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Abstract
Li-York theorem tells us that a period3 orbit for a continuous map of the interval

into itself implies the existence of a periodic orbit of every period. This paper
concerns an analogue of the theorem for homeomorphisms of the 2-dimensional disk.
In this case a periodic orbit is specified by a braid type and onthe set of all braid
types Boyland’s dynamical partial order can be defined. We describe the partial order
on a family of braids and show that a period3 orbit of pseudo-Anosov braid type
implies the Smale-horseshoe map which is a factor possessing complicated chaotic
dynamics.

1. Introduction

Let f : D! D be an orientation preserving homeomorphism of the 2-dimensional
closed diskD. One of the main question on dynamical systems is to investigate the
variety of periodic orbits. Suppose that there exists a periodic orbit, sayP. In this
setting we concern the question to find more periodic orbits other thanP by using the
notion of the braid type [5]. LetDn be the n-punctured disk, wheren is a period
of P. Take an arbitrary orientation preserving homeomorphismj : D n P ! Dn and
consider the composition̂f = j Æ f jDnP Æ j�1 : Dn! Dn. Let [ f̂ ] be the isotopy class
of f̂ . The braid type of P for f, denoted bybt(P, f ), is the conjugacy class of [f̂ ]
in the mapping class groupMCG(Dn) of Dn.

By Nielsen-Thurston theory any homeomorphism ofDn is isotopic to either peri-
odic, reducible or pseudo-Anosov map. Since the statement is invariant under conju-
gacy, it makes sense to speak of the periodic, reducible, pseudo-Anosov braid type.
The theory detects the complicated dynamics from the existence of periodic orbits of
pseudo-Anosov braid type. For example ifbt(P, f ) is pseudo-Anosov there exists an
infinitely many number of periodic orbits with distinct periods for f . Moreover the
logarithm of the dilatation ofbt(P, f ) gives the lower bound of the topological entropy
for f [8, Exposé 10]. Recently it has been recognized that such complexity realizes
global and efficient particle mixings in fluid dynamics [6, 13].
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Fig. 1. Braids�m,n (left) and �m,n (right).

Our interest is to show which braid types are forced by a givenperiodic orbit. For
the study we use the language of the forcing relation on braidtypes. We denote the set
of braid types of all periodic orbits forf by bt( f ). Let BTn be the set of braid types
of period n orbits for all homeomorphisms ofD, and BT = f� 2 BTn j n � 1g. For an
elementmc2 MCG(Dn), [mc] denotes its conjugacy class. Following [11] we say that
f : D ! D exhibits [mc] 2 BTn if there exists a periodicn orbit for f whose braid
type is [mc]. We say that [mc1] 2 BT forces[mc2] 2 BT, denoted by [mc1] � [mc2]
provided that if a homeomorphismf : D ! D exhibits [mc1], then f also exhibits
[mc2]. This relation� is a partial order onBT [5, 16], and it is called theforcing
relation or forcing partial order.

Let [mc1], [mc2] 2 BT, and suppose that [mc1] is pseudo-Anosov. Results by Asimov-
Franks [2] and Hall [9] give a strategy to determine whether [mc1] forces [mc2] or not.
It holds that [mc1] � [mc2] if and only if the pseudo-Anosov map8mc1 2 mc1 (which
is thought as a homeomorphism ofD) exhibits [mc2].

For the study of braid types it is convenient to use geometricbraids. There is a
surjective homomorphism0 from the n-braid group Bn to MCG(Dn). We write �i ,
i = 1,: : : , n�1 for the Artin generators ofBn. Any braid type is written by [0(b)] for
some braidb 2 Bn. Simply we write [b] for [0(b)] 2 BTn when there is no confusion.

This paper concerns the forcing partial order on the sets of braid typesf[�m,n]gm,n�1

and f[�m,n]gm,n�1 defined as follows. For any positive integersm and n, let �m,n and�m,n be the (m + n + 1)-braids as in Fig. 1. The braid�m,n can be written as�m,n =�m,n� , where � = �m+n � � � �2�1�1�2 � � � �m+n (Fig. 1 (right)). Each�m,n is pseudo-
Anosov, and�m,n is pseudo-Anosov if and only ifjm� nj � 2. These braids are con-
cerned in [12] from view point of braids with small dilatation.

