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Abstract

Li-York theorem tells us that a perid@ orbit for a continuous map of the interval
into itself implies the existence of a periodic orbit of eveveriod. This paper
concerns an analogue of the theorem for homeomorphisms@dimensional disk.
In this case a periodic orbit is specified by a braid type andhenset of all braid
types Boyland’s dynamical partial order can be defined. Werilee the partial order
on a family of braids and show that a peri@dorbit of pseudo-Anosov braid type
implies the Smale-horseshoe map which is a factor posgessimplicated chaotic
dynamics.

1. Introduction

Let f: D — D be an orientation preserving homeomorphism of the 2-difoeak
closed diskD. One of the main question on dynamical systems is to invasgtithe
variety of periodic orbits. Suppose that there exists aopéri orbit, sayP. In this
setting we concern the question to find more periodic orltiterothanP by using the
notion of the braid type [5]. LetD, be then-punctured disk, wher@ is a period
of P. Take an arbitrary orientation preserving homeomorphisnD \ P — D, and
consider the compositiorf = j o f|p\p o j*: Dy — Dy. Let [f] be the isotopy class
of f. The braid type of P for f denoted bybt(P, f), is the conjugacy class offl
in the mapping class groulCG(D,) of Dy.

By Nielsen-Thurston theory any homeomorphism@f is isotopic to either peri-
odic, reducible or pseudo-Anosov map. Since the statenseitvariant under conju-
gacy, it makes sense to speak of the periodic, reducibleydasAnosov braid type.
The theory detects the complicated dynamics from the existef periodic orbits of
pseudo-Anosov braid type. For examplebif P, f) is pseudo-Anosov there exists an
infinitely many number of periodic orbits with distinct peds for f. Moreover the
logarithm of the dilatation obt(P, f) gives the lower bound of the topological entropy
for f [8, Exposé 10]. Recently it has been recognized that suclplexity realizes
global and efficient particle mixings in fluid dynamics [6,]13
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Fig. 1. Braidsfmn (left) and omn (right).

1

Our interest is to show which braid types are forced by a gjeriodic orbit. For
the study we use the language of the forcing relation on kygids. We denote the set
of braid types of all periodic orbits fof by bt(f). Let BT, be the set of braid types
of period n orbits for all homeomorphisms db, andBT = {8 € BT, | n > 1}. For an
elementmce MCG(Dy), [md denotes its conjugacy class. Following [11] we say that
f: D - D exhibits[md e BT, if there exists a periodia orbit for f whose braid
type is jnd. We say that ing] € BT forces[mg] € BT, denoted by ihg] > [mG]
provided that if a homeomorphisni: D — D exhibits |ng], then f also exhibits
[me]. This relation> is a partial order orBT [5, 16], and it is called thdorcing
relation or forcing partial order

Let[ma], [mc] € BT, and suppose thatg] is pseudo-Anosov. Results by Asimov-
Franks [2] and Hall [9] give a strategy to determine whethmeg| forces jmg] or not.

It holds that fng] > [mg] if and only if the pseudo-Anosov ma@me € ma (which
is thought as a homeomorphism Bf) exhibits [nc)].

For the study of braid types it is convenient to use geomdtraids. There is a
surjective homomorphisnt” from the n-braid group B, to MCG(D,). We write o,

i =1,...,n—1 for the Artin generators oB,. Any braid type is written by I[(b)] for
some braidb € B,,. Simply we write p] for [['(b)] € BT, when there is no confusion.

This paper concerns the forcing partial order on the setsaifittypes{[Sm nl}mn>1
and {[omn]}mn>1 defined as follows. For any positive integersandn, let S and
omn be the (n+n+ 1)-braids as in Fig. 1. The braidy,, can be written asry, =
Bmn&, where& = omun - - - 02010102 - - - omen (Fig. 1 (right)). Eachfmn is pseudo-
Anosov, andop,, is pseudo-Anosov if and only ifm —n| > 2. These braids are con-
cerned in [12] from view point of braids with small dilatatio

The following is the main result of this paper:

Theorem 1.1. For any m n > 1 we have

(1) [Bmnl = [Bm+1n] @and [Bmnl = [Bm.n+1l,
(@) [Bmnl = [om)] if | = m+2, and
3) [omnl = [omi] ifNn>1>m+2.

