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Introduction

Let be a non-singular threefold defined over an algebraically closed field
of characteristic ≥ 0. We consider a proper morphism : → , where is
a non-singular curve and∗O ∼= O is satisfied. If the characteristic of is zero,
it follows that a general fiber of is non-singular, which is known as Sard’s lemma.
In positive characteristic it happens that is not generically smooth, and our aim is
to understand such phenomena explicitly. Our main concern is the cases where is
either a Calabi-Yau threefold or a Fano threefold. Examplesof such fibrations can be
found in [8] and [12].

In this article, we have two main results. One states that there is a tendency that
Sard’s lemma continues to hold except for some small> 0.

Theorem 5.1. Consider a fibration : → from a non-singular threefold to
a curve. We suppose that a general fiber of is a normal surface. Then the following
hold:
i) There does not appear a simple elliptic singularity on a general fiber if ≥ 5.
ii) Under the assumption that the anti-canonical divisor of a fiber is ample, a general
fiber is non-singular if ≥ 11, i.e., it is a Del Pezzo surface.
iii) Under the assumption that a general fiber has a trivial dualizing sheaf and has
only rational singularities, it is non-singular if ≥ 23, i.e., it is either an abelian
surface or a 3 surface.

The other concerns the local behavior of the fibration :→ along the singu-
lar locus of general fibers. We have Theorem 3.4 in which rational double points are
treated. We use the notation of Artin in [3].

Theorem 3.4. Suppose ≥ 3. Let : → be a fibration from a non-singular
threefold to a non-singular curve.

2000 Mathematics Subject Classification: 14B07.
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i) The following are all the types of rational double points which can appear as sin-
gularities of a general fiber of :

0
8

0
6 3 −1 in = 3;

0
8 5 −1 in = 5;

−1 in ≥ 7

where is a positive integer.
ii) We assume that a general fiber of has a rational double point. Let be a pa-
rameter of the base curve at a general point. Then its pull-back ∗ ∈ O at the sin-
gular point in question ∈ Sing −1( ) can be put into a normal form in the complete
ring Ô ∼= [[ ]] as follows;

0
8 : = 2 + 3 + 5 = 3 5;
0
6 : = 2 + 3 + 4 = 3 or

= 2 + 3 + 4 + ψ 3 = 3 ψ ∈ [[ ]] ψ 6= 0;

−1 : = + any prime ≥ 1

However, there remain questions we could not settle: One is to extend the re-
sults of Theorem 3.4 to the case where a general fiber of :→ has rational
double points of type , in = 2. Another is, as in i), Theorem 5.1, whether
a general fiber of : → can have simple elliptic singularities in = 2 3. Also,
when considering Calabi-Yau threefolds or Fano threefolds, one encounters the follow-
ing situations which we did not treat in this article; i) :→ is a fibration from
a non-singular threefold to a non-singular curve and the general fiber has either irra-
tional singularities other than simple elliptic singularities or non-normal singularities,
ii) : → is a fibration from a non-singular threefold to a normal surface and
the general fiber is singular or non-reduced. We note that these questions are consid-
ered as a three dimensional generalization of what is known as quasi-elliptic fibrations
of surfaces (cf. [4]).

1. Preliminaries

Let ( m) be a two-dimensional local ring essentially of finite type over an al-
gebraically closed field of arbitrary characteristic. The embedding dimension and
the multiplicity of ( m) are defined as emb dim := dimm/m2 and (m ) :=
lim →∞ 2/ 2 dim /m respectively. Assume furthermore that (m) is normal.
The space of first order infinitesimal deformations of (m) is defined as 1 :=
Ext1

(
1

/

)
. If ( m) has its embedding dimension three, we have the isomor-
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phism

1 ∼= [[ ]]