The following is the main result of this paper:

Theorem 1.1. For any m, n � 1 we have:
(1) [�m,n] � [�m+1,n] and [�m,n] � [�m,n+1],
(2) [�m,n] � [�m,l ] if l � m + 2, and
(3) [�m,n] � [�m,l ] if n � l � m + 2.

In particular fixing m � 1, the relation� becomes a total order on each set of braid
types f[�m,n]gn�1, f[�n,m]gn�1 and f[�m,n]gn�m+2.
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Fig. 2. Smale-horseshoe mapH.

Horseshoe braid typesare those that can be realized by the periodic orbits for the
Smale-horseshoe mapH : D ! D (Fig. 2). This map is known to be a simple factor
possessing complicated dynamics. The following theorem says that [�1,k] forces any
horseshoe braid type:

Theorem 1.2. We have[�1,k] � [mc] for any k� 1 and any horseshoe braid
type [mc].

Kolev shows that if f has a period 3 orbitP whose braid type is pseudo-Anosov,f
has a periodic orbit of every period [14]. This is a best possible analogous result of
the Li-York theorem [15] (or the special case of the Sharkovskii theorem), although the
theorem does not say which braid types can be realized by the period 3 orbit. Note
that the braid type for a fixed point or a period 2 orbit is unique. A question is which
braid type for a periodn orbit (n � 4) is forced by a period 3 orbit of pseudo-Anosov
type. Theorems 1.1 and 1.2 together with a Handel’s result [11] gives an answer:

Corollary 1.3. Let f: D! D be an orientation preserving homeomorphism. Sup-
pose that f has a period3 orbit whose braid type is pseudo-Anosov. Then we have:
(1) bt( f ) � f[�m,n] j m, n � 1g, and
(2) bt( f ) � bt(H) � f[�m,n] j n � m + 2g.

2. Preliminaries

In Section 2.1 we review the classification theorem of surface homeomorphisms
by Nielsen-Thurston and a result on the relation between theforcing partial order and
the dilatation of braids by Los. Section 2.2 introduces a fibered surface for a given
graph, and it describes a criterion for determining whethera braidb is pseudo-Anosov
or not by Bestvina-Handel. Under the assumption thatg is the induced graph map for a
braid b satisfying the Bestvina-Handel’s condition, in Section 2.3 we define the reduced
graph mapgred, and we give a relation between periodic orbits for the thickgraph
map associated togred and those for the pseudo-Anosov map8b 2 0(b). Section 2.4
explains the dynamics on the Smale-horseshoe map can be described by the shift map
on the symbol space, and it shows that the braids�m,n (n � m+ 2) arise as braid types
of periodic orbits.
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2.1. Pseudo-Anosov braids. We introduces three kinds of homeomorphisms. A
homeomorphism8 : Dn! Dn is:
• periodic if some power of8 is the identity map.
• reducibleif there is a8-invariant closed 1-submanifold whose complementary com-
ponents inDn have negative Euler characteristic.
• pseudo-Anosovif there is a constant� > 1 and a pair of transverse measured fo-
liations (Fs, �s) and (Fu, �u) such that8(Fs, �s) = (Fs, ��1�s) and 8(Fu, �u) =
(Fu, ��u).
Fs andFu are called thestableandunstable foliationor the invariant foliations. They
have a finitely many number of singularities, and the set of singularities ofFs equals
that of Fu. The number� = �(8) > 1 is called thedilatation for 8.

We say thatmc 2 MCG(Dn) is periodic (reducible, pseudo-Anosovresp.) if it
contains a periodic map (reducible map, pseudo-Anosov map resp.) as a representa-
tive homeomorphism. An elementmc2 MCG(Dn) is called irreducible if it is not re-
ducible.

Theorem 2.1 ([8]). Any irreducible element mc2 MCG(Dn) is periodic or
pseudo-Anosov. If mc is pseudo-Anosov, then the pseudo-Anosov map of mc is unique
up to conjugacy.

