<table>
<thead>
<tr>
<th>Title</th>
<th>On a theorem of Gaschütz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ikeda, Masatoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Mathematical Journal. 5(1) P.53-P.58</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1953</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/12624</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/12624</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
On a Theorem of Gaschütz

By Masatoshi Ikeda

In his paper "Über den Fundamentalsatz von Maschke zur Darstellungstheorie der endlichen Gruppen," W. Gaschütz studied two types of G-Ω-modules, named M_ω- and M_σ-modules, where G and Ω are a finite group and an arbitrary domain of G-endomorphisms of the modules respectively. There he obtained a criterion for a G-Ω-module to be an M_ω- or M_σ-module, which is a generalization of the well-known theorem of I. Schur that every representation of a finite group of order g in a field with characteristic $p | g$ is completely reducible.

In the present note we take, instead of G and Ω, a Frobenius algebra A over a commutative ring R and a ring P which contains R in its centre respectively, and derive a criterion for an A-P-module to be an M_ω- or M_σ-module, which is essentially a generalization of Gaschütz's result.

Let R be a commutative ring with the unit element 1.

DEFINITION. A is called an algebra over R if A is an associative ring as well as a two-sided R-module with a right linearly independent R-basis $\{u_i\}$ which satisfies $u_i\omega = \omega u_i$ and $u_i1 = 1u_i = u_i$ for every $\omega \in R$ and i.

Now let $\{u_i\} (i = 1, \ldots, n)$ be an R-basis of A and $u_iu_j = \sum \alpha_{i,j}^k u_k$ ($\alpha_{i,j}^k \in R$); then we obtain the right and left regular representations with respect to $\{u_i\}$ in the usual manner.

DEFINITION. An algebra A over R is called a Frobenius algebra if A has a unit element and its right and left regular representations with respect to an R-basis are equivalent.

DEFINITION. Let $\{u_i\} (i = 1, \ldots, n)$ be an R-basis of an algebra A over R and $u_iu_j = \sum \alpha_{i,j}^k u_k$. Then the matrix $(\sum \alpha_{i,j}^k \lambda_k)_{i,j}$ is called a parastrophic matrix belonging to the basis $\{u_i\}$ and the parameters $\lambda_i \in R (i = 1, \ldots, n)$.

Then we have

Lemma. An algebra A over R is a Frobenius algebra if and only if A has a non-singular parastrophic matrix. Moreover if A is a Frobenius algebra over R, then every matrix intertwining right and left regular representations is expressed as a parastrophic matrix belonging to suitable parameters.

If A is a Frobenius algebra over R then, for every R-basis $\{u_i\}$, there exists an R-basis $\{v_i\}$ such that the right regular representation with respect to $\{v_i\}$ coincides with the left regular representation with respect to $\{u_i\}$. We say that $\{v_i\}$ is dual to $\{u_i\}$.

Definition. Let A be an algebra over R and P a ring whose centre contains R.

1) A module m is called an A-P-module if m is a left A-module as well as a right P-module and satisfies

$$(a)m = (am)_\omega, \quad (am)p = a(mp)$$

for every $a \in A$, $m \in m$, $\omega \in R$ and $p \in P$.

2) An A-P-module m on which the unit element of A acts as the identity operator is called an M_0-module if, for every A-P-module n containing m, a direct decomposition $n = m + m'$ as a P-module implies a direct decomposition $n = m + m''$ as an A-P-module.

3) An A-P-module m on which the unit element of A acts as the identity operator is called an M_0-module if, for every A-P-module n which contains an A-P-submodule n' such that $n/n' \cong m$, a direct decomposition $n = n' + m'$ as a P-module implies a direct decomposition $n = n' + m''$ as an A-P-module.

Theorem. Let A be a Frobenius algebra over a commutative ring R with an R-basis containing the unit element of A and P a ring whose centre contains R. Then an A-P-module m is an M_0- or M_0-module if and only if there exists a P-endomorphism β of m such that $\sum_i u_i \beta v_i$ is the identity endomorphism of m for every R-basis $\{u_i\}$ of A and its dual basis $\{v_i\}$.

