
3

= ��4, �3 = 0,

and b jk = bk j follows from (4). In the following, we denoteM+ = M6 and M� = M1.
Note that both are minimal. It is easy to see that any unit normal vector is written as�q in (9) for someq 2 L6(p), and we have immediately:

Lemma 2.2 ([10], [6]). The shape operators are isospectral, i.e., the eigenvalues
of BN are �p3, �1=p3, 0, for any unit normal N.

For a fixed p 2 f �1
a ( p̄), all the shape operators for unit normals atp̄ are ex-

pressed as

(14) L(t) = cost B�p + sin t B�p , t 2 [0, 2�).

The homogeneous hypersurfacesMh with (g, m) = (6, 1) are given as the principal or-
bits of the isotropy action of the rank two symmetric spaceG2=SO(4), where two sin-
gular orbits correspond to the focal submanifoldsMh�. In [6], we show that the shape
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operators ofMh
+ and Mh� are given respectively by:

(15)

cost

0
BBBBBBBB�

p
3 0 0 0 0

0
1p
3

0 0 0

0 0 0 0 0

0 0 0 � 1p
3

0

0 0 0 0 �p3

1
CCCCCCCCA

+ sin t

0
BBBBBBBB�

0 0 0 0
p

3

0 0 0
1p
3

0

0 0 0 0 0

0
1p
3

0 0 0p
3 0 0 0 0

1
CCCCCCCCA

,

cost

0
BBBBBBBB�

p
3 0 0 0 0

0
1p
3

0 0 0

0 0 0 0 0

0 0 0 � 1p
3

0

0 0 0 0 �p3

1
CCCCCCCCA

+ sin t

0
BBBBBBBB�

0 1 0 0 0

1 0 0 � 2p
3

0

0 0 0 0 0

0 � 2p
3

0 0 1

0 0 0 1 0

1
CCCCCCCCA

.

These imply thatM� are not congruent to each other.
Note that thereexist many other one parameter families of isospectral operators

cost B� + sin t A, where, for instance,A is given by

(16)

0
BBBBBBBBBBBBBB�

0 0 �
r

3

2
0 0

0 0 0
1p
3

0

�
r

3

2
0 0 0

r
3

2

0
1p
3

0 0 0

0 0

r
3

2
0 0

1
CCCCCCCCCCCCCCA

,

0
BBBBBBBBBB�

0 0 0 0
p

3

0 0 � 1p
6

0 0

0 � 1p
6

0
1p
6

0

0 0
1p
6

0 0p
3 0 0 0 0

1
CCCCCCCCCCA

,

0
BBBBBBBBBBBBB�

0
5

3
p

3
0

2

3
p

3
0

5

3
p

3
0

4

3
p

3
0 � 2

3
p

3

0
4

3
p

3
0

4

3
p

3
0

2

3
p

3
0

4

3
p

3
0 � 5

3
p

3

0 � 2

3
p

3
0 � 5

3
p

3
0

1
CCCCCCCCCCCCCA

,

and so forth. We see in the homogeneous case, the kernel does not depend ont ,
while it depends in other cases. In the following, we show that all the latter cases
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are not admissible to the shape operators of the focal submanifolds of isoparametric
hypersurfaces with (g, m) = (6, 1).

3. Isospectral operators and Gauss equation

By Lemma 2.2,L(t) = cost B� + sin t B� is isospectral and so can be written as

(17) L(t) = U (t)L(0)U�1(t)

for someU (t) 2 O(5). Moreover, this implies the Lax equation

(18) L t (t) =
d

dt
L(t) = [H (t), L(t)],

where

H (t) = Ut (t)U (t)�1 2 o(5).

In particular, we haveL(0) = B�, and

(19) L t (t) = � sin t B� + cost B� = L
�
t +

�
2

�
,

and hence forL t (0) = B� = (bi j ), bi j = b j i , and H (0) = (hi j ), h j i = �hi j , we can ex-
press

(20)

B� = L t (0) = [H (0), B�]

=

0
BBBBBBBBBBBBBBB�

0 � 2p
3

h12 �p3h13 � 4p
3

h14 �2
p

3h15

2p
3

h21 0 � 1p
3

h23 � 2p
3

h24 � 4p
3

h25

p
3h31

1p
3

h32 0 � 1p
3

h34 �p3h35

4p
3

h41
2p
3

h42
1p
3

h43 0 � 2p
3

h45

2
p

3h51
4p
3

h52

p
3h53

2p
3

h54 0

1
CCCCCCCCCCCCCCCA

.