/(
∂ϕ

∂

∂ϕ

∂

∂ϕ

∂
ϕ

)

under an identification̂ ∼= [[ ]] /(ϕ) (cf. [2]).
We call a proper birational morphismπ : → Spec from a non-singular sur-

face a resolution of singularities ifπ induces an isomorphism \ ∼= Spec \m,
where :=π−1(m) is the exceptional set. A proof of the existence of resolutions of
surface singularities can be found in [10]. If the exceptional set contains no excep-
tional curves of the first kind, we say that the resolution of singularities π is min-
imal. The geometric genus of ( m) is defined via a resolution of singularities as

( m) := dim 1π∗O , which is independent of the choice of resolutions.
We call a proper morphism : → from a non-singular variety to a normal

variety a fibration when ∗O ∼= O is satisfied. If has dimension one, any fiber
( ∈ ) is a Cartier divisor in and the embedding dimension of a singular point

of is equal to the dimension of .

2. Two criteria

Let : → be a fibration from a non-singular ( + 1)-fold to a non-singular
curve . We study the singularities of a general fiber of .

Proposition 2.1. Let ( m) be an -dimensional normal local ring essentially of
finite type over an algebraically closed field. We suppose thatemb dim = +1and
m ∈ Spec is an isolated singularity. Let 1 := Ext1

(
1

/

)
be the space of first

order infinitesimal deformations. If ( m) is isomorphic to a singularity on a general
fiber of , the dimension of 1 as a -vector space is divisible by.

Proof. Let : → be a fibration as above. We consider an ideal⊂ O
defined as the image of a natural coupling∗ 1 × → O , and denote by
the closed subvariety of defined by . By the assumption, thereexists an irreducible
curve ′ in such that the restricted morphism| ′

red
: ′

red→ is surjective. Then
( ′

red ) > 1 at ∈ ′
red ∩ because ∈ Sing . This indicates that | ′

red
is

ramified at a general point, therefore| ′

red
is inseparable. It follows that (′red )

is divisible by , and so is ( ′ ) . On the other hand, by a local description, we
know

( ′ ) = dim O
/ (

∂ ∗

∂ 1

∂ ∗

∂ 2
. . .

∂ ∗

∂
∗
)

where 1 2 . . . (resp. ) are a regular system of parameters ofO (resp.
of O ).
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Proposition 2.2. Let ( m) be an -dimensional normal isolated singularity de-
fined by a quasi-homogeneous equationϕ( 0 1 . . . ). Let be the weight of
and be the degree ofϕ with respect to these weights. If ( m) is isomorphic to
a singularity on a general fiber of , the integer is divisible by .

Proof. Assume that ( ) = 1 and suppose that there exists a fibration : →
whose fiber has a singular point ∈ which is isomorphic to ( m).

Choose a local coordinate ∈ O of the base curve and pull it back by .
Then under an appropriate identification̂O ∼= [[ 0 1 . . . ]] we have the ex-
pression = ϕ( 0 1 . . . ), where ∈ Ô is a unit. By the coordinate change
( 0 1 . . . ) 7→

( − 0/
0
− 1/

1 . . . − /
)
, we get rid of the unit and

have the equation =ϕ( 0 1 . . . ). Then consider the derivation :=0 0∂/∂ 0+

1 1∂/∂ 1 + · · · + ∂/∂ , so that we have (ϕ) = ϕ. Thus there is an isomor-
phism

Ô
/ (

∂ϕ

∂ 0

∂ϕ

∂ 1
. . .

∂ϕ

∂

)
∼= Ô

/ (
∂ϕ

∂ 0

∂ϕ

∂ 1
. . .

∂ϕ

∂
ϕ

)

This indicates that the singularity of the fiber∈ does not extend to singularities
of other fibers. Thus we have proved the proposition.

3. Rational double points

DEFINITION 3.1. Let ( m) be a two-dimensional normal local ring essentially of
finite type over an algebraically closed field . We say that Spec has a rational dou-
ble point atm if ( m) has multiplicity two, and 1π∗O = 0 holds for a resolution
of singularitiesπ : → Spec .

The classification of rational double points in positive characteristic is given by
Lipman-Artin ([3], [9]). In characteristic 2, 3 and 5, the structure of the singularity is
no longer determined uniquely from the configuration diagram on the minimal desin-
gularization.