The Nielsen-Thurston type (i.e., periodic, reducible, pseudo-Anosov) formc is invariant
under conjugacy. Whenmc is pseudo-Anosov, thedilatation �(mc) for mc is defined
by �(8mc) for the pseudo-Anosov map8mc 2 mc. This number is also invariant under
conjugacy.

Let An = fa0, : : : , an�1g be a set ofn-points in the interior ofD. Suppose that
a0, : : : , an�1 lie on the horizontal line through the center of the disk fromthe left to the
right, and putDn = D n An. Let Di , i = 0,: : : , n�1, be the closed disk which contains
ai�1 andai and no other points ofAn. We define a homomorphism0: Bn!MCG(Dn)
as follows: For the Artin generators�i , i = 1, : : : , n � 1, 0(�i ) is represented by a
homeomorphism ofDn which fixes the exterior ofDi and rotates in the inside ofDi

by 180 degrees in the counter-clockwise direction so thatai�1 is interchanged withai

(Fig. 3). The kernel of0 is the center ofBn which is generated by a full twist braid
(�1�2 � � ��n�1)n [4]. We say that a braidb 2 Bn is pseudo-Anosov(periodic, reducible
resp.) if0(b) 2 MCG(Dn) is pseudo-Anosov (periodic, reducible resp.). We define the
dilatation �(b) for the pseudo-Anosov braidb by �(0(b)).

Recall that we write [b] for [0(b)]. One of the relation between the forcing partial
order and the dilatation is as follows:

Theorem 2.2 ([16]). Suppose that b1 and b2 are pseudo-Anosov braids. If
[b1] � [b2] with [b1] 6= [b2], then �(b1) > �(b2).
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Fig. 3. 0 : Bn! MCG(Dn).

2.2. Graphs, fibered surfaces and graph maps. Let G be a finite graph em-
bedded on an orientable surfaceF . In this paper, we assume that an edge ofG is
closed, and letEori(G) be the set of oriented edges ofG, E(G) the set of unoriented
edges, andV(G) the set of vertices. We denote the oriented edge with the initial vertexvI and the terminal vertexvT by e(vI , vT ). Let e be the same edge ase with opposite
orientation. A continuous mapg : G! G is called agraph map.

One can associate afibered surfaceF(G) � F with a projection� : F(G) ! G
(Fig. 4). The fibered surfaceF(G) is decomposed into arcs and into polygons modelled
on k-junctions, k � 1. The arcs and thek-junctions are calleddecomposition elements.
Under� , the preimage of each vertices of valencek is the k-junction, and the closure
of the preimage of each open edge is the strip (fibered by arcs)which is the closure
of the one of the complementary components of the union of alljunctions.

Recall thatAn = fa0, : : : , an�1g is a set ofn-points in D and Dn = D n An. In this
section we have no assumption on the location ofAn. Let Pi be a small circle centered
at ai such that no other points ofAn is contained in the disk bounded byPi . We set
P =

Sn�1
i =0 Pi . Choose a finite graphG embedded onDn that is homotopy equivalent

to Dn such thatP is a subgraph ofG and G has no vertices of valence 1 or 2.
Let f : Dn ! Dn be a representative homeomorphism of0(b) 2 MCG(Dn). A

fibered surfaceF(G) carries f if f maps each decomposition element ofF(G) into a
decomposition element and each junction into a junction. When F(G) carries f , f in-
duces a piecewise linear graph mapg = g f : G! G which represents the correspon-
dence of vertices and edge paths determined byf . (Thus g sends vertices to vertices
and each edge to an edge path.) We may assume thatP is invariant underg without
loss of generality.

