

Title	On a theorem of Gaschütz
Author(s)	Ikeda, Masatoshi
Citation	Osaka Mathematical Journal. 1953, 5(1), p. 53-58
Version Type	VoR
URL	https://doi.org/10.18910/12624
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

On a Theorem of Gaschütz

By Masatoshi IKEDA

In his paper "Über den Fundamentalsatz von Maschke zur Darstellungstheorie der endlichen Gruppen,"¹⁾ W. Gaschütz studied two types of $G\text{-}\Omega$ -modules, named M_u - and M_0 -modules, where G and Ω are a finite group and an arbitrary domain of G -endomorphisms of the modules respectively. There he obtained a criterion for a $G\text{-}\Omega$ -module to be an M_u - or M_0 -module, which is a generalization of the well-known theorem of I. Schur that every representation of a finite group of order g in a field with characteristic $p \nmid g$ is completely reducible.

In the present note we take, instead of G and Ω , a Frobenius algebra A over a commutative ring R and a ring P which contains R in its centre respectively, and derive a criterion for an $A\text{-}P$ -module to be an M_u - or M_0 -module, which is essentially a generalization of Gaschütz's result.

Let R be a commutative ring with the unit element 1.

DEFINITION. A is called an *algebra* over R if A is an associative ring as well as a two-sided R -module with a right linearly independent R -basis $\{u_i\}$ which satisfies $u_i\omega = \omega u_i$ and $u_i 1 = 1 u_i = u_i$ for every $\omega \in R$ and i .

Now let $\{u_i\}$ ($i = 1, \dots, n$) be an R -basis of A and $u_i u_j = \sum_k \alpha_{i,j}^k u_k$ ($\alpha_{i,j}^k \in R$); then we obtain the right and left regular representations with respect to $\{u_i\}$ in the usual manner.

DEFINITION. An algebra A over R is called a *Frobenius algebra* if A has a unit element and its right and left regular representations with respect to an R -basis are equivalent.

DEFINITION. Let $\{u_i\}$ ($i = 1, \dots, n$) be an R -basis of an algebra A over R and $u_i u_j = \sum_k \alpha_{i,j}^k u_k$. Then the matrix $(\sum_k \alpha_{i,j}^k \lambda_k)_{i,j}$ is called a *parastrophic matrix* belonging to the basis $\{u_i\}$ and the parameters $\lambda_i \in R$ ($i = 1, \dots, n$).

1) W. Gaschütz, Math. Zeitschr. 56, 1952.

Then we have

Lemma.²⁾ *An algebra A over R is a Frobenius algebra if and only if A has a non-singular parastrophic matrix. Moreover if A is a Frobenius algebra over R , then every matrix intertwining right and left regular representations is expressed as a parastrophic matrix belonging to suitable parameters.*

If A is a Frobenius algebra over R then, for every R -basis $\{u_i\}$, there exists an R -basis $\{v_i\}$ such that the right regular representation with respect to $\{v_i\}$ coincides with the left regular representation with respect to $\{u_i\}$. We say that $\{v_i\}$ is dual to $\{u_i\}$.

DEFINITION. Let A be an algebra over R and P a ring whose centre contains R .

i) A module m is called an A - P -module if m is a left A -module as well as a right P -module and satisfies

$$(a\omega)m = (am)\omega, \quad (am)\rho = a(m\rho)$$

for every $a \in A$, $m \in m$, $\omega \in R$ and $\rho \in P$.

ii) An A - P -module m on which the unit element of A acts as the identity operator is called an M_u -module if, for every A - P -module n containing m , a direct decomposition $n = m + m'$ as a P -module implies a direct decomposition $n = m + m''$ as an A - P -module.

iii) An A - P -module m on which the unit element of A acts as the identity operator is called an M_0 -module if, for every A - P -module n which contains an A - P -submodule n' such that $n/n' \cong m$, a direct decomposition $n = n' + m'$ as a P -module implies a direct decomposition $n = n' + m''$ as an A - P -module.