Theorem 3.2 (Artin [3]). The following assertions hold:
i) In the classification of rational double points in characteristic , the equation is
uniquely determined from its configuration diagram except the following cases:

= 2 0
2 : 2 + 2 + 4 ≥ 2

2 : 2 + 2 + + − 4 − 2 = 1 . . . − 1
0
2 +1: 2 + 2 + 4 ≥ 2

2 +1: 2 + 2 + + − 4 − 2 = 1 . . . − 1
0
6 : 2 + 3 + 2 8
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1
6 : 2 + 3 + 2 + 6
0
7 : 2 + 3 + 3 14
1
7 : 2 + 3 + 3 + 2 12
2
7 : 2 + 3 + 3 + 3 10
3
7 : 2 + 3 + 3 + 8
0
8 : 2 + 3 + 5 16
1
8 : 2 + 3 + 5 + 3 14
2
8 : 2 + 3 + 5 + 2 12
3
8 : 2 + 3 + 5 + 3 10
4
8 : 2 + 3 + 5 + 8

= 3 0
6 : 2 + 3 + 4 9
1
6 : 2 + 3 + 4 + 2 2 7
0
7 : 2 + 3 + 3 9
1
7 : 2 + 3 + 3 + 2 2 7
0
8 : 2 + 3 + 5 12
1
8 : 2 + 3 + 5 + 2 3 10
2
8 : 2 + 3 + 5 + 2 2 8

= 5 0
8 : 2 + 3 + 5 10
1
8 : 2 + 3 + 5 + 4 8

The number to the right of each equation is the dimension of1.
ii) In a family of the singularity ( = or , respectively), the index is
upper-semicontinuous, while the co-index is lower semi-continuous.

REMARK 3.3. The equations of rational double points other than the ones stated
in the previous theorem are identical to the classical forms:

: +1 + if ∤ ( + 1) ≥ 1

: +1 + + 1 if | ( + 1) ≥ 1

: 2 + ( 2 + −2) ≥ 4

6 : 2 + 3 + 4 6

7 : 2 + 3 + 3 7

8 : 2 + 3 + 5 8

The number to the right of each equation is the dimension of1.

We have our main theorem.
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Theorem 3.4. Suppose ≥ 3. Let : → be a fibration from a non-singular
threefold to a non-singular curve.
i) The following are all the types of rational double points which can appear as sin-
gularities of a general fiber of :

0
8

0
6 3 −1 in = 3;

0
8 5 −1 in = 5;

−1 in ≥ 7

where is a positive integer.
ii) We assume that a general fiber of has a rational double point. Let be a pa-
rameter of the base curve at a general point. Then its pull-back ∗ ∈ O at the sin-
gular point in question ∈ Sing −1( ) can be put into a normal form in the complete
ring Ô ∼= [[ ]] as follows;

0
8 : = 2 + 3 + 5 = 3 5;
0
6 : = 2 + 3 + 4 = 3 or

= 2 + 3 + 4 + ψ 3 = 3 ψ ∈ [[ ]] ψ 6= 0;

−1 : = + any prime ≥ 1

Proof. By using the criteria in Proposition 2.1 and Proposition 2.2, we see that
the remaining cases are

| ( + 1)
0
8 = 3 5
0
7 = 3
0
6 = 3

In order to determine the normal forms, we use the following conditions: i) There is
an irreducible component ⊂ of the locus of singular points of fibers so thatred

is a non-singular curve at the point in question∈ Sing −1( ). ii) Consider the mor-
phism | red : red → and the extension of the function fields (red)/ ( ). Then
the normalization ′ → of in the relative separable closure of ( ) in (red)
is not ramified at a general point. iii) For each singularity of the fiberO /( ∗ ) we
have dim 1 = dim [[ ]] /(∂ ∗ /∂ ∂ ∗ /∂ ∂ ∗ /∂ ∗ ).