Note that the eigenvectors ofL(t) are given by

(21) ej (t) = U (t)ej (0),

which implies

(22) rd=dtej (t) = H (t)ej (t).
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Here we have

(23) rd=dt = c0re6, c0 =

p
2(
p

3� 1)

4
,

becauseL6 has radiusjsin�6j = c0. Hence we obtain

(24) H (0) = (c03i
6 j (0)),

where i denotes the row andj denotes the column indices. Moreover, denoting the
(i , j ) component ofL(t + �=2) by bi j (t) whereb j i (t) = bi j (t), we have�re6 L

�
t +

�
2

��
i j

= e6(bi j (t))� bk j (t)3k
6i (t)� bik(t)3k

6 j (t)

= e6(bi j (t)) +3i
6k(t)bk j (t)� bik(t)3k

6 j (t).

BecauseL t (t + �=2) = c0re6 L(t + �=2), L t (�=2) =�B� and L(�=2) = B� , multiplying�c0 to the both sides and puttingt = 0, we obtain

(25) B� = �c0e6(B� )� [H (0), B� ].
Now, rewrite (20) as

H (0) =

0
BBBBBBBBBBBBBBBBB�

0 �
p

3

2
b12 � 1p

3
b13 �

p
3

4
b14 � 1

2
p

3
b15p

3

2
b21 0 �p3b23 �

p
3

2
b24 �

p
3

4
b25

1p
3

b31

p
3b32 0 �p3b34 � 1p

3
b35p

3

4
b41

p
3

2
b42

p
3b43 0 �

p
3

2
b45

1

2
p

3
b51

p
3

4
b52

1p
3

b53

p
3

2
b54 0

1
CCCCCCCCCCCCCCCCCA

,

and substitute this into (25). Then we have the following formulas which we use later:

[1.1]
p

3 = 2

 p
3

2
b2

12 +
1p
3

b2
13 +

p
3

4
b2

14 +
1

2
p

3
b2

15

!
,

[2.2]
1p
3

= 2

 
�
p

3

2
b2

21 +
p

3b2
23 +

p
3

2
b2

24 +

p
3

4
b2

25

!
,

[3.3] 0 = 2

�� 1p
3

b2
31�p3b2

32 +
p

3b2
34 +

1p
3

b2
35

�
,
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[4.4] � 1p
3

= 2

 
�
p

3

4
b2

41�
p

3

2
b2

42�p3b2
43 +

p
3

2
b2

45

!
,

[5.5] �p3 =�2

 
1

2
p

3
b2

51 +

p
3

4
b2

52 +
1p
3

b2
53 +

p
3

2
b2

54

!
,

[1.2] 0 =�c0e6(b12) +
4p
3

b13b32 +
3
p

3

4
b14b42 +

5

4
p

3
b15b52,

[1.3] 0 =�c0e6(b13)�
p

3

2
b12b23 +

5
p

3

4
b14b43 +

p
3

2
b15b53,

[1.4] 0 =�c0e6(b14)� 2p
3

b13b34 +
2p
3

b15b54,

[1.5] 0 =�c0e6(b15) +

p
3

4
b12b25�

p
3

4
b14b45,

[2.3] 0 =�c0e6(b23)� 5

2
p

3
b21b13 +

3
p

3

2
b24b43 +

7

4
p

3
b25b53,

[2.4] 0 =�c0e6(b24)� 3
p

3

4
b21b14 +

3
p

3

4
b25b54,

[2.5] 0 =�c0e6(b25)� 2p
3

b21b15 +
2p
3

b23b35,

[3.4] 0 =�c0e6(b34)� 7

4
p

3
b31b14� 3

p
3

2
b32b24 +

5

2
p

3
b35b54,

[3.5] 0 =�c0e6(b35)�
p

3

2
b31b15� 5

p
3

4
b32b25 +

p
3

2
b34b45,

[4.5] 0 =�c0e6(b45)� 5

4
p

3
b41b15� 3

p
3

4
b42b25� 4p

3
b43b35.

These are nothing but another description of a part of the Gauss equations (2) [8].

4. Global properties

An isoparametric hypersurfaceM can be uniquely extended to a closed one [2].
We recall now the global properties ofM.