In particular fixingm > 1, the relation> becomes a total order on each set of braid
types {[Bmnl}n=1, {[Bnmlin=1 and {[om n]}nzm+2-
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Fig. 2. Smale-horseshoe map
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Horseshoe braid typeare those that can be realized by the periodic orbits for the
Smale-horseshoe map: D — D (Fig. 2). This map is known to be a simple factor
possessing complicated dynamics. The following theoreys $hat [B; ] forces any
horseshoe braid type:

Theorem 1.2. We have[B1x] = [md for any k> 1 and any horseshoe braid
type [md.

Kolev shows that iff has a period 3 orbiP whose braid type is pseudo-Anosof,
has a periodic orbit of every period [14]. This is a best gassanalogous result of
the Li-York theorem [15] (or the special case of the Sharkiovwkeorem), although the
theorem does not say which braid types can be realized by ¢hiedo3 orbit. Note
that the braid type for a fixed point or a period 2 orbit is usiqu\ question is which
braid type for a periodh orbit (n > 4) is forced by a period 3 orbit of pseudo-Anosov
type. Theorems 1.1 and 1.2 together with a Handel's resdlt §ives an answer:

Corollary 1.3. Let f: D — D be an orientation preserving homeomorphisBup-
pose that f has a perio@ orbit whose braid type is pseudo-Anosdhen we have
(1) bt(f) > {[Bmnl I M, n =1}, and
(2) bt(f) > bt(H) O {[omn] INn=m+2}.

2. Preliminaries

In Section 2.1 we review the classification theorem of s@faomeomorphisms
by Nielsen-Thurston and a result on the relation betweerfah@ng partial order and
the dilatation of braids by Los. Section 2.2 introduces aréitiesurface for a given
graph, and it describes a criterion for determining whethdraidb is pseudo-Anosov
or not by Bestvina-Handel. Under the assumption that the induced graph map for a
braid b satisfying the Bestvina-Handel's condition, in Sectio8 @e define the reduced
graph mapg™9, and we give a relation between periodic orbits for the thigkph
map associated tg™? and those for the pseudo-Anosov mdg € I'(b). Section 2.4
explains the dynamics on the Smale-horseshoe map can bebeésby the shift map
on the symbol space, and it shows that the braids (n > m+2) arise as braid types
of periodic orbits.
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2.1. Pseudo-Anosov braids. We introduces three kinds of homeomorphisms. A

homeomorphismd: D, — D, is:

e periodic if some power of® is the identity map.

e reducibleif there is a®-invariant closed 1-submanifold whose complementary com-
ponents inD, have negative Euler characteristic.

e pseudo-Anosoif there is a constant > 1 and a pair of transverse measured fo-
liations (FS, 1) and (FY, uY) such that®(Fs, us) = (F5, A~ 1u®) and &(FY, uY) =
(F5, ).

F3 and F! are called thestableand unstable foliationor theinvariant foliations They
have a finitely many number of singularities, and the set nfuarities of 75 equals
that of 7. The number. = A(®) > 1 is called thedilatation for ®.

We say thatmc € MCG(D,) is periodic (reducible pseudo-Anosovesp.) if it
contains a periodic map (reducible map, pseudo-Anosov reap.y as a representa-
tive homeomorphism. An elementce MCG(D,) is calledirreducible if it is not re-
ducible.

Theorem 2.1 ([8]). Any irreducible element m& MCG(D,) is periodic or
pseudo-Anosovf mc is pseudo-Anospthen the pseudo-Anosov map of mc is unique
up to conjugacy

The Nielsen-Thurston type (i.e., periodic, reducible,yskeAnosov) formcis invariant
under conjugacy. Whemc is pseudo-Anosov, thdilatation A(mc) for mc is defined
by A(®p) for the pseudo-Anosov mag,. € mc. This number is also invariant under
conjugacy.

Let A, ={ag,...,an—1} be a set ofn-points in the interior ofD. Suppose that
a,...,an—1 lie on the horizontal line through the center of the disk frtme left to the
right, and putD, =D\ A,. Let Dj, i =0,...,n—1, be the closed disk which contains
a1 andg and no other points of,. We define a homomorphisi: B, — MCG(Dy,)
as follows: For the Artin generatorg, i =1,...,n — 1, T'(67) is represented by a
homeomorphism oD, which fixes the exterior oD; and rotates in the inside db
by 180 degrees in the counter-clockwise direction so #at is interchanged withg;
(Fig. 3). The kernel of" is the center ofB, which is generated by a full twist braid
(0102 - -on_1)" [4]. We say that a braidh € B, is pseudo-Anosoyperiodic reducible
resp.) ifI'(b) e MCG(Dy) is pseudo-Anosov (periodic, reducible resp.). We defire th
dilatation A(b) for the pseudo-Anosov braid by A(I"(b)).