In case with | ( + 1), we start from = 0
(

+
)

with some unit 0 ∈
[[ ]] and integers ≥ 1 with +1 = and ∤ . By appropriate coordinate

changes, we have =
( )

+ , where ∈ [[ ]] ×. This one parameter deformation
has a rational double point of type −1 at = 0. Its general fiber has the singularity

of the same type if and only if = 1 and∈
[[ ]]×

. Indeed, the if part is obvious.
For the only if part, given above is defined by the ideal

(
/
)
. Then
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condition i) implies that / = 0. The morphism | : → is given locally by
=
( )

. Then we have, from condition ii), that = 1 and ∈
[[ ]]×

as
required. The normal form is given by = + .

In case 0
8 in = 3 5, we start from = 0( 2 + 3 + 5) with 0 ∈ [[ ]] ×.

After coordinate changes, we have =2 + ( 0 + 1 + 2
2 + 3

3) 3 + 5 with 0 ∈
[[ ]] ×, 1 2 3 ∈ [[ ]] in = 3; and = 2 + 3 + ( 0 + 1 ) 5 with 0 ∈ [[ ]] ×,

1 ∈ [[ ]] in = 5 respectively. Now the locus is locally defined by the ideal
:= ( ( ′0 + ′

1 + ′
2

2 + ′
3

3) 3 ( 1 + 2 2 ) 3 + 2 4) in = 3, and := ( 3 2 +

1
5 ( ′0 + ′

1 ) 5) in = 5. From condition i), we know that there is an elementφ ∈
( ) \ ( )2 such that ∼= ( φ ) with some > 0. Then condition iii) implies that

= 4 in = 3 and = 2 in = 5, from which it follows that1 = 2 = ′
0 = ′

3 = 0
in = 3 and 1 = ′

0 = 0 in = 5. Then after a coordinate change, we obtain the
normal form = 2 + 3 + 5.

In case 0
6 in = 3, we have = 2 + ( 0 + 1 + 2

2) 3 + 4 with 0 ∈ [[ ]] ×,

1 2 ∈ [[ ]]. Then the locus as above is given by the ideal := ( (′0 + ′
1 +

′
2

2) 3 ( 1 + 2 2 ) 3 + 3), which can be put, by condition i), as ∼= ( φ ) with
someφ ∈ ( ) \ ( )2 and > 0. Then condition iii) implies that = 3 and2 =
′
0 = ′

1 = 0. Then replacing by − 1/3
1 gives = 2+ 0

3+ 4− 1/3
1

3 and we put
this as = 2 + 3 + 4 +ψ 3 with ψ ∈ [[ ]]. We divide this case into two according
as ψ vanishes or not. The former corresponds to the normal form =2 + 3 + 4,
and the latter to =2 + 3 + 4 + ψ 3 with ψ ∈ [[ ]], ψ 6= 0.

In case 0
7 in = 3, the one parameter family =0( 2 + 3 + 3) with 0 ∈

[[ ]] × can be transformed into =2+( 0+ 1 + 2
2) 3+ 3 with 0 ∈ [[ ]] ×,

1 2 ∈ [[ ]]. The locus is defined by := ( (′0 + ′
1 + ′

2
2) 3 + 3 ( 1 +

2 2 ) 3). Then condition i) implies that there existsφ ∈ ( ) \ ( )2 such that =
( φ ) for some > 0. From condition iii) we have = 3 and′′0 = 1 = 2 = 0.
Performing a coordinate change7→ − 3

√ ′
0 , we may assume′0 = 0, then replacing

by 1/ 3
√

0 , we get = 2 + 3 + 1/ 3
√

0
3. A general fiber has an 0

6-singularity.

When considering rational double points in characteristictwo, we find the criteria
in Proposition 2.1 and Proposition 2.2 useless except -type.