Theorem. *Let A be a Frobenius algebra over a commutative ring R with an R -basis containing the unit element of A and P a ring whose centre contains R . Then an A - P -module m is an M_u - or M_0 -module if and only if there exists a P -endomorphism β of m such that $\sum_i u_i \beta v_i$ is the identity endomorphism of m for every R -basis $\{u_i\}$ of A and its dual basis $\{v_i\}$.*

Proof. 1) Proof of sufficiency. Let n be an A - P -module which contains m and $n = m + m'$ as a P -module. By our assumption, there exists a P -endomorphism β of m . Let β^* be a P -endomorphism which

2) The proof of this lemma is quite similar to that of footnotes 6) and 7) in Nakayama & Nesbitt: Note on symmetric algebras, Annals of Math. 39, 1938.

coincides with β on m and $\beta^*m' = 0$. Then $\sum u_i\beta^*v_i = \varepsilon$ is a P -endomorphism and $\varepsilon m = (\sum u_i\beta^*v_i)m = \sum u_i\beta^*(v_i m) = \sum u_i\beta(v_i m) = (\sum u_i\beta v_i)m = m$ for every $m \in m$, by our assumption. Moreover it can easily be seen that $\varepsilon n = n$. Therefore $\varepsilon^2 = \varepsilon$. Now we show that ε is an A - P -endomorphism. Let n be an arbitrary element of n and a an arbitrary element of A . Since $\{v_i\}$ is dual to $\{u_i\}$, if $a(u_1, \dots, u_n) = (u_1, \dots, u_n)(\alpha_{i,j})$, then $\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} a = (a_{i,j}) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$. Then

$$(a\varepsilon)m = (a \sum_i u_i\beta^*v_i)n = \sum_i a u_i (\beta^*v_i n) = \sum_{i,k} (u_k \alpha_{k,i}) (\beta^*v_i n).$$

By the definition of A - P -modules and the fact that β^* is a P -endomorphism,

$$(u_k \alpha_{k,i}) (\beta^*v_i n) = u_k ((\beta^*v_i n) \alpha_{k,i}) = u_k (\beta^*((v_i n) \alpha_{k,i})) = (u_k \beta^*(v_i \alpha_{k,i}))n.$$

Therefore

$$(a\varepsilon)m = \sum_{i,k} (u_k \beta^*(v_i \alpha_{k,i}))n = (\sum_k u_k \beta^*(\sum_i v_i \alpha_{k,i}))n.$$

On the other hand

$$(\varepsilon a)n = (\sum_k u_k \beta^*(v_k a))n = (\sum_k u_k \beta^*(\sum_i v_i \alpha_{k,i}))n.$$

Thus $a\varepsilon = \varepsilon a$ and consequently ε is an A - P -endomorphism. Therefore we have the direct decomposition of n : $n = m + (1 - \varepsilon)n$, where 1 is the identity endomorphism of n . This shows that m is an M_u -module.

Next we show that m is also an M_0 -module. Let n be an A - P -module which contains an A - P -submodule n' such that $n/n' \cong m$ and $n = n' + m'$ as a P -module. Since $m' \cong m$ as a P -module, we can see β as a P -endomorphism of m' . Let β^* be a P -endomorphism of n which coincides with β on m' and $\beta^*n' = 0$. From our assumption, $(\sum_i u_i \beta^*v_i)n \equiv n \pmod{n'}$ for $n \in n$. In the same way as above, we see that the P -endomorphism $\sum_i u_i \beta^*v_i = \varepsilon$ is an A - P -endomorphism and $\varepsilon^2 = \varepsilon$. Therefore $\varepsilon' = 1 - \varepsilon$ is also an A - P -endomorphism and $\varepsilon'^2 = \varepsilon'$. Moreover it is easy to see that $\varepsilon'n = n'$. Consequently we have that $n = n' + \varepsilon n$ and m is an M_0 -module.

2. Proof of necessity. Let M_A be a module satisfying the following conditions:

- (i) M_A is a module of linear forms $\sum_i x_{u_i} a_{u_i}$ ($a_{u_i} \in m$).
- (ii) $\sum_i x_{u_i} a_{u_i} + \sum_i x_{u_i} b_{u_i} = \sum_i x_{u_i} (a_{u_i} + b_{u_i})$.

- (iii) $(\sum_i x_{u_i} a_{u_i})\rho = \sum_i x_{u_i} (a_{u_i} \rho)$ for $\rho \in P$.
- (iv) $u_j (\sum_i x_{u_i} a_{u_i}) = \sum_i x_{u_i} (\sum_k a_{u_k} \alpha_{i,j}^k)$, if $u_i u_j = \sum_k u_k \alpha_{i,j}^k$.
- (v) $a (\sum_i x_{u_i} a_{u_i}) = \sum_j (u_j (\sum_i x_{u_i} a_{u_i})) \alpha_j$, if $a = \sum_j u_j \alpha_j$.