Recall that we write lj] for [T"(b)]. One of the relation between the forcing partial
order and the dilatation is as follows:

Theorem 2.2 ([16]). Suppose that band Iy are pseudo-Anosov braids If
[b1] > [bo] with [bg] Z [by], thena(b) > A(by).
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0 i-1i n-1

Fig. 3. T': By, — MCG(D,).

2.2. Graphs, fibered surfaces and graph maps.Let G be a finite graph em-
bedded on an orientable surfage In this paper, we assume that an edgeGofis
closed, and let,i(G) be the set of oriented edges &, £(G) the set of unoriented
edges, and’(G) the set of vertices. We denote the oriented edge with thimliniertex
v, and the terminal vertext by e(v|, vr). Let € be the same edge a&swith opposite
orientation. A continuous map: G — G is called agraph map

One can associate fibered surfaceF(G) c F with a projectionz: F(G) — G
(Fig. 4). The fibered surfacB(G) is decomposed into arcs and into polygons modelled
on k-junctions,k > 1. The arcs and thk-junctions are calledlecomposition elements
Under, the preimage of each vertices of valericés the k-junction, and the closure
of the preimage of each open edge is the strip (fibered by avbg&h is the closure
of the one of the complementary components of the union ofualttions.

Recall thatA, ={ap, ..., an_1} is a set ofn-points in D and D, = D \ A,. In this
section we have no assumption on the locatiorAgf Let P, be a small circle centered
at g such that no other points of, is contained in the disk bounded By. We set
P= U{‘:’Ol P,. Choose a finite graple embedded orD, that is homotopy equivalent
to Dy such thatP is a subgraph of5 and G has no vertices of valence 1 or 2.

Let f: D, — D, be a representative homeomorphismIgb) € MCG(D,). A
fibered surfaceF(G) carries f if f maps each decomposition elementR{f5) into a
decomposition element and each junction into a junction.eW(G) carries f, f in-
duces a piecewise linear graph mgp g;: G — G which represents the correspon-
dence of vertices and edge paths determinedf by(Thus g sends vertices to vertices
and each edge to an edge path.) We may assumePthatinvariant underg without
loss of generality.

Suppose that a fibered surfa€€G) carries f: D, — D, of I'(b) with the induced
graph mapg: G — G. In this case we say thatis the induced graph map for .bLet
preP be the set of edges € £(G) such thatg“(e) is contained inP for somek > 1.
The graph map defines a square and non negative integral matrix calledréimsition
matrix ’Z;}Ot whose {, j)-th entry is given by the number of times that the image of the
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Fig. 4. Fibered surface.

j-th edge of£(G) under g passes through theth edge of£(G). Then 7. is of

the form
P A B
1*=|10 2 cC |,
0 0 7T

whereP and Z are the transition matrices associatedP®and prd® respectively, and
7T is the transition matrix associated to the rest of edgeedatlal edges The matrix
7T is called thetransition matrix with respect to the real edgethe spectral radius of
T is denoted byAr(7).

A graph mapg: G — G is efficientif for any e € £,(G) and anyk > 0, gk(e) =
€162 - - &, satisfiesg; Z e+ foralli =1,...,]—1.

A non negative square matriM is irreducible if for every set of indices, j, there
is a positive integen; j such that thei( j)-th entry of M™.i is strictly positive.

Theorem 2.3 ([3]). Let be B, and letg: G — G the induced graph map for
b. Suppose that
(BH:1) g is efficient and
(BH:2) the transition matrix7 with respect to the real edges is irreducible with
AMT) > 1.
Then b is pseudo-Anosov with dilatatiag?’).

An idea of the proof is as follows. Thiain track t ¢ D, associated tg is obtained
by the “smoothing” ofG, and as a result thigain track mapg,: © — t can be defined.