Proof. 1) Proof of sufficiency. Let n be an A-P-module which contains m and $n = m + m'$ as a P-module. By our assumption, there exists a P-endomorphism β of m. Let β^* be a P-endomorphism which

2) The proof of this lemma is quite similar to that of footnotes 6) and 7) in Nakayama & Nesbitt: Note on symmetric algebras, Annals of Math. 39, 1938.
On a Theorem of Gaschütz

coincides with β on m and $\beta^*m' = 0$. Then $\sum u_i \beta^* v_i = \epsilon$ is a P-endomorphism and $\epsilon m = (\sum u_i \beta^* v_i)m = \sum u_i \beta^*(v_i m) = (\sum u_i \beta v_i)m = m$ for every $m \in m$, by our assumption. Moreover it can easily be seen that $\epsilon n = m$. Therefore $\epsilon^2 = \epsilon$. Now we show that ϵ is an $A-P$-endomorphism. Let n be an arbitrary element of n and a an arbitrary element of A. Since $\{v_i\}$ is dual to $\{u_i\}$, if $a(u_1, \ldots, u_n) = (u_1, \ldots, u_n)(\alpha_{i, j})$, then $\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} a = (\alpha_{i, j}) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$. Then

$$(a\epsilon)n = (\sum u_i \beta^* v_i)n = \sum u_i(\beta^* v_i n) = \sum u_i \alpha_{i, j}(\beta^* v_i n).$$

By the definition of $A-P$-modules and the fact that β^* is a P-endomorphism,

$$(u_i \alpha_{i, j})(\beta^* v_i n) = u_i((\beta^* v_i n)\alpha_{i, j}) = u_i(\beta^* (v_i n)\alpha_{i, j}) = (u_i \beta^* (v_i \alpha_{i, j}))n.$$

Therefore

$$(a\epsilon)n = \left(\sum u_i \beta^* (v_i \alpha_{i, j})\right)n = \left(\sum u_i \beta^* (\sum v_i \alpha_{i, j})\right)n.$$

On the other hand

$$(\epsilon a)n = \left(\sum u_i \beta^* (v_i a)\right)n = \left(\sum u_i \beta^* (\sum v_i \alpha_{i, j})\right)n.$$

Thus $a\epsilon = \epsilon a$ and consequently ϵ is an $A-P$-endomorphism. Therefore we have the direct decomposition of n: $n = m + (1 - \epsilon)n$, where 1 is the identity endomorphism of n. This shows that m is an M_n-module.

Next we show that m is also an M_0-module. Let n be an $A-P$-module which contains an $A-P$-submodule n' such that $n/n' \cong m$ and $n = n' + m'$ as a P-module. Since $m' \cong m$ as a P-module, we can see β as a P-endomorphism of m'. Let β^* be a P-endomorphism of n which coincides with β on m' and $\beta^*n' = 0$. From our assumption, $\left(\sum u_i \beta^* v_i\right)n = n$ (mod n') for $n \in n$. In the same way as above, we see that the P-endomorphism $\sum u_i \beta^* v_i = \epsilon$ is an $A-P$-endomorphism and $\epsilon^2 = \epsilon$. Therefore $\epsilon' = 1 - \epsilon$ is also an $A-P$-endomorphism and $\epsilon'^2 = \epsilon'$. Moreover it is easy to see that $\epsilon'n' = n'$. Consequently we have that $n = n' + \epsilon n$ and m is an M_0-module.

2. Proof of necessity. Let M_A be a module satisfying the following conditions:

(i) M_A is a module of linear forms $\sum u_i a_{i, u_i} (a_{i, u_i} \in m)$.

(ii) $\sum u_i a_{i, u_i} + \sum u_i b_{u_i} = \sum u_i (a_{i, u_i} + b_{u_i}).$
(iii) \((\sum x_{i\mu}a_{\mu i})\rho = \sum x_{i\mu}(a_{\mu i}\rho)\) for \(\rho \in P\).
(iv) \(u_j(\sum x_{i\mu}a_{\mu i}) = \sum x_{i\mu}(\sum a_{\mu k}\alpha_{i\mu})\), if \(u_j = \sum u_k\alpha_{i\mu}\).
(v) \(a(\sum x_{i\mu}a_{\mu i}) = \sum_j (u_j(\sum x_{i\mu}a_{\mu i}))\alpha_j\), if \(a = \sum u_j\alpha_j\).