Let p 2 M and let
 be the normal geodesic atp. We know that
 \ M consists
of twelve pointsp1, : : : , p12 which are vertices of certain dodecagon: see Fig. 1, where
indices are changed from [6, pp. 197–198] and [7, Lemma 3.2].
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Fig. 1.

Lemma 4.1 ([6]). We have the relations

Di (p1) = D2�i (p2) = Di +4(p3) = D4�i (p4) = Di +2(p5) = D6�i (p6),

Di (p j ) = Di (p j +6), j = 1, : : : , 6

where the equality means“ be parallel to with respect to the connection of S7” , and
the indices are modulo6.

From these, some relations among3
�� ’s are obtained as follows. Denote byp(t) the
point on L6(p) such thatp1 = p(0), parametrized by the center angle where the center
means that of a circle on a plane. Similarly, we denote byq(t) the point onL2(p2)
parametrized fromp2 = q(0). Note thate6(p1) is parallel withe2(p2). Extende6 ande2

as the unit tangent vectors ofp(t) andq(t), respectively. Consider the normal geodesic
t at p(t), thenq(t) = L2(p2)\
t . Heree3(p(t)) is parallel withe5(q(t)). Then we have

1

sin�6
rd=dte3(p(t)) =

sin�2

sin�6

1

sin�2
rd=dte5(q(t)).

Therefore theD j component of (re6e3)(p1) is the D2� j component of (re2e5)(p2) mul-
tiplied by sin�2=sin�6. We denote such relation by

3 j
63(p1) � 32� j

25 (p2),

up to sign. A similar argument at everypm implies the global correspondence among3
�� ’s:
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Table 1.

Lemma 4.2 ([6]). For a frame consisting of principal vectors around each pm,
we have the correspondence3i

jk(pm) � 3i 0
j 0k0(pn) where i, j , k at pm correspond to

i 0, j 0, k0 at pn in Table 1.

5. The kernel of the shape operators

For p 2 M and p̄ 2 M+, let

E p̄ = spanfKerL(t) j t 2 [0, 2�)g = spant2[0,2�)fe3(t)g.
The following proposition proved in [6] is crucial.

Proposition 5.1 ([6] (Proposition 4.2)). M is homogeneous if and only ifdimE p̄ =
1 for any p.

Next, recall

(26) �i =
1 +�i�6�6� �i

= c1
�3� �i�6� �i

, c1 = 2 +
p

3.

The second equality follows from�6 = �1=�3 = �(2 +
p

3). Put

c2 =
1

sin�6(�3� �6)
= �
p

2(
p

3 + 1)

4
, (sin�6 = �p2(

p
3� 1)=4).

Lemma 5.2. Take p2 f �1
6 ( p̄) and identify T̄pM+ with

L5
j =1 D j (p). Then we have

B� (e3) = c2re3e6,(27)

B�(re6e3) = c1re3e6,(28)

B� (re6e3) = c2re6re3e6.(29)
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Similar formulas hold for the shape operators CN of M�, if we replace6 by 1, and
3 by 4.

Proof. From (12) follows (27). Using (4), we have (28):

(30) B�(re6e3) = 3i
63�i ei = c13i

63
�3� �i�6� �i

ei = c13i
36ei = c1re3e6.

Taking the covariant derivative of (27) whererd=dt = c0re6 by (23), we obtain

c2re6re3e6 = re6(B� (e3)) = � 1

c0
B�(e3) + B� (re6e3) = B� (re6e3).

REMARK 5.3. (27) implies that dimE p̄ = 1 holds if and only ifre6e3 vanishes
at a point of f �1( p̄). Moreover, (28) implies thatre6e3 vanishes if and only ifre3e6

vanishes.

When re6e3(p) 6� 0, we have dimE p̄ � 2, sincee3(p) and re6e3(p) (2 E p̄) are
mutually orthogonal. We denoteE instead ofE p̄, when it causes no confusion. Let
E? be the orthogonal complement ofE in Tp̄M+. Moreover, put

W = Wp̄ = spant2[0,2�)fre3e6(t)g,
where we regardW as a subspace ofTp̄M+ by a parallel displacement. The following
lemmas are significant.

Lemma 5.4 ([7] (Lemma 4.2)). W � E?.