If g: G — G satisfies (BH:1) and (BH:2), one can construct the pseudaséw map
dy, € I'(b) explicitly by usingg., and hencé is pseudo-Anosov. For more details see
[3, Section 3.3].
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Fig. 5. Embedding (left) and its thick graph map (right).

2.3. Thick graph maps and pseudo-Anosov maps.Let T be a finite tree em-
bedded onD andg: T — F(T) an embedding such that it maps a vertex to a junc-
tion and the image of each edge is transverse to arcB(®). A homeomorphism
g: D (O F(T)) — D is athick graph map associated i if g satisfies the following
conditions:

e g maps each decomposition element®(T) into a decomposition element and
each junction into a junction.

e g contracts the vertical direction of each strip ®fT) uniformly and expands the
horizontal direction of each strip uniformly.

e ¢(F(T)) is a fibered surface of the trggT).

For example see Fig. 5. Although the thick graph ngais not unique, it is determined
uniquely on the invariant seA = (), g/(F(T)) underg in a sense of the symbolic
dynamics [1].

In the rest of this section, lgj: G — G be the induced graph map ftre B,
satisfying (BH:1) and (BH:2). Theeduced graph ¢ for G is the tree obtained
from G by collapsing each peripheral edd® of P to a vertexy; labeledi. Since
P is invariant underg, a piecewise linear graph ma%: G4 — G called there-
duced graph map fog, can be defined such thaf®® represents the correspondence
of vertices and edge paths determined dyysee Fig. 6 (left/center). Becausggis
the induced graph map fds, F(G) carries some homeomorphisi of T'(b). Thus
ged: G s Gred recovers the embedding®®: G™ — F(G'™d). The thick graph map
g: D — D associated tqgg™® means that the one associated{;fé’.

Assume that the closed braid bfis a knot. Then the thick graph map D — D
associated t@"? has a perioch orbit, say P, = {po, ..., Pn_1} such that a pointp;
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Fig. 6. Induced graph map forrlaz‘l (left), its reduced graph
map (center) and transition graph (right).

is in a junctionz—Y(v;). Notice that the braid type oP, for g is [b]. We call P, the
representative orbifor g (associated tg9).
Results by Asimov-Franks and Hall tell us that

bt(®p) = {[b] € BT| [b] = [b]}.

Hence we havédt(g) D bt(dy,) since p] € bt(g). To give elements obt(g) which be-
long to bt(®p), we introduce terminology. A periodic point € G™ for g is called
regular if x ¢ V(G™Y). Sinceg™d(V(G"™%) c V(G™Y), if x is regular, §™% (x) is also
regular for eachi > 0. Hence it makes sense to speak of the regular periodic. orbit
Since the number of the element B{G™Y) is finite, it is easy to check that a given
periodic orbit is regular or not.

Next we define a subdivisio®®® of G™ as follows: Lete be an edge of (G
such that the edge patii®%(e) is given by fif,--- fi, fi € £(G™Y). Subdividee into

subedgese!, €, ..., € so thatg™®d€) = f;, i =1,..., k. (Thus g®de'e?. .. &) =
fify--- fx as an edge path.) LeEy,..., E e £(GP®Y be all edges ofGE. The
transition graph E; is the oriented graph with vertice8y, ..., E; and an oriented

edge fromE; to E; if g"*YE;) passes througl;. Note that from the definition of the
subdivision, gYE;) passes througlE; at most one times. For example consider the
reduced graph map given in Fig. 6 (center), and in this &i8gl) is subdivided into
e(0, 1)* ande(0, 1¢, ande(1, 2) is subdivided inta(1, 2)t, e(1, 2¢ ande(l, 2. Since

g"%e(0, 1)) =g"*%e(0, 1)'e(0, 2¥) = (2, 1)e(1, 0)
and
g"%e(1, 2)) =g"%e(1, 2)'e(1, 2Pe(1, 2) = (0, 1)e(1, 2)(2, 1),

we have the transition graph shown in Fig. 6 (right).
Each closed path oE, gives a periodic orbit for the thick graph mapassociated
to g
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Lemma 2.4. Let By — --- - Es_1 — Ep, E € V(E,) be a closed path oE,.
Then
(1) there exists a periodic pointoxe Eq for g such that(g®9s(xo) = xo and % =
(8% (xo0) € E; for each ie {0,...,s—1}, and
(2) there exists a periodic poirfy € 7 1(Eo) for g associated t@"? such that §(%p) =
%o and X = g' (%) € 7 1(E;) for each ie {0,...,s—1}.