Then it is not hard to verify that \(M_d\) is an \(A-P\)-module.

Now, since \(\{v_i\}\) is dual to \(\{u_i\}\), \(\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = P^{-1} \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, \)
where \(P = (\sum \alpha_{i,j}^\nu, \lambda_{i,j}^\nu)_{i,j}\) is a non-singular parastrophic matrix belonging to \(\{u_i\}\) and \(\{x_i\}\). We write \(P = (p_{i,j})_{i,j}\) and \(P^{-1} = (p_{i,j}^\nu)_{i,j}\). We assume that \(\sum u_i\eta_i = 1\), the unit element of \(A\). Then the mapping \(\beta: \sum x_{i\mu}a_{\mu i}\rightarrow \sum x_{i\mu}(\sum a_{\mu k}\lambda_{i\mu})\) satisfies our condition, that is, \(\beta\) is a \(P\)-endomorphism and \(\sum u_i\beta v_i\) is the identity endomorphism of \(M_d\). Since \(\beta\) is obviously a \(P\)-endomorphism, we are only to prove that \(\sum u_i\beta v_i\) is the identity endomorphism.

\[
(\sum_j u_j\beta v_j)(\sum_i x_{i\mu}a_{\mu i}) = \sum_j u_j(\sum_i x_{i\mu}(\sum \alpha_{i,k}^\nu, p_{i,k}^\nu)) = \sum_j u_j(\sum_i x_{i\mu}(\sum \alpha_{i,k}^\nu, p_{i,k}^\nu, \lambda_{i,k})) = \sum_j u_j(\sum_i x_{i\mu}(\sum \alpha_{i,k}^\nu, \lambda_{i,k})) = \sum_i x_{i\mu}(\sum \alpha_{i,k}^\nu, \lambda_{i,k}).
\]

Since \(\sum_i u_i\eta_i = 1\), \(\sum i \alpha_{i,k}^\nu, \eta_i = \delta_{i,k}\) and consequently

\[
(\sum_j u_j\beta v_j)(\sum_i x_{i\mu}a_{\mu i}) = \sum_j u_j(\sum_i x_{i\mu}(\sum \alpha_{i,k}^\nu, p_{i,k}^\nu, \lambda_{i,k})) = \sum_i x_{i\mu}(\sum_k \alpha_{i,k}^\nu, p_{i,k}).
\]

Thus \(\beta\) satisfies our condition.