Suppose that a fibered surfaceF(G) carries f : Dn! Dn of 0(b) with the induced
graph mapg: G! G. In this case we say thatg is the induced graph map for b. Let
preP be the set of edgese 2 E(G) such thatgk(e) is contained inP for somek � 1.
The graph mapg defines a square and non negative integral matrix called thetransition
matrix T tot

g whose (i , j )-th entry is given by the number of times that the image of the
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Fig. 4. Fibered surface.

j -th edge ofE(G) under g passes through thei -th edge ofE(G). Then T tot
g is of

the form

T tot
g =

0
� P A B

0 Z C

0 0 T

1
A,

whereP andZ are the transition matrices associated toP and preP respectively, and
T is the transition matrix associated to the rest of edges called real edges. The matrix
T is called thetransition matrix with respect to the real edges. The spectral radius of
T is denoted by�(T ).

A graph mapg : G! G is efficient if for any e2 Eori(G) and anyk � 0, gk(e) =
ek,1ek,2 � � � ek, j satisfiesek,i 6= ek,i +1 for all i = 1, : : : , j � 1.

A non negative square matrixM is irreducible if for every set of indicesi , j , there
is a positive integerni , j such that the (i , j )-th entry of Mni , j is strictly positive.

Theorem 2.3 ([3]). Let b2 Bn and let g : G! G the induced graph map for
b. Suppose that
(BH:1) g is efficient, and
(BH:2) the transition matrixT with respect to the real edges is irreducible with�(T ) > 1.
Then b is pseudo-Anosov with dilatation�(T ).

An idea of the proof is as follows. Thetrain track � � Dn associated tog is obtained
by the “smoothing” ofG, and as a result thetrain track mapg� : � ! � can be defined.
If g : G! G satisfies (BH:1) and (BH:2), one can construct the pseudo-Anosov map8b 2 0(b) explicitly by usingg� , and henceb is pseudo-Anosov. For more details see
[3, Section 3.3].
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Fig. 5. Embedding (left) and its thick graph map (right).

2.3. Thick graph maps and pseudo-Anosov maps.Let T be a finite tree em-
bedded onD and g̃ : T ! F(T) an embedding such that it maps a vertex to a junc-
tion and the image of each edge is transverse to arcs ofF(T). A homeomorphism
g : D (� F(T))! D is a thick graph map associated tõg if g satisfies the following
conditions:
• g maps each decomposition element ofF(T) into a decomposition element and
each junction into a junction.
• g contracts the vertical direction of each strip ofF(T) uniformly and expands the
horizontal direction of each strip uniformly.
• g(F(T)) is a fibered surface of the treẽg(T).
For example see Fig. 5. Although the thick graph mapg is not unique, it is determined
uniquely on the invariant set3 =

T
j2Z g j (F(T)) under g in a sense of the symbolic

dynamics [1].
In the rest of this section, letg : G ! G be the induced graph map forb 2 Bn

satisfying (BH:1) and (BH:2). Thereduced graph Gred for G is the tree obtained
from G by collapsing each peripheral edgePi of P to a vertexvi labeled i . Since
P is invariant underg, a piecewise linear graph mapgred: Gred! Gred, called there-
duced graph map forg, can be defined such thatgred represents the correspondence
of vertices and edge paths determined byg, see Fig. 6 (left/center). Becauseg is
the induced graph map forb, F(G) carries some homeomorphismf of 0(b). Thus
gred: Gred! Gred recovers the embeddingggred: Gred! F(Gred). The thick graph map
g : D! D associated togred means that the one associated toggred.

Assume that the closed braid ofb is a knot. Then the thick graph mapg: D! D
associated togred has a periodn orbit, say Pn = fp0, : : : , pn�1g such that a pointpi
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Fig. 6. Induced graph map for�1��1
2 (left), its reduced graph

map (center) and transition graph (right).

is in a junction��1(vi ). Notice that the braid type ofPn for g is [b]. We call Pn the
representative orbitfor g (associated togred).

Results by Asimov-Franks and Hall tell us that

bt(8b) = f[b0] 2 BT j [b] � [b0]g.
Hence we havebt(g) � bt(8b) since [b] 2 bt(g). To give elements ofbt(g) which be-
long to bt(8b), we introduce terminology. A periodic pointx 2 Gred for gred is called
regular if x =2 V(Gred). Sincegred(V(Gred)) � V(Gred), if x is regular, (gred)i (x) is also
regular for eachi � 0. Hence it makes sense to speak of the regular periodic orbit.
Since the number of the element ofV(Gred) is finite, it is easy to check that a given
periodic orbit is regular or not.