Proof. This can be shown by the symbolic dynamics (for exansgle [1]). [

The word EgE; - - - Es_1 (mY(Ep) - - - m1(Es_1) resp.) in Lemma 2.4 is said to
be theitinerary of xo (Xp resp.).

The symbolO+(x) denotes the periodic orbit for a periodic poixtfor a map f.
Since ¢, (and also Markov partition ofby) is constructed vigg: G — G, there is a
natural correspondence between periodic orbits &#grand those forg. If xq is the
periodic point forg™? associated with a closed pafy — - -- — Es 1 — Eq of Eg in
the sense of Lemma 2.4, there is a periodic pdinfor ®, such that ¢)5(Xg) = Xo
and X = (®p) (%) is in a Markov boxlabeled E; for eachi € {0,...,s—1}. If xo
is regular, then the periodic orbit o lie on the regular (non-singular) leaves of the
stable and unstable foliations fab,. Then the construction of two mapb, and g
implies that bt(Og, (Xo), ) = bt(Og(Xo), 9). (In particular, the period ok for @y
equals that of¢y for g.) For more details see [3, Section 3.3]. Thus we have:

Lemma 2.5. In Lemma2.4 if xq is regular then b{®y) > bt(Oy(%o), g), and
hence

[b] = bt(Oy (%), 9)-

If Xo is not regular,g has a periodic point; in the junctionz 1(xp). Then
bt(Og(x5), 9) = bt(Os,(Xo), Pp) from the construction of two maps. However it is
not true in general that the period af for g equals that of<p for g. In this case

bt(O, (X0), Pb) 7 bH(Og(%0), 9)-

2.4. Smale-horseshoe map.The Smale-horseshoe m&p D — D is a diffeo-
morphism such that the action &f on three rectangle®y, R, and R and two half

disks &, S is given in Fig. 2. The restrictioMH|gr, i =0, 1 is an affine map such
that H contractsR; vertically and stretches horizontally, amls, i =0, 1 is a contrac-
tion map.

The setQ = ﬂjez H (RyU Ry) is invariant undeH, andH|g: 2 —  is conjugate
to the shift mapo: X, = {0, 1} — X,, where

O (skw_1 - Wowpkskk) = (ekkxw_1wo - wykkx), wj € {0, 1).
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Fig. 7. Braido,, ,: casen > m (left), casem > n (right).
The conjugacyK: 2 — X, is given by

K(x) = (- - Ka()Ko(x)La(X) - - -),

where
oo if H(X) e R,
K= {1 it Hi(x)e R
If x is a periodk point, the word/Co(X)KC1(X) - - -, Kk-1(X) is called thecode for x.

Modulo cyclic permutation,Co(X)IC1(X) - - - Kkx_1(X) is said to be thecode for the
periodic orbit Oy(x). We say thatlj], b € B, is a horseshoe braid typé there is
a periodn orbit for H whose braid type ish]. For the study of the forcing partial
order on the set of horseshoe braid types, see [7, 10].

The argument in [12, Section 3.2] shows thaf, is conjugate tooy,, given in
Fig. 7. It is not hard to see that when> m+2, [o;, ] (= [omn]) is a horseshoe braid
type such that the corresponding periodic orbit Fbhas a code 10--010---0 or

n-1 m
10...010--.01. For example d; 5] = [010203040107] is the horseshoe braid with

n-1 m—1

the code 10010 or 10011.

3. Proof of theorems

Let gmn: Gmn — Gmn be the graph map as in Fig. 8 (left). We label the vertices
of Gmn which lie on the peripheral edges, 0,.1,, n+m from the right to the left.
Other verticesp and g of G, have valencesn+ 1 andn + 1 respectively. This is
the induced graph map fo8n,, satisfying (BH:1) and (BH:2) ([12]). Henc@mn is
pseudo-Anosov for alm, n > 1. Since,Bn;,ln is conjugate toBn m, we havei(Bmn) =
A(Bam). Fig. 8 (right) indicates the transition of peripheral edg

Now we turn toomn. Forn>m+ 2, letbmn: Hnn — Hmn be the graph map
as in Fig. 9 (left). This is the induced graph map fgf , in Fig. 7 (left) satisfying
(BH:1) and (BH:2) ([12]). Hencery, is pseudo-Anosov in this case.
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o) n-m-1 n-m-2 1 0
PR O © B O B B

Fig. 9. bmn: Hmn — Hmn (left), transition of peripheral edges (right).
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Proof of Theorem 1.1 (1). It is enough to show thgt L] > [Bm+1nl, fOr Bmn
is conjugate toB; % and in generallf] > [c] if and only if [b™] > [c7Y].