Proof. We can expressL(t) with respect to the basisei (p), i = 1, : : : 5, as in
Lemma 2.1,

L(t) =

0
BBBBBBBB�

p
3c sb12 sb13 sb14 sb15

sb12
1p
3

c sb23 sb24 sb25

sb13 sb23 0 sb34 sb35

sb14 sb24 sb34 � 1p
3

c sb45

sb15 sb25 sb35 sb45 �p3c

1
CCCCCCCCA

,

�
c = cost ,
s = sin t .

Let e3(t) = t (u1(t), : : : , u5(t)) belong to the kernel ofL(t). Then the third component
of L(t)(e3(t)) must satisfy

sin t

sin�6

1�3� �6

5X
i =1

3i
36(p)ui (t) = 0.
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Thus we obtain

(31) hre3e6(p), e3(t)i = 0

for all t , which meansre3e6(p) 2 E?.

By the analyticity and the definition ofE and W, we can express

(32)
E = spanfe3(q), rk

e6
e3(q), k = 1, 2,: : : g,

W = spanfre3e6(q), rk
e6
re3e6(q), k = 1, 2,: : : g,

at any fixed pointq 2 L6, whererk
e6

meansk-th covariant differential in the direction
e6. Thus we have by Lemma 5.4,

(33) hrk
e6

e3, r l
e6
re3e6i = 0, k, l = 0, 1, 2,: : : .

Lemma 5.5 ([7] (Lemma 4.3)). For any t, L(t) maps E onto W� E?.

Proof. We can expressL(t) = cost L(t0)+sint L t (t0) for any t0. Then L(t0)(e3(t0)) =
0 and L t (t0)(e3(t0)) = c2re3e6(t0) (see (27)) imply

L(t)(e3(t0)) = (cost L(t0) + sin t L t (t0))(e3(t0)) = c2 sin tre3e6(t0) 2 W.

Moreover, (27) implies that this is an onto map.

Lemma 5.6 ([7] (Lemma 4.4)). dimE � 3.

Proof. Take anyp 2 f �1
6 ( p̄). Since KerB�p = D3(p) � E, we have dimB�(E) =

dimE�1. BecauseB�p(E) is a subspace ofE?, the lemma follows fromR5 �= Tp̄M+ =
E � E?.

The following is obvious:

Lemma 5.7. As a function ofp̄ 2 M+, dim E is lower-semi-continuous.

Let d = maxp̄2M+ dim E p̄. We know that 1� d � 3 andM is homogeneous whend =
1. At a pointq̄ on the focal submanifoldsM� = M1, denoteFq̄ = spanq(t)2L1(q)fe4(q(t))g.
The argument onM+ holds forM� if we replaceE by F and pay attention to the change of
indices. Especially, dimE = 1 holds onM+ if and only if dimF = 1 holds onM�, because3 j

36 = 0 holds for all j if and only if3 j
14 = 0 holds for all j , by the global correspondence

in §4. Note that, however, not everything is symmetric onM�. Indeed, for homogeneous
hypersurfaces with six principal curvatures,M+ and M� arenot congruent (§2, [6]).
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6. Description of E

In this section, we discuss what happens if we suppose dimE 6= 1. Lemma 5.5
suggests that the matrix expression ofL(t) can be simplified if we use the decompo-
sition Tp̄M+ = E � E?.

Lemma 6.1. Whendim E = d, we can express L= L(t) as

L =

�
0d R
tR S

�
,

with respect to the decomposition Tp̄M+ = E � E?, where 0d is d by d, R is d by
5� d and S is5� d by 5� d matrices. The kernel of L is given by

�
X
0

� 2 E, tRX = 0.

The eigenvectors for�i (6= 0) in (13) are given by

0
� 1�i

RY

Y

1
A

where Y2 E? is a solution of

(34) (tRR+�i S� �2
i I )Y = 0.

Proof. The first part follows from Lemma 5.5. Let
�

X
Y

�
be an eigenvector ofL

with respect to�i , where X 2 E and Y 2 E?, abusing the notationX =
�

X
0

�
and

Y =
�

0
Y

�
. Then we have

�
0d R
tR S

��
X
Y

�
=

�
RY

tRX + SY

�
= �i

�
X
Y

�
,

and hence �
RY = �i X,
tRX + SY = �i Y.

For �3 = 0, Y = 0 and tRX = 0 hold since the kernel belongs toE. When�i 6= 0, mul-
tiplying �i to the second equation and substitute the first one into it, weobtain (34).
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Then the eigenvector ofL for an eigenvalue�i is given by

0
� 1�i

RY

Y

1
A.

7. dim E = 2

In this section, we suppose dimE = 2 occurs at some point̄p 2 M+. Then we
have the decompositionTp̄M+ = E2 � V2 �W1 (the upper indices mean dimensions),
where W = B�(E) = B� (E) by Lemma 5.5.

