<table>
<thead>
<tr>
<th>Title</th>
<th>Jordan-Hölder theorem for pseudosymmetric sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nobusawa, Nobuo</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 23(4) P.853-P.858</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1986</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/12645</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/12645</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
1. Introduction

A pseudo-symmetric set is a pair \((U, \sigma)\) where \(U\) is a set and \(\sigma\) is a mapping of \(U\) into the group of permutations on \(U\) such that \(\sigma(u)\) fixes \(u\) for every element \(u\) in \(U\) and that it satisfies a fundamental identity:
\[
\sigma(u\sigma(w)) = \sigma(v)^{-1}\sigma(u)\sigma(v)
\]
for \(u\) and \(v\) in \(U\).

In [1], a possibility of developing a structure theory of pseudo-symmetric set is indicated. In this paper, we shall establish an analogue of Jordan-Hölder theorem in group theory for pseudo-symmetric sets.

Contrary to group theory, the concept of kernels of homomorphisms is not available. Instead, a concept of a normal decomposition is introduced in [1]. It is a partition of \(U\) such that each class of the partition consists of elements that are mapped to an element by a given homomorphism. When a partition \(A\) is a refinement of a partition \(B\), we denote \(A \leq B\). The partition of \(U\) which has just one class \(U\) itself is denoted by \(\mathcal{U}\). The complete partition of \(U\) whose classes are one-point sets is denoted by \(E\). So, \(E \leq A \leq U\) for every partition \(A\). Suppose we have a sequence of normal decompositions \(P_i\) such that
\[
U = P_0 > P_1 > P_2 > \cdots > P_s = E,
\]
where there is no normal decomposition between \(P_i\) and \(P_{i+1}\). Suppose we have another sequence of normal decompositions \(Q_j\) of the same properties:
\[
U = Q_0 > Q_1 > Q_2 > \cdots > Q_m = E.
\]
We say that \(P_i/P_{i+1}\) is non-trivial if \(H(P_i/P_{i+1}) \neq 1\), where \(H(P_i/P_{i+1})\) is the group of displacements for \(P_i/P_{i+1}\). (The definition will be given in 3.) The main theorem we obtain is that between the set of non-trivial \(P_i/P_{i+1}\) and that of non-trivial \(Q_j/Q_{j+1}\) there is a one to one correspondence such that if \(P_i/P_{i+1}\) corresponds to \(Q_j/Q_{j+1}\) then \(H(P_i/P_{i+1}) \approx H(Q_j/Q_{j+1})\).

2. Partitions of a set

Let \(U\) be a (universal) set, and \(U = \bigcup A_i\) a partition of \(U\) into non-empty
disjoint classes A_i. We denote this partition simply by A and call A_i components of the partition A.

Let B be another partition. If every A_i is contained in a component B_j, we say that $A \leq B$. A is a refinement of B. Let C be a partition. We define a partition $A \cap C$ by taking all non-empty intersections $A_i \cap C_j$ as its components. $A \cap C$ is the cross partition of A and C. Clearly, $A \cap C \leq A$ and $A \cap C \leq C$. If B is a partition such that $B \leq A$ and $B \leq C$, then $B \leq A \cap C$.

Next, we define a partition AB for partitions A and B. A component of AB is a union of A_i as well as a union of B_j and is minimal. Thus, a component of AB is connected in a sense that if u and v are elements in it there exist $A_i, B_j, A_k, \ldots, B_w$ in it such that $u \in A_i$ and $v \in B_w$ and that adjacent sets in the above have non-empty intersections. Clearly, $A \leq AB$ and $B \leq AB$. If $A \leq C$ and $B \leq C$, then $AB \leq C$.

Proposition 1. If $A \geq B$, then $A \cap BC \geq B(A \cap C)$ for every partition C. Generally, the equality does not hold.

Proof. Almost clear.

For a partition A, we define the quotient set U/A. U/A is the set of all components A_i of A. Let $A \leq B$. Then, B induces a partition on U/A in a natural way; for B_j, let $(B_jA)_j = \{A_i | A_i \subseteq B_j\}$. Then, $U/A = \bigcup (B_jA)_j$ is a partition of U/A, which we denote by B/A. Since B/A is a partition of U/A, we can consider the quotient set $(U/A)/(B/A)$. It follows from the definition that $(U/A)/(B/A)$ is bijective to U/B.