Next we define a subdivisionGred
s of Gred as follows: Lete be an edge ofE(Gred)

such that the edge pathgred(e) is given by f1 f2 � � � fk, fi 2 E(Gred). Subdividee into
subedgese1, e2, : : : , ek so that gred(ei ) = fi , i = 1, : : : , k. (Thus gred(e1e2 � � � ek) =
f1 f2 � � � fk as an edge path.) LetE1, : : : , El 2 E(Gred

s ) be all edges ofGred
s . The

transition graph4g is the oriented graph with verticesE1, : : : , El and an oriented
edge fromEi to E j if gred(Ei ) passes throughE j . Note that from the definition of the
subdivision, gred(Ei ) passes throughE j at most one times. For example consider the
reduced graph map given in Fig. 6 (center), and in this casee(0, 1) is subdivided into
e(0, 1)1 ande(0, 1)2, ande(1, 2) is subdivided intoe(1, 2)1, e(1, 2)2 ande(1, 2)3. Since

gred(e(0, 1)) =gred(e(0, 1)1e(0, 2)2) = e(2, 1)e(1, 0)

and

gred(e(1, 2)) =gred(e(1, 2)1e(1, 2)2e(1, 2)3) = e(0, 1)e(1, 2)e(2, 1),

we have the transition graph shown in Fig. 6 (right).
Each closed path of4g gives a periodic orbit for the thick graph mapg associated

to gred:
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Lemma 2.4. Let E0! � � � ! Es�1! E0, Ei 2 V(4g) be a closed path of4g.
Then
(1) there exists a periodic point x0 2 E0 for gred such that(gred)s(x0) = x0 and xi =
(gred)i (x0) 2 Ei for each i2 f0, : : : , s� 1g, and
(2) there exists a periodic pointbx0 2 ��1(E0) for g associated togred such that gs(bx0) =bx0 and bxi = gi (bx0) 2 ��1(Ei ) for each i2 f0, : : : , s� 1g.

Proof. This can be shown by the symbolic dynamics (for example see [1]).

The word E0E1 � � � Es�1 (��1(E0) � � � ��1(Es�1) resp.) in Lemma 2.4 is said to
be theitinerary of x0 (bx0 resp.).

The symbolO f (x) denotes the periodic orbit for a periodic pointx for a map f .
Since8b (and also Markov partition of8b) is constructed viag : G! G, there is a
natural correspondence between periodic orbits for8b and those forg. If x0 is the
periodic point forgred associated with a closed pathE0! � � � ! Es�1! E0 of 4g in
the sense of Lemma 2.4, there is a periodic pointex0 for 8b such that (8b)s(ex0) = ex0

and exi = (8b)i (ex0) is in a Markov box labeled Ei for each i 2 f0, : : : , s� 1g. If x0

is regular, then the periodic orbit ofex0 lie on the regular (non-singular) leaves of the
stable and unstable foliations for8b. Then the construction of two maps8b and g
implies that bt(O8b(ex0), 8b) = bt(Og(bx0), g). (In particular, the period ofex0 for 8b

equals that ofbx0 for g.) For more details see [3, Section 3.3]. Thus we have:

Lemma 2.5. In Lemma2.4 if x0 is regular, then bt(8b) 3 bt(Og(bx0), g), and
hence

[b] � bt(Og(bx0), g).

If x0 is not regular, g has a periodic pointx00 in the junction ��1(x0). Then
bt(Og(x00), g) = bt(O8b(ex0), 8b) from the construction of two maps. However it is
not true in general that the period ofx00 for g equals that ofbx0 for g. In this case
bt(O8b(ex0), 8b) 6= bt(Og(bx0), g).