For a continuous framee3(t) 2 D3(t) along L6, D3(t +�) = D3(t) implies e3(t +�) ="e3(t), " = �1. Then we havere6e3(t + �) = "re6e3(t), and it follows

re3e6(t + �) =
1

c1
L(t + �)(re6e3(t + �))

= � 1

c1
L(t)("re6e3(t)) = �"re3e6(t).

Sincere3e6(t) 2 W never vanishes (Remark 5.3), and so has a constant direction, we
have" = �1.

In the following, we mean by a continuous frameei (t) along L6, a frame onL6

minus a point. This is because we may haveei (t + 2�) = �ei (t), which occurs as
O(5) acts on the shape operator via spin action. Fortunately,this does not affect the
argument.

Consider a continuous frameei (t) along L6, and expressre6e3(t) = 3i
63(t)ei (t).

Then putting f (t) = (31
63(t))

2� (35
63(t))

2, we have f (t +�) =� f (t) sincere6e3(t +�) =�re6e3(t) and Di (t +�) = D6�i (t) holds. Thus at some pointp = p(t0) of L6, f (t0) = 0
occurs. Here by the Gauss equation [3.3], or from

0 = hre6e3(t), L(t)(re6e3)(t)i
=
p

3f(31
63(t))

2� (35
63(t))

2g + 1p
3
f(32

63(t))
2� (33

63(t))
2g,

we have also (32
63(t0))2 � (34

63(t0))2 = 0. Thus we may put atp,

(35)
re6e3 = x(e1 + e5) + y(e2 + e4),

re3e6 =
p

3x(e1� e5) +
yp
3

(e2� e4)

by rechoosing the directions ofei = ei (p), i = 1, 2, 4, 5, if necessary. Normalizing the
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right hand side, we define

X1 = �(e1 + e5) + �(e2 + e4) 2 E,

Z1 =
1� f
p

3�(e1� e5) +
�p
3

(e2� e4)g 2 W

where�2 + �2 = 1=2 and � = 2(3�2 + �2=3), andre6e3 = aX1 and re3e6 = bZ1 hold
for somea and b. Note thatB�(X1) =

p� Z1. SinceV is orthogonal toe3, X1, Z1, we
have an orthonormal basis ofV given by

X2 =
1�
� �p

3
(e1� e5)�p3�(e2 � e4)

�
,

Z2 = �(e1 + e5)� �(e2 + e4),

where B�(X2) = 1=p� Z2 holds. SinceV is parallel,

X2(t) := X2(0) = X2, Z2(t) := Z2(0) = Z2

is an orthonormal frame ofV at any p(t). Now expressX2(�) = X2(0) and Z2(�) =
Z2(0) via basis atp(�). Namely, choosingei (�) = e0i 2 Di (�) = D6�i (0) suitably, we
can express

X2(�) =
1� 0
� � 0p

3
(e01� e05)�p3�0(e02� e04)

�

=
1�
� �p

3
(e1� e5)�p3�(e2 � e4)

�
,

(36)

Z2(�) = � 0(e01 + e05)� �0(e02 + e04)

= �(e1 + e5)� �(e2 + e4),
(37)

becauseD1(�) � D5(�) = D1(0)� D5(0), and D2(�) � D4(�) = D2(0)� D4(0) hold.
Hence from (37)j�0j = j�j, j� 0j = j�j, and � 0 = � (�) = � (0) follow. Thus we may
consider �� 0(e01� e05) = �(e1� e5),� 0(e01 + e05) = �(e1 + e5),

��0(e02� e04) = �(e2 � e4),�0(e02 + e04) = �(e2 + e4),

and from Di (�) = D6�i (0), it follows

8>><
>>:
� 0e01 = ��e5,�� 0e05 = �e1,� 0e01 = �e5,� 0e05 = �e1,

8>><
>>:
�0e02 = ��e4,��0e04 = �e2,�0e02 = �e4,�0e04 = �e2.

However then, we have� = � = 0, a contradiction.
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Thus we conclude:

Proposition 7.1. dim E = 2 does not occur at any point of M+.

8. dim E = 3

By the previous proposition, dimE = 3 occurs onM+ if dim E > 1.