3. Normal decompositions

From now on, U stands for a pseudo-symmetric set (U, σ) for a fixed σ. Let $G(U)$ be the group generated by all $\sigma(u)$; $G(U) = \langle \sigma(u) \mid u \in U \rangle$. In the following we denote $G(U)$ by G. G is a group of automorphisms of the pseudo-symmetric set U. Now, we define a normal decomposition of U. It is a partition A of U such that $\sigma(u)$ induces a permutation on U/A for every u in U and that $\sigma(u)$ and $\sigma(v)$ induce the same permutation on U/A if u and v belong to the same component of A. In this case, $(U/A, \sigma)$ is a pseudo-symmetric set, where $\sigma(A_i)$ is the permutation of U/A induced by $\sigma(u)$ for $u \in A_i$. Clearly, the mapping $u \mapsto A_i$ gives a homomorphism of U onto U/A.

Proposition 2. If A and B are normal decompositions, then $A \cap B$ and AB are also normal decompositions.

Proof. It is clear that $A \cap B$ is a normal decomposition. To show AB is a normal decomposition, let $\rho \in G$. The image of a component $(AB)_i$ by ρ is a component of the partition AB, because it is a union of A_j as well as a union of B_k and it must be connected in the previously explained sense. We must show
that if \(u \) and \(v \) belong to the same component of \(AB \), then \(\sigma(u) \) and \(\sigma(v) \) induce the same permutation on \(U/AB \). Due to the connectedness of a component of \(AB \), it is enough to show the above in case that \(u \) and \(v \) belong to either a component \(A_i \) or a component \(B_j \). If \(u \) and \(v \) are in \(A_i \), then \(\sigma(u) \) and \(\sigma(v) \) induce the same permutation on \(U/A \) and hence on \(U/AB \). Similarly, if \(u \) and \(v \) are in \(B_j \), then \(\sigma(u) \) and \(\sigma(v) \) induce the same permutation on \(U/AB \), which proves Proposition 2.

From now on, \(A, B, C, \ldots \) stand for normal decompositions of \(U \). For \(A \), the group of displacements is defined by \(H(A) = \langle \sigma(u)^{-1}\sigma(v) \mid u, v \in A \rangle \). \(H(A) \) is shown to be a normal subgroup of \(G \) due to the fundamental identity. If \(A \leq B \), then \(H(A) \subseteq H(B) \). Note also that \(H(A) \) acts trivially on \(U/A \).

Proposition 3. \(H(A \cap B) \leq H(A) \cap H(B) \) and \(H(AB) = H(A)H(B) \).

Proof. The first is trivial. Just note that the equality does not generally hold. For the second, it is clear that \(H(AB) \supseteq H(A)H(B) \). Let \(u, v \in (AB) \). We show that \(\sigma(u)^{-1}\sigma(v) \in H(A)H(B) \). Due to the connectedness of a component of \(AB \), there exist \(u = u_0, u_1, \ldots, u_n = v \) where \(u_i \) and \(u_{i+1} \) are either in a component of \(A \) or of \(B \). In both cases, \(\sigma(u_i)^{-1}\sigma(u_{i+1}) \in H(A)H(B) \). Since \(\sigma(u)^{-1}\sigma(v) \) generate \(H(AB) \), this proves that \(H(AB) \subseteq H(A)H(B) \). So, \(H(AB) = H(A)H(B) \).

For a normal subgroup \(N \) of \(G \), we define a partition \(D \) of \(U \) by letting \(D = \{ M \mid \sigma(u) = \sigma(v) \mod N \) for a fixed element \(u \} \). \(D \) is seen to be a normal decomposition, which we denote by \(D(N) \). If \(N_1 \) and \(N_2 \) are normal subgroups of \(G \) such that \(N_1 \subseteq N_2 \), then \(D(N_1) \leq D(N_2) \). Note also that \(D(N \cap M) = D(N) \cap D(M) \) for normal subgroups \(N \) and \(M \). The following is given in [1].

Proposition 4. \(D(H(A)) \geq A \), and the equality holds if and only if \(A = D(N) \) for some \(N \). \(H(D(N)) \subseteq N \) for any normal subgroup \(N \), and the equality holds if and only if \(N = H(A) \) for some \(A \).