Proposition 3.5. Suppose = 2. Let : → be as inTheorem 3.4.Suppose
that a general fiber has a rational double point of type, then we have = 2 − 1
with an integer ≥ 1 and the normal form of along this singularity is given as

2 −1 : = + 2

Since we know the local description of deformations, the following corollary can
easily be verified.
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Corollary 3.6. Suppose that a fibration : → from a non-singular threefold
to a non-singular curve has a general fiber with rational double points in ≥ 3

(resp. rational double points of type in = 2), then there exists an integer0 >
0 such that the family of rational double points × + → + obtained by base
change by the -iterated Frobenius morphism: + → is locally trivial for ≥

0. To be more precise, the integer0 is given as 0 = for a rational double point
of type −1, 0 = 2 for that of type 0

6 in = 3 and 0 = 1 for 0
8 in = 3 5.

REMARK 3.7. i) We could not solve the question in rational double points of
type , in characteristic = 2. Direct calculation seems to fail in these cases.
ii) Suppose that a rational double point is given by a polynomial ϕ( ) = 0. Then
we have the family

Spec [ 1 2 . . . ]

/(
ϕ +

∑

=1

)
→ Spec [1 2 . . . ]

where ∈ [ ] induces a bases of the -vector space [[ ]]/(∂ϕ/∂ ∂ϕ/∂

∂ϕ/∂ ϕ). The formal completion of this family along the fiber at the origin gives
a formal versal deformation of the given rational double point. The family whose fiber
has still the same rational double point as the closed fiber iseither the closed fiber
only or given as:

= 3 0
8 : 2 + 3 + 5 + 2

3 + 1

0
7 : 2 + 3 + 3 + 1

0
6 : 2 + 3 + 4 + 1 + 2

1
6 : 2 + 3 + 1

3 + 4 + 2 2

= 5 0
8 : 2 + 3 + 5 + 1

any −1 : +
(

+ 1

)
( ) = 1

This is an analogue to the calculation for quasi-elliptic surfaces given in [4].
iii) We find the following theorem by Wahl interesting in connection with our main
theorem. Here, is a locally free rank two subsheaf in , which we refer to his
paper for definition.

Theorem (Wahl [15]). Let → Spec be the minimal resolution of an RDP.
Then 1( ) = 0, and in particular the resolution is equivariant, except in the follow-
ing cases:

| + 1

= 2
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6 = 2 3

7 = 2 3

8 = 2 3 5

4. Simple elliptic singularities

DEFINITION 4.1 (K. Saito [11]). Let ( m) be a two dimensional normal local
ring, essentially of finite type over an algebraically closed field . We say that ( m)
is a simple elliptic singularity if its minimal resolutionπ : → Spec has a single
non-singular elliptic curve as its exceptional set.

A simple elliptic singularity whose exceptional curve has self-intersection number
2 = −3, 2 = −2, 2 = −1 are called ˜ 6-type, ˜ 7-type, ˜ 8-type, respectively.

The following is known, if is the field of complex numbers, as the Grauert’s the-
orem. His assertion can be extended to arbitrary characteristic.

Theorem 4.2 (Grauert [5]). We consider a normal surface singularity whose ex-
ceptional set of the minimal resolution consists of a non-singular curve of genus .
If 2 < 4(1− ), the singularity is defined by quasi-homogeneous equations.

Proof. We denote the minimal resolution byπ : → Spec with the maximal
ideal m ⊂ and the exceptional curve by . Consider the exact sequence induced
from the inclusionm ⊂ with ≥ 1

m ⊗O → O → O ⊗ /m → 0

We have another exact sequence

0→ O (− )→ O → O → 0

First we show the equality

̂ ∼= lim←−
0( O ) ∼= lim←−

0( O )

where is the fiber product ⊗ /m . The first equality is a consequence of
the formal function theorem. The second follows from the fact that, since their sup-
ports coincide, the inverse systems of sheaves{O /m O } and{O /O (− )} give
the same limit.

Secondly, we consider the filtration ofO by sheaves of ideals

O (− ) ⊂ O (−2 )⊂ O (−3 )⊂ · · · ⊂ O
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The hypothesis 2 < 4(1− ) guarantees the following vanishing in any> 0

1( ⊗O (− )) = 1( O ⊗O (− )) = 0

From the vanishing of the first term we deduce thatO has the structure ofO al-
gebra for any > 0 (cf. [6, Chapter II, Exercise 8.6]). The second vanishing gives
the splitting of the following exact sequence ofO -modules for > 0

0→ O ⊗O (− )→ O( +1) → O → 0

So we haveO( +1)
∼=
⊕

=0O (− ) for ≥ 0, and

lim←− O /m O ∼= lim←− O /O (− ) ∼= lim←−
⊕

≥0

O (− )

/
⊕

>

O (− )

Thus them-adic completion of is obtained as the completion of a finitely generated
graded ring

⊕
≥0

0( O (− )).