Then it is not hard to verify that M_A is an A - P -module.

Now, since $\{v_i\}$ is dual to $\{u_i\}$, $\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = P^{-1} \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$, where $P = (\sum_k \alpha_{i,j}^k \lambda_k)_{i,j}$ is a non-singular parastrophic matrix belonging to $\{u_i\}$ and $\{\lambda_i\}$. We write $P = (p_{i,j})_{i,j}$ and $P^{-1} = (p_{i,i}^*)_{i,j}$. We assume that $\sum_i u_i \eta_i = 1$, the unit element of A . Then the mapping $\beta: \sum_i x_{u_i} a_{u_i} \rightarrow \sum_i x_{u_i} (\sum_j a_{u_j} \eta_j) \lambda_i$ satisfies our condition, that is, β is a P -endomorphism and $\sum_i u_i \beta v_i$ is the identity endomorphism of M_A . Since β is obviously a P -endomorphism, we are only to prove that $\sum_i u_i \beta v_i$ is the identity endomorphism.

$$\begin{aligned} (\sum_j u_j \beta v_j) (\sum_i x_{u_i} a_{u_i}) &= \sum_j u_j \beta (v_j \sum_i x_{u_i} a_{u_i}) = \sum_j u_j \beta (\sum_k u_k p_{j,k}^*) (\sum_i x_{u_i} a_{u_i}) \\ &= \sum_j u_j \beta (\sum_i x_{u_i} (\sum_{h,k} a_{u_h} \alpha_{i,k}^h p_{j,k}^*)) = \sum_j u_j (\sum_i x_{u_i} (\sum_{h,k,l} a_{u_h} p_{j,k}^* \alpha_{i,k}^h \eta_l) \lambda_i). \end{aligned}$$

Since $\sum_i u_i \eta_i = 1$, $\sum_i \alpha_{i,k}^h \eta_l = \delta_{k,h}$ and consequently

$$\begin{aligned} (\sum_j u_j \beta v_j) (\sum_i x_{u_i} a_{u_i}) &= \sum_j u_j (\sum_i x_{u_i} (\sum_k a_{u_k} p_{j,k}^* \lambda_i)) = \sum_{i,j} x_{u_i} (\sum_m (\sum_k a_{u_k} p_{j,k}^* \lambda_m) \alpha_{i,m}^n) \\ &= \sum_{i,j} x_{u_i} (\sum_k a_{u_k} p_{j,k}^* (\sum_m \lambda_m \alpha_{i,m}^n)) = \sum_{i,j} x_{u_i} (\sum_k a_{u_k} p_{j,k}^* p_{i,j}) \\ &= \sum_i x_{u_i} (\sum_k a_{u_k} (\sum_j p_{i,j} p_{j,k}^*)) = \sum_i x_{u_i} (\sum_k a_{u_k} \delta_{i,k}) = \sum_i x_{u_i} a_{u_i}. \end{aligned}$$

Thus β satisfies our condition.

Next we show that M_A contains A - P -modules M and N such that $M \cong m$ and $M_A/N \cong m$. The module $M = \{\sum_i x_{u_i} (u_i a) \mid a \in m\}$ is P -isomorphic to m by the correspondence $m \ni a \leftrightarrow \sum_i x_{u_i} (u_i a) \in M$. For, if $\sum_i x_{u_i} (u_i a) = 0$ then $u_i a = 0$ for all i and consequently $a = 1$ $a = (\sum_i u_i \eta_i) a = \sum_i (u_i a) \eta_i = 0$. Therefore this correspondence is one-to-one and obviously P -isomorphism. Moreover this correspondence is A -isomorphism. For $u_j (\sum_i x_{u_i} (u_i a)) = \sum_i x_{u_i} (\sum_k (u_k a) \alpha_{i,j}^k) = \sum_i x_{u_i} ((\sum_k u_k \alpha_{i,j}^k) a) = \sum_i x_{u_i} (u_i (u_i a))$, that is, $u_i a$ corresponds to $u_i (\sum_i x_{u_i} (u_i a))$. Therefore M is A - P -isomorphic to m . Since A has an R -basis containing 1, say $w_1 = 1, w_2, \dots, w_n$, we can construct the module M'_A satisfying (i), ..., (v) with respect to $\{w_i\}$. Let Q be a non-singular matrix such that $(u_i) = (w_i)Q'$. Then it is not hard to see that M'_A