We consider the induced graph map, for Bmn. The transition graptg,, , has
vertices

e, 0), &, 1),..., &g, n— 1), e(g, n)*, &(a, n)?, &(g, n)*, e(d, n)*, e(@, n)*,
e(p,n), e(p,n+1),...,e(p,n+m—1),e(p,n+m)?, e(p, n+m)? e(p, n+m).

Let gnn be the thick graph map associated g{ﬁf’n, Pmn the representative orbit for
Omn. Note thatbt(Py n, Omn) = [Bmn]. We consider the closed paih of g, of
lengthm+n +2 such that

Eo=e(q, 0)— Ei=e(q,1)— --- — En.1=€(,n— 1) - E, =e(q, n)*
— Eni=e(p, N) > Enz=e(p,Nn+1) > --- — Enyy =€(p,n+i — 1)

— o —> Epm=e(p, n+m—1) = Enuns1 = &(p, n+m)3 —» Eo.

Take a periodic poinkg € e(q, 0) for g[ﬁ% given in Lemma 2.4. Ther, = (g?ﬁ‘%)”(xo) €
En = (g, n)*. Sincee(q, n)* is a proper subedge aq, n), X, is regular. Now we
claim that the period of the orbit ofy is m+n+2. BecauseE; # E; (i 7)) inC, Cis
not a repetition of some closed subpath. Sirgés regular,x; € E; (0<i <m+n+1)
does not lie on the boundary &;. This implies that the length af equals the period
of Xg.

By Lemma 2.5 we havefnn] > bt(Og,, (%), Omn). For the proof of (1), we will
show that Bm+1n] = bt(Og,. . (X0), Gm,n). Now we considerg[ﬁi’lvn and the thick graph

map gm+1,n associated tq;{ﬁfm with the representative orb®m.1n. Since Bmsin] =
bt(Pm+1.n, Om+1.n), it Suffices to show that there exists an orientation présgrhomeo-

morphism
j : (D’ Ogm,n()/(\o)) - (D! Pm+l,n)

such thatgmy«1n: D — D is isotopic t0j o gmno j~1: D — D relative to Pys1n. TO
do so, we take the tre& embedded orF(G[ﬁf’n) c D (as in Fig. 10 (left)) with the
following conditions:

1. V(G) consists ofp, q € V(G[ﬁ%) and all points ofOg,, . (Xo).

2. The valences ob, q, % € V(G) arem+ 2,n + 1, 2 respectively, and the other
vertices have the valence 1.

3. Then+1 edges emanate fromp to eachXy, ..., X;, and them+ 2 edges emanate
from p to each%y, ..., Xmn+1.

4. Each edge of5 transverses to each arc B{G[eY).

5. e(p, %) is below e(p, Xn+1) With respect to the vertical coordinate E(G{ﬁ% .

We write Pms1n = {Po, - - - » Pm+n+1}. Without loss of generality we set

V(G ) =(P d, Po, -\ Prsnea)-
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>D,
Py

Xm+n+1 i

Fig. 10. j sendingG to G, : G c F(G[¢Y) (left), GIY, | C
F(G™, ) (right).

m+1,n

Now we take a homeomorphisit D — D with j(G) = G:ﬁ?—l,n so thate(q, Xj) (0 <

j <n)ande(p, %) (n <k <m+n+1) of G map toe(q, p;) and e(p, p) of GY,

respectively (Fig. 10). Consider the image ®fundergn,, and that ofG[ﬁan under

Om+1n (Fig. 11). Thengm:1q(G'Y, ) is isotopic t0j o gmn o j (G, ) relative to

m+1,n m+1,n

V(G[ﬁflvn) as union of edges. This means tltgt.1n: D — D is isotopic t0j o Gmn o

j~': D — D relative toV(GLﬁEl’n). In particulargm+1,n: D — D is isotopic toj ogmno

j 1 relative to Pp+1 SiNCe Py C V(Gﬁﬁflyn). This completes the proof of (1).
Proof of (2). First we show thatBn] > [omm+2]. We continue to consider the

transition graphg,, .. Let Eo=e(q, n)®, E1 =e(q,n)°, E; =e(p,n+1), Es=¢e(p,n+

2),...,En=¢e(p,n+m-—1), Eﬁml =e(p,n+m), i =1, 2, andEn2 =¢e(p, n). Take

the closed pattDm., of E,,, of length Zn+ 3 such that
Eo— Ei— = Em— Ety = Emz2— E2 > E3 > -+ = Em — EZ,; — Eo.