2.4. Smale-horseshoe map.The Smale-horseshoe mapH : D ! D is a diffeo-
morphism such that the action ofH on three rectanglesR0, R1 and R and two half
disks S0, S1 is given in Fig. 2. The restrictionHjRi , i = 0, 1 is an affine map such
that H contractsRi vertically and stretches horizontally, andHjSi , i = 0, 1 is a contrac-
tion map.

The set� =
T

j2Z H
j (R0[ R1) is invariant underH, andHj� : �! � is conjugate

to the shift map� : 62 = f0, 1gZ ! 62, where

� (���w�1 � w0w1���) = (���w�1w0 � w1���), w j 2 f0, 1g.



766 E. KIN

Fig. 7. Braid� 0m,n: casen � m (left), casem� n (right).

The conjugacyK : �! 62 is given by

K(x) = ( � � �K�1(x)K0(x)K1(x) � � � ),
where

K j (x) =

�
0 if H j (x) 2 R0,
1 if H j (x) 2 R1.

If x is a periodk point, the wordK0(x)K1(x) � � � , Kk�1(x) is called thecode for x.
Modulo cyclic permutation,K0(x)K1(x) � � �Kk�1(x) is said to be thecode for the
periodic orbitOH(x). We say that [b], b 2 Bn is a horseshoe braid typeif there is
a periodn orbit for H whose braid type is [b]. For the study of the forcing partial
order on the set of horseshoe braid types, see [7, 10].

The argument in [12, Section 3.2] shows that�m,n is conjugate to� 0m,n given in
Fig. 7. It is not hard to see that whenn � m+ 2, [� 0m,n] (= [�m,n]) is a horseshoe braid
type such that the corresponding periodic orbit forH has a code 1 0� � � 0| {z }

n�1

1 0 � � � 0| {z }
m

or

1 0 � � � 0| {z }
n�1

1 0 � � � 0| {z }
m�1

1. For example [� 01,3] = [�1�2�3�4�1�2] is the horseshoe braid with

the code 10010 or 10011.

3. Proof of theorems

Let gm,n : Gm,n! Gm,n be the graph map as in Fig. 8 (left). We label the vertices
of Gm,n which lie on the peripheral edges, 0, 1,: : : , n + m from the right to the left.
Other verticesp and q of Gm,n have valencesm + 1 and n + 1 respectively. This is
the induced graph map for�m,n satisfying (BH:1) and (BH:2) ([12]). Hence�m,n is
pseudo-Anosov for allm, n � 1. Since��1

m,n is conjugate to�n,m, we have�(�m,n) =�(�n,m). Fig. 8 (right) indicates the transition of peripheral edges.
Now we turn to�m,n. For n � m + 2, let hm,n : Hm,n ! Hm,n be the graph map

as in Fig. 9 (left). This is the induced graph map for� 0m,n in Fig. 7 (left) satisfying
(BH:1) and (BH:2) ([12]). Hence�m,n is pseudo-Anosov in this case.
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Fig. 8. gm,n : Gm,n! Gm,n (left), transition of peripheral edges (right).

Fig. 9. hm,n : Hm,n! Hm,n (left), transition of peripheral edges (right).
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Proof of Theorem 1.1 (1). It is enough to show that [�m,n] � [�m+1,n], for �m,n

is conjugate to��1
n,m and in general [b] � [c] if and only if [b�1] � [c�1].

We consider the induced graph mapgm,n for �m,n. The transition graph4gm,n has
vertices

e(q, 0), e(q, 1), : : : , e(q, n� 1), e(q, n)1, e(q, n)2, e(q, n)3, e(q, n)4, e(q, n)5,

e(p, n), e(p, n + 1), : : : , e(p, n + m� 1), e(p, n + m)1, e(p, n + m)2, e(p, n + m)3.

Let gm,n be the thick graph map associated togred
m,n, Pm,n the representative orbit for

gm,n. Note thatbt(Pm,n, gm,n) = [�m,n]. We consider the closed pathC of 4gm,n of
length m + n + 2 such that

E0 = e(q, 0)! E1 = e(q, 1)! � � � ! En�1 = e(q, n� 1)! En = e(q, n)4

! En+1 = e(p, n)! En+2 = e(p, n + 1)! � � � ! En+i = e(p, n + i � 1)

! � � � ! En+m = e(p, n + m� 1)! Em+n+1 = e(p, n + m)3! E0.