and M_A are A - P -isomorphic by the correspondence $\varphi: M'_A \ni \sum_i x_{w_i} a_{w_i} \rightarrow \sum_i x_{u_i} b_{u_i}$, where $(b_{u_1}, \dots, b_{u_n}) = (a_{w_1}, \dots, a_{w_n})Q'$. By φ , M corresponds to $M' = \{\sum_i x_{w_i}(w_i a) | a \in m\}$. It is obvious that $M'_A = M' + M''$ as a P -module, where $M'' = \{\sum_i x_{w_i} a_{w_i} | a_{w_1} = 0\}$. Therefore we have that $M_A = M + \varphi M''$ as a P -module and consequently $M_A = M + M'''$ as an A - P -module if m is an M_u -module. Next we consider the mapping $\psi: M_A \ni \sum_i x_{u_i} a_{u_i} \rightarrow \sum_i u_i (\sum_j a_{u_j} p_{i,j}^*) \in m$. Since $(p_{i,j}^*) = P^{-1}$ is non-singular, the linear equation $\sum_j x_j p_{i,j}^* = a_{\eta_i} (a \in m, i = 1, \dots, n)$ have a unique solution $\{a_j\}$ in m . Then $\sum_i x_{u_i} a_i$ corresponds to $\sum_i u_i (a_{\eta_i}) = (\sum_i u_i \eta_i) a = 1 a = a$. This shows that ψ is an "onto" mapping. Furthermore it is easy to see that ψ is a P -homomorphism. We show that ψ is an A - P -homomorphism.

$$\begin{aligned} \psi(u_j(\sum_i x_{u_i} a_{u_i})) &= \psi(\sum_i x_{u_i} (\sum_k a_{u_k} \alpha_{i,j}^k)) = \sum_i u_i (\sum_m (\sum_k a_{u_k} \alpha_{m,j}^k) p_{i,m}^*) \\ &= \sum_i u_i (\sum_k a_{u_k} (\sum_m \alpha_{m,j}^k p_{i,m}^*)). \end{aligned}$$

Since $P = (p_{i,j})$ intertwines right and left regular representations, we have $\sum p_{i,m}^* \alpha_{m,j}^k = \sum \alpha_{j,m}^k p_{m,k}^*$ and consequently

$$\begin{aligned} \psi(u_j(\sum_i x_{u_i} a_{u_i})) &= \sum_i u_i (\sum_k a_{u_k} (\sum_m \alpha_{j,m}^k p_{m,k}^*)) = \sum_{k,m} (\sum_i u_i \alpha_{j,m}^i) a_{u_k} p_{m,k}^* \\ &= u_j (\sum_m u_m (\sum_k a_{u_k} p_{m,k}^*)) = u_j \psi(\sum_i x_{u_i} a_{u_i}). \end{aligned}$$

This shows that ψ is an A - P -homomorphism and consequently M_A contains an A - P -submodule N such that $M_A/N \cong m$. Moreover, as was shown above, the P -submodule $N' = \{\sum_i x_{u_i} a_{u_i} | \sum_i a_{u_i} p_{i,j}^* = a_{\eta_j}, a \in m\}$ is mapped onto m by ψ . Therefore $M_A = N + N'$ as a P -module and consequently $M_A = N + N''$ as an A - P -module if m is an M_0 -module. Thus we have that M_A is directly decomposable into m and an A - P -module. Since M_A has a P -endomorphism β satisfying our condition, we can easily construct a P -endomorphism satisfying our condition for m .

Next we show that our result is essentially a generalization of Gaschütz's result. Let m be a G -module, where $G = \{g_i | i = 1, \dots, n\}$ is a finite group and Ω an arbitrary domain of G -endomorphisms of m . Let P be the ring of endomorphisms generated by Ω and the identity endomorphism of m , and C the centre of P . Then the group ring $G(C)$ of G over C is a Frobenius algebra with a C -basis containing the unit element of G . Furthermore $\{g_i^{-1}\}$ is a dual basis to $\{g_i\}$. Considering m as $G(C)$ - P -module in the natural way, we have

Theorem. (Gaschütz). *Let $G = \{g_i | i = 1, \dots, n\}$, m and Ω be a finite group, a G -module and an arbitrary domain of G -endomorphisms of m respectively. Then $G\text{-}\Omega$ -module m is an M_u - or M_0 -module if and only if m has an Ω -endomorphism β such that $\sum g_i \beta g_i^{-1}$ is the identity endomorphism of m .*

(Received March 9, 1953)