Proposition 8.1. WhendimE = 3, at any point p of L6, E and E? are expressed
via ei = ei (p) as

E = span

�
e3, �(e1 + e5) + �(e2 + e4),

�p
3

(e1� e5)�p3�(e2� e4)

�
,

E? = span

�p
3�(e1� e5) +

�p
3

(e2 � e4), �(e1 + e5)� �(e2 + e4)

�
,

for suitable�, � satisfying�2 + �2 6= 0.

Proof. Sincee3, e1 + e5, e2 + e4, e1� e5, e2� e4 generate a frame ofT M+, we can
chooseX1, X2 2 E as

X1 = �(e1 + e5) + �(e2 + e4) + 
 (e1� e5),

X2 = x(e1 + e5) + y(e2 + e4) + z(e1� e5) +w(e2� e4).

Then Zi = B�(Xi ) 2 E? are given by

Z1 =
p

3�(e1 � e5) +
1p
3
�(e2� e4) +

p
3
 (e1 + e5),

Z2 =
p

3x(e1 � e5) +
1p
3

y(e2 � e4) +
p

3z(e1 + e5) +
1p
3
w(e2 + e4).

Because 0 =hX1, Z1i = 2
p

3�
 , changing the sign ofe5, if necessary, we may assume
 = 0, i.e.,

(38)

X1 = �(e1 + e5) + �(e2 + e4) 2 E,

Z1 =
p

3�(e1� e5) +
�p
3

(e2 � e4) 2 E?.

Next from 0 =hX1, Z2i =
p

3�z + �w=p3, and 0 =hX2, Z2i = 2(
p

3xz+ (1=p3)yw),�y� �x = 0 holds unlessz = w = 0, and thenx(e1 + e5) + y(e2 + e4) is proportional to
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X1. Thus we may rechoose

(39) X2 = z(e1� e5) +w(e2 � e4) =
�p
3

(e1� e5)�p3�(e2� e4) 2 E,

and

(40) Z2 = �(e1 + e5)� �(e2 + e4) 2 E?.

When z = w = 0, we have spanfX1, X2g = spanfe1 + e5, e2 + e4g and spanfZ1, Z2g =
spanfe1 � e5, e2 � e4g. Here, in order to fit in with the expression (39) and (40), we
change the sign ofe4, and may consider

(41) X2 = e2� e4, Z2 = e2 + e4,

corresponding to� = 0.

Note thatX1, X2, Z1, Z2 are mutually orthogonal. Then the orthonormal frames of
E and E? are given respectively, by

(42)

e3, X1 = �(e1 + e5) + �(e2 + e4),

X2 =
1p�
� �p

3
(e1� e5)�p3�(e2� e4)

�

and

(43)
Z1 =

1p�
�p

3�(e1 � e5) +
�p
3

(e2 � e4)

�
,

Z2 = �(e1 + e5)� �(e2 + e4),

where we put

(44) �2 + �2 =
1

2
, � = 2

�
3�2 +

�2

3

�
.

Consider an arcc of L6 containing p = p(0) and p(�). SinceX1, X2 are given at each
point of L6 by (38), (39) and (40), using a continuous frameei (t) and a continuous
function �(t), �(t) along c, we have a continuous framee3(t), X1(t) and X2(t) of E,
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and Z1(t) and Z2(t) of E? alongc. With respect to this moving frame, we can express

(45) L(t) = B�t =

0
BBBBBBBB�

0 0 0 0 0
0 0 0

p� (t) 0

0 0 0 0
1p� (t)

0
p� (t) 0 0 u(t)

0 0
1p� (t)

u(t) 0

1
CCCCCCCCA

for �t = �p(t). In fact, from L(t)(ei (t)) = �i ei (t), we know L(t)(X1(t)) =
p� (t)Z1(t) and

L(t)(X2(t)) = 1=p� (t)Z2(t). Moreover, it is easy to seehL(t)(Zi (t)), Zi (t)i = 0. Then
putting u(t) = hL(t)(Z1(t)), Z2(t)i, we have (45). Note that� (t) + 1=� (t) + u(t)2 = 10=3
follows from kL(t)k2 = 20=3. Moreover, by using the notation in§6, (45) implies
that T(t) = tR(t)R(t) has eigenvalues� (t), 1=� (t) with eigenvectorsZ1(t), Z2(t) 2 E?,
respectively. Note that even if� (t) = 1=� (t) holds, Z1(t) and Z2(t) (thus, X1(t) and
X2(t)) are continuously chosen so that theS(t) part in (45) be described as above
whereu(t)2 = 4=3 6= 0.