Take a periodic pointx0 2 e(q, 0) for gred
m,n given in Lemma 2.4. Thenxn = (gred

m,n)n(x0) 2
En = e(q, n)4. Sincee(q, n)4 is a proper subedge ofe(q, n), xn is regular. Now we
claim that the period of the orbit ofx0 is m+n+2. BecauseEi 6= E j (i 6= j ) in C, C is
not a repetition of some closed subpath. Sincexn is regular,xi 2 Ei (0� i �m+n+1)
does not lie on the boundary ofEi . This implies that the length ofC equals the period
of x0.

By Lemma 2.5 we have [�m,n] � bt(Ogm,n(bx0), gm,n). For the proof of (1), we will
show that [�m+1,n] = bt(Ogm,n(bx0), gm,n). Now we considergred

m+1,n and the thick graph

map gm+1,n associated togred
m+1,n with the representative orbitPm+1,n. Since [�m+1,n] =

bt(Pm+1,n, gm+1,n), it suffices to show that there exists an orientation preserving homeo-
morphism

j : (D, Ogm,n(bx0))! (D, Pm+1,n)

such thatgm+1,n : D ! D is isotopic to j Æ gm,n Æ j�1 : D! D relative to Pm+1,n. To
do so, we take the treêG embedded onF(Gred

m,n) � D (as in Fig. 10 (left)) with the
following conditions:
1. V(Ĝ) consists ofp, q 2 V(Gred

m,n) and all points ofOgm,n(bx0).

2. The valences ofp, q, bxn 2 V(Ĝ) are m + 2, n + 1, 2 respectively, and the other
vertices have the valence 1.
3. Then + 1 edges emanate fromq to eachbx0, : : : , bxn, and them+ 2 edges emanate
from p to eachbxn, : : : , x̂m+n+1.
4. Each edge ofĜ transverses to each arc ofF(Gred

m,n).

5. e(p, bxn) is below e(p, dxn+1) with respect to the vertical coordinate ofF(Gred
m,n).

We write Pm+1,n = fp0, : : : , pm+n+1g. Without loss of generality we set

V(Gred
m+1,n) = fp, q, p0, : : : , pm+n+1g.
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Fig. 10. j sendingĜ to Gred
m+1,n: Ĝ � F(Gred

m,n) (left), Gred
m+1,n �

F(Gred
m+1,n) (right).

Now we take a homeomorphismj : D! D with j (Ĝ) = Gred
m+1,n so thate(q, bx j ) (0�

j � n) and e(p, bxk) (n � k � m + n + 1) of Ĝ map to e(q, p j ) and e(p, pk) of Gred
m,n

respectively (Fig. 10). Consider the image ofĜ under gm,n and that ofGred
m+1,n under

gm+1,n (Fig. 11). Thengm+1,n(Gred
m+1,n) is isotopic to j Æ gm,n Æ j�1(Gred

m+1,n) relative to

V(Gred
m+1,n) as union of edges. This means thatgm+1,n : D! D is isotopic to j Æ gm,n Æ

j�1: D! D relative toV(Gred
m+1,n). In particulargm+1,n: D! D is isotopic to j Ægm,nÆ

j�1 relative to Pm+1,n since Pm+1,n � V(Gred
m+1,n). This completes the proof of (1).

Proof of (2). First we show that [�m,n] � [�m,m+2]. We continue to consider the
transition graph4gm,n . Let E0 = e(q, n)3, E1 = e(q, n)5, E2 = e(p, n + 1), E3 = e(p, n +
2), : : : , Em = e(p, n + m� 1), Ei

m+1 = e(p, n + m)i , i = 1, 2, andEm+2 = e(p, n). Take
the closed pathDm+2 of 4gm,n of length 2m + 3 such that

E0! E1! � � � ! Em! E1
m+1! Em+2! E2! E3! � � � ! Em! E2

m+1! E0.