Corollary 4.3. A simple elliptic singularity of the embedding dimension three is
given by one of the following:

≥ 3 ˜ 6 : ( − )( − λ )− 2 = 0
˜ 7 : ( − )( − λ )− 2 = 0
˜ 8 : ( − 2)( − λ 2)− 2 = 0 where λ ∈ λ 6= 0 1

= 2 ˜ 6 : 2 + 1 + 3
2 + 3 + 2

2 + 4
2 + 6

3 = 0
˜ 7 : 2 + 1 + 3

2 + 3 + 2
2 2 + 4

3 + 6
4 = 0

˜ 8 : 2 + 1 + 3
3 + 3 + 2

2 2 + 4
4 + 6

6 = 0

where ∈ 6
1 6 + 5

1 3 4 + 4
1 2

2
3 + 4

1
2
4 + 4

3 + 3
1

3
3 6= 0

Proof. The normal forms are determined as in the case of characteristic zero
from the Riemann-Roch theorem; dim 0( O (− )) = (− 2) for > 0.

Theorem 4.4. Simple elliptic singularities of the following types do notappear
on a general fiber of a one-parameter deformation whose totalspace is non-singular.

˜ 8 in ≥ 3
˜ 7 in ≥ 3
˜ 6 in ≥ 5 = 2
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Proof. The dimension of 1 is calculated as follows

˜ 8 dim 1 = 10
˜ 7 dim 1 = 9 ( 6= 2)
˜ 6 dim 1 = 8 ( 6= 3)

The deviating cases arẽ7 in = 2 with dim 1 = 10, and ˜ 6 in = 3 with
dim 1 = 9. By Proposition 2.1, and Proposition 2.2, we find˜ 6 in = 3, ˜ 7

in = 2 and ˜ 8 in = 2 as the remaining cases.

5. An application

In this section we consider applying our results to Calabi-Yau threefolds and Fano
threefolds.

Theorem 5.1. Consider a fibration : → from a non-singular threefold to
a curve. We suppose that a general fiber of is a normal surface. Then the following
hold:
i) There does not appear a simple elliptic singularity on a general fiber if ≥ 5.
ii) Under the assumption that the anti-canonical divisor of a fiber is ample, a general
fiber is non-singular if ≥ 11, i.e., it is a Del Pezzo surface.
iii) Under the assumption that a general fiber has a trivial dualizing sheaf and has
only rational singularities, it is non-singular if ≥ 23, i.e., it is either an abelian
surface or a 3 surface.

Proof. i) This assertion follows from Theorem 4.4.
ii) Let be a general fiber of and consider its minimal resolution of singularities
π : ˜→ . Then by [7, Theorem 2.2] and Theorem 4.4, we know that is a ratio-
nal surface and has only rational double points. Then by the Riemann-Roch theorem,
we have the upper-bound of the Picard numberρ( ˜) = 10− 2

˜ ≤ 9. Then the asser-
tion follows from Theorem 3.4.
iii) We also consider the minimal resolution of singularities of a general fiber
π : ˜ → . Since the singularities of have the embedding dimension three, they
are rational double points and we only need to consider the case where ˜ is a 3
surface. The Picard number satisfiesρ( ˜) ≤ 22 (cf. [1]), so we have the assertion
again by Theorem 3.4.

REMARK 5.2. Umezu studied projective normal surfaces which have trivial dualiz-
ing sheaves ([13], [14]). Unlike normal Gorenstein surfaces with ample anti-canonical
sheaves, irrational singularities other than simple elliptic singularities can appear on
such surfaces.
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