Next, we show:

Proposition 8.2. � (t) is constant and takes values1, 1=3 or 3.

Proof. We haveL(�) = �L(0) from L(t) = cost B� + sin t B� , and T(�) = T(0)
from T(t) = tR(t)R(t). This implies� = � (�) = � (0). When� (t) is not identically 1,
we may consider� 6= 1, and as an eigenvector ofT(0) for � , Z1(�) is parallel to
Z1(0). Then from

�
L(�)(X1(�)) =

p� Z1(�),
L(0)(X1(0)) =

p� Z1(0),

we have

X1(�) = "X1(0), Z1(�) = �"Z1(0), " = �1.

Similarly from

8>><
>>:

L(�)(X2(�)) =
1p� Z2(�),

L(0)(X2(0)) =
1p� Z2(0),

we have, unless�� 6� 0,

X2(�) = �"X2(0), Z2(�) = "Z2(0),
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where we useei (�) 2 D6�i (0) by the global correspondence in (42) and (43). How-
ever, sinceE? is parallel alongL6, and the pairZ1(t), Z2(t) is a continuous ortho-
normal frame ofE? by the remark before the proposition, this contradicts the fact that
a continuous frame preserves the orientation. Therefore, only the cases� � 1, 1=3, 3
remain.

9. Final result

Proposition 9.1. Whendim E = 3, � � 1 does not occur.

Proof. In this case, 3�2 = �2 follows from (44), and hence by a suitable choice
of directions ofei ’s, we have

E = spanfe3, e1 +
p

3e4,
p

3e2 + e5g,
E? = spanfp3e1� e4, e2�p3e5g.

Since B� maps E onto E?, b14 = b25 = 0 follows, i.e., 34
16 = 35

26 = 0 holds. These
imply 32

63 = 34
63 = 0 by the global correspondence. However, sincere6e3 is a combi-

nation of e1 +
p

3e4 and
p

3e2 + e5, this impliesre6e3 = 0, a contradiction.

In the last possible case, we have by Proposition 8.1,

E = spanfe3, e1 + e5, e2� e4g, E? = spanfe1 � e5, e2 + e4g,
and this holds everywhere by a continuous choice ofei ’s. SinceE is mapped ontoE?
by B� = (bi j ), we have

(46) b15 = b24 = 0, b12 + b25 = b14 + b45.

On the other hand, for another focal submanifoldM�, the remaining possible case is
also this case when dimF = 3. (For the definition ofF , see the end of§5.) Becausere3e6(p) � re1e4(q) 2 E? \ F , where p = p1 and q = p3 in Fig. 1, identifying the
vectors atq with those atp as in Table 1, we may consider

F = fe4(q), e5(q)� e3(q), e6(q) + e2(q)g
= fe6(p), e1(p)� e5(p), e2(p) + e4(p)g,

F? = fe5(q) + e3(q), e6(q)� e2(q)g
= fe1(p) + e5(p), e2(p)� e4(p)g.

Here, some signature might be opposite, which does not matter. The importance is

c35 = c26 = 0
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holds sinceC� maps F onto F?, where ci j = (1=(sin�1(�i � �1)))3 j
i 1 is the compo-

nents of the shape operatorC� of M� for � = e1 (see Lemma 2.1). Then the latter
implies b12 = 0, and by the global correspondence, we haveb45 = 0, and hence it fol-
lows from (46),

b14 = b25.

Next from the Gauss equation [1.2] in§3, b13b32 = 0 follows. Whenb13 = 0, [1.1]
implies b2

14 = 2, and henceb2
25 = 2, but this contradicts [2.2]. Thus we haveb23 = 0.

Since this holds identically by the analyticity,b14 = b25 = 0 follows from the global
correspondence, and the second row ofB� vanishes, contradicts [2.2]. Therefore we
obtain:

Proposition 9.2. dim E = 3 does not occur.

Finally, the kernel of the shape operators of the focal submanifolds of isoparametric
hypersurfaces with (g, m) = (6, 1) is independent of the normal directions, and by Propo-
sition 4.2 of [6], we obtain:

Theorem 9.3 ([4]). Isoparametric hypersurfaces with(g, m) = (6, 1) are homo-
geneous.
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