Next we show that \(M_d\) contains \(A-P\)-modules \(M\) and \(N\) such that \(M \simeq m\) and \(M_d/N \simeq m\). The module \(M = \{\sum x_{i\mu}(u_i,a)\} a \in m\) is \(P\)-isomorphic to \(m\) by the correspondence \(m \ni a \mapsto \sum x_{i\mu}(u_i,a) \in M\). For, if \(\sum x_{i\mu}(u_i,a) = 0\) then \(u_i a = 0\) for all \(i\) and consequently \(a = \sum i u_i \eta_i a = \sum (u_i a) \eta_i = 0\). Therefore this correspondence is one-to-one and obviously \(P\)-isomorphism. Moreover this correspondence is \(A\)-isomorphism. For \(u_j(\sum x_{i\mu}(u_i,a)) = \sum x_{i\mu}(\sum (u_i a) \alpha_{i,j}^\nu) = \sum x_{i\mu}(\sum u_k \alpha_{i,j}^\nu a)\) that is, \(u_j a\) corresponds to \(u_j(\sum x_{i\mu}(u_i,a))\). Therefore \(M\) is \(A-P\)-isomorphic to \(m\). Since \(A\) has an \(R\)-basis containing \(1\), say \(w_1, w_2, \ldots, w_n\), we can construct the module \(M_d\) satisfying (i), ..., (v) with respect to \(\{w_i\}\). Let \(Q\) be a non-singular matrix such that \((w_i) = (w_i)Q'\). Then it is not hard to see that \(M_d\)
and M_A are A-P-isomorphic by the correspondence $\varphi: \sum x_{u_i} a_{w_i} \rightarrow \sum x_{u_i} b_{w_i}$, where $(b_{u_1}, \ldots, b_{u_n}) = (a_{w_1}, \ldots, a_{w_n})q'$. By φ, M corresponds to $M' = \{ \sum x_{u_i} (w_i a) | a \in m \}$. It is obvious that $M_A = M' + M''$ as a P-module, where $M'' = \{ \sum x_{u_i} a_{w_i} | a_{w_i} = 0 \}$. Therefore we have that $M_A = M + \varphi M''$ as a P-module and consequently $M_A = M + M''$ as an A-P-module if m is an M_0-A-module. Next we consider the mapping $\psi: \sum x_{u_i} a_{u_i} \rightarrow \sum u_i (\sum a_{w_i} p_{i,j}^w) \in m$. Since $(p_{i,j}^w) = P^{-1}$ is non-singular, the linear equation $\sum x_{u_i} a_{u_i} = \alpha_{\eta_i} (a \in m, i = 1, \ldots, n)$ have a unique solution $\{a_i\}$ in m. Then $\sum x_{u_i} a_{u_i}$ corresponds to $\sum u_i (\alpha_{\eta_i}) = (\sum u_i \eta_i) a = 1 a = a$. This shows that ψ is an "onto" mapping. Furthermore it is easy to see that ψ is a P-homomorphism. We show that ψ is an A-P-homomorphism.

\[
\psi(u_i (\sum x_{u_i} a_{u_i})) = \psi(\sum x_{u_i} (\sum a_{w_i} \alpha_{\eta_i}^w)) = \sum u_i (\sum a_{w_i} \alpha_{\eta_i}^w) p_{i,m}^w
\]

Since $P = (p_{i,j})$ interwines right and left regular representations, we have $\sum p_{i,m}^w \alpha_{\eta_i}^w = \sum \alpha_{\eta_i}^j p_{i,m}^w$ and consequently

\[
\psi(u_i (\sum x_{u_i} a_{u_i})) = \sum u_i (\sum a_{u_i} (\sum \alpha_{\eta_i}^j p_{i,m}^w)) = \sum u_i \alpha_{\eta_i}^j a_{u_i} p_{i,m}^w
\]

This shows that ψ is an A-P-homomorphism and consequently M_A contains an A-P-submodule N such that $M_A/N \cong m$. Moreover, as was shown above, the P-submodule $N' = \{ \sum x_{u_i} a_{u_i} | \sum a_{u_i} p_{i,j}^w = \alpha_{\eta_i}, a \in m \}$ is mapped onto m by ψ. Therefore $M_A = N + N''$ as a P-module and consequently $M_A = N + N''$ as an A-P-module if m is an M_0-A-module. Thus we have that M_A is directly decomposable into m and an A-P-module. Since M_A has a P-endomorphism β satisfying our condition, we can easily construct a P-endomorphism satisfying our condition for m.

Next we show that our result is essentially a generalization of Gaschütz's result. Let m be a G-module, where $G = \{ g_i | i = 1, \ldots, n \}$ is a finite group and Ω an arbitrary domain of G-endomorphisms of m. Let P be the ring of endomorphisms generated by Ω and the identity endomorphism of m, and C the centre of P. Then the group ring $G(C)$ of G over C is a Frobenius algebra with a C-basis containing the unit element of G. Furthermore $\{ g_i^{-1} \}$ is a dual basis to $\{ g_i \}$. Considering m as $G(C)$-P-module in the natural way, we have
Theorem. (Gaschütz). Let $G = \{g_i \mid i = 1, \ldots, n\}$, m and Ω be a finite group, a G-module and an arbitrary domain of G-endomorphisms of m respectively. Then G-Ω-module m is an M_n- or M_0-module if and only if m has an Ω-endomorphism β such that $\sum g_i \beta g_i^{-1}$ is the identity endomorphism of m.

(Received March 9, 1953)