Let yo € Eo = €(q, n)® be a periodic point fog[ﬁ’dn given in Lemma 2.4. Since(q, n)®
is a proper subedge @&q, n), yo is regular. Clearly the period ofy equals the length
of Dnyeo, that is 2n+ 3. Fig. 12 indicates the position of the periodic orbit ypf

Let Oy, (%) be the periodic orbit fogm,,, associated t@{ﬁf"n given in Lemma 2.4.
Recall thathmn ms+2 is the induced graph map f(u'r’nvmﬂ. Then we see that the braid
type of Oy, .(Yo) for gmn equals the braid type of the representative orbit for thekthi
graph map associated f;jﬁf’wz, see Figs. 9 (right) regarding=m+ 2 and Fig. 12.
Hencebt(Og,, ,(%0), Im.n) = [0, ms2] = [Omm+2]. Sinceyp is regular, we obtainfm ] >
[Um,m+2]-

We turn to the proof of mn] = [omm+24] for any | > 1. Consider the following

closed pathDp+o4:

Eo—>Eo— -+ —>Ey—>E > = Emz— Ep—> Eg— -+ — E3,; > Eo.

lengthl closed pattDm.2

This is the concatenation of tHeiterations of Eg — Eg and the closed patfP.o. By
using the same argument as above, one shows that the braicdtythe periodic orbit
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pm+n

/A>m+n+l

pm+n+1

Fig. 11. Image ofG under gmn (left), image of G, | under
Om+1n (right).

Fig. 12. Symbolo indicates the periodic orbit ofp, ande is a
vertex of G/e9)s. Note thatyo € (g, n)3, y1 € e(q, n)®.
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for gmn associated t@mizy IS [omme24], @and [Bmnl = [omme24].
Proof of (3). Theorem 15 (b) in [7] directly shows the claim (8. 0

Proof of Theorem 1.2. LeQQ be any periodic orbit in®2 for H, and letwg =
(wowy - - -ws_1), w; € {0, 1 the code forQ. We will find a periodic orbit for the thick
graph mapg; x associated tg’f,‘j whose braid type equal#t(Q,H). We denote the edge
pathe(p, k + 1)2-e(p, k + 1)L-e(p,k) by E; ande(q, k)>-e(q, k)*-e(q, k)3 by Ep. Then
gFd(Eo) and gPY(E1) pass througtE; (i =0, 1) one times, see Fig. 8 regarding= 1.
These imply that for the codeq, there exists a periodic poirsy € E,, for grf,‘(’ and
a periodic pointZy € 7 ~X(E,,) for g1« such that

0% (20) =20, 7 = (9F) (20) € E,,
and
O (D) =%, 7 =0,(%)enxYEy)

for eachi € {0,...,s—1}. It is easy to check thaty is regular from the itinerary of
Z9. Note that the restriction mag; k|»-1(g,)u-—1(,) CONtracts the vertical direction of
the fibered surface uniformly and expands the horizontaction uniformly. Set

Q' =) gl (r H(Eo) Un H(Ew).

jez

Thengiklo: Q' — Q' is conjugate to the shift map: ¥, — %,, and hencegy k|o IS
conjugate toH|g. Thus the braid type of a periodic orbit, s& in Q' for g; x equals
that of the periodic orbit iz for H with the same itinerary a®. In particular, we
havebt(Og,, (20), 91.k) = bt(Q, H). The regularity forzo guarantees thapj k] = bt(Q, H).
This completes the proof. ]

Proof of Corollary 1.3. By [11, Theorem 0.2], any pseudo-8mo braid type
[md € BT;3 forces [7102‘1] (= [B1,1]). Since the forcing relation- is a partial order,
by Theorem 1.1 (1) we obtain the claim of (1). By Theorem 1.2oktain the claim
of (2). O
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