Let y0 2 E0 = e(q, n)3 be a periodic point forgred
m,n given in Lemma 2.4. Sincee(q, n)3

is a proper subedge ofe(q, n), y0 is regular. Clearly the period ofy0 equals the length
of Dm+2, that is 2m + 3. Fig. 12 indicates the position of the periodic orbit ofy0.

Let Ogm,n(by0) be the periodic orbit forgm,n associated togred
m,n given in Lemma 2.4.

Recall thathm,m+2 is the induced graph map for� 0m,m+2. Then we see that the braid
type of Ogm,n(by0) for gm,n equals the braid type of the representative orbit for the thick
graph map associated tohred

m,m+2, see Figs. 9 (right) regardingn = m + 2 and Fig. 12.
Hencebt(Ogm,n(by0), gm,n) = [� 0m,m+2] = [�m,m+2]. Since y0 is regular, we obtain [�m,n] �
[�m,m+2].

We turn to the proof of [�m,n] � [�m,m+2+l ] for any l � 1. Consider the following
closed pathDm+2+l :

E0! E0! � � � !| {z }
lengthl

E0! E1! � � � ! Em+2! E2! E3! � � � ! E2
m+1! E0| {z }

closed pathDm+2

.

This is the concatenation of thel -iterations ofE0! E0 and the closed pathDm+2. By
using the same argument as above, one shows that the braid type of the periodic orbit
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Fig. 11. Image ofĜ under gm,n (left), image of Gred
m+1,n under

gm+1,n (right).

Fig. 12. SymbolÆ indicates the periodic orbit ofy0, and • is a
vertex of (Gred

m,n)s. Note thaty0 2 e(q, n)3, y1 2 e(q, n)5.
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for gm,n associated toDm+2+l is [�m,m+2+l ], and [�m,n] � [�m,m+2+l ].
Proof of (3). Theorem 15 (b) in [7] directly shows the claim of(3).

Proof of Theorem 1.2. LetQ be any periodic orbit in� for H, and letwQ =
(w0w1 � � �ws�1), wi 2 f0, 1g the code forQ. We will find a periodic orbit for the thick
graph mapg1,k associated togred

1,k whose braid type equalsbt(Q,H). We denote the edge

pathe(p, k + 1)2 �e(p, k + 1)1 �e(p, k) by E1 ande(q, k)5 �e(q, k)4 �e(q, k)3 by E0. Then
gred

1,k(E0) and gred
1,k(E1) pass throughEi (i = 0, 1) one times, see Fig. 8 regardingm = 1.

These imply that for the codewQ, there exists a periodic pointz0 2 Ew0 for gred
1,k and

a periodic pointbz0 2 ��1(Ew0) for g1,k such that

(gred
1,k)s(z0) = z0, zi = (gred

1,k)i (z0) 2 Ewi

and

gs
1,k(bz0) = bz0, bzi = gi

1,k(bz0) 2 ��1(Ewi )

for eachi 2 f0, : : : , s� 1g. It is easy to check thatz0 is regular from the itinerary of
z0. Note that the restriction mapg1,kj��1(E0)[��1(E1) contracts the vertical direction of
the fibered surface uniformly and expands the horizontal direction uniformly. Set

�0 =
\
j2Z

g j
1,k(��1(E0) [ ��1(E1)).

Then g1,kj�0 : �0! �0 is conjugate to the shift map� : 62! 62, and henceg1,kj�0 is
conjugate toHj�. Thus the braid type of a periodic orbit, sayP in �0 for g1,k equals
that of the periodic orbit in� for H with the same itinerary asP. In particular, we
havebt(Og1,k (bz0),g1,k) = bt(Q,H). The regularity forz0 guarantees that [�1,k] � bt(Q,H).
This completes the proof.

Proof of Corollary 1.3. By [11, Theorem 0.2], any pseudo-Anosov braid type
[mc] 2 BT3 forces [�1��1

2 ] (= [�1,1]). Since the forcing relation� is a partial order,
by Theorem 1.1 (1) we obtain the claim of (1). By Theorem 1.2 weobtain the claim
of (2).
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