4. Isomorphism theorems

The restriction of \(G(=G(U)) \) on \(U/A \) induces a homomorphism of \(G \) onto \(G(U/A) \). Denote its kernel by \(K(A) \). So, \(K(A) = \{ \rho \mid \rho \) induces the identity permutation on \(U/A \} \). Clearly, \(H(A) \subseteq K(A) \). If \(A \leq B \), then \(K(A) \subseteq K(B) \). For any \(A \) and \(C \), \(K(A \cap C) = K(A) \cap K(C) \).

Let \(A \leq B \). \(B/A \) is a normal decomposition of \(U/A \), and hence \(H(B/A) \) is defined and is a normal subgroup of \(G(U/A) \).

Theorem 1. \(H(B/A) \approx H(B)/(K(A) \cap H(B)) \).

Proof. Consider the homomorphism \(G \to G(U/A) \). \(H(B) \) is mapped onto
$H(B/A)$ as we can see easily. The kernel is clearly $K(A) \cap H(B)$.

When $H(B/A)=1$, we say that B is trivial over A, or B/A is trivial (more precisely, H-trivial). This implies that $H(B) \subseteq K(A)$ or $H(B)$ acts trivially on U/A.

Proposition 5. Let $A \geq B$. Then, $A \cap BC$ is trivial over $B(A \cap C)$ for any C.

Proof. First note that $A \cap BC \geq B(A \cap C)$ by Proposition 1. Now, $H(A \cap BC) \subseteq H(A) \cap H(BC) = H(A) \cap H(B)H(C) = H(B)[H(A) \cap H(C)]$, as $H(B)$ is a normal subgroup of $H(A)$. Clearly, $H(B) \subseteq K(B(A \cap C))$. Also, $H(A) \cap H(C) \subseteq K(A) \cap K(C) = K(A \cap C) \subseteq K(B(A \cap C))$. Therefore, $H(A \cap BC) \subseteq H(B)[H(A) \cap H(C)] \subseteq K(B(A \cap C))$, which proves that $A \cap BC$ is trivial over $B(A \cap C)$.

Theorem 2. $H(AB/B) \cong H(A/(A \cap B))$.

Proof. $H(AB/B) \cong H(AB)/(K(B) \cap H(AB))$ by Theorem 1. But, $H(AB) = H(A)H(B) = H(A)[K(B) \cap H(AB)]$, as $H(B) \subseteq K(B) \cap H(AB) \subseteq H(AB)$. Therefore, $H(AB/B) = H(A)[K(B) \cap H(AB)]/(K(B) \cap H(AB)) \cong H(A)/(H(A) \cap K(B) \cap H(AB)) = H(A)/(H(A) \cap K(B))$. It is easy to see that $H(A) \cap K(B) = K(A \cap B) \cap H(A)$. Thus, $H(A)/(H(A) \cap K(B)) = H(A)/(K(A \cap B) \cap H(A))$, which is isomorphic with $H((A \cap B))$ by Theorem 1. So, $H(AB/B) \cong H(A/(A \cap B))$.

Proposition 6. Let $D \leq C$. Then, $H((A \cap C)/(A \cap D))$ is isomorphic to a subgroup of $H(C/D)$.

Proof. Restrict the homomorphism $H(C) \to H(C/D)$ to $H(A \cap C)$ which is a subgroup of $H(C)$, and we have a homomorphism $H(A \cap C) \to H(C/D)$. Its kernel is $K(D) \cap H(A \cap C)$. But, $K(D) \cap H(A \cap C) = K(A \cap D) \cap H(A \cap C)$, as $H(A \cap C) = H(A \cap C) \cap K(A)$ and $K(D) \cap K(A) = K(A \cap D)$. So, $H(A \cap C)/(K(A \cap D) \cap H(A \cap C))$ is isomorphic to a subgroup of $H(C/D)$. Lastly note that $H((A \cap C)/(K(A \cap D) \cap H(A \cap C))$ is isomorphic with $H((A \cap C)/(A \cap D))$ by Theorem 1, which proves Proposition 6.

Proposition 7. Let $D \leq C$. Then, $H(C/D)$ is homomorphic onto $H(CB/DB)$ for any B.

Proof. $H(C/D) \cong H(C)/(K(D) \cap H(C))$, and the latter is homomorphic onto $H(C)/H(B)/[K(D) \cap H(C)]H(B)$ as we can see easily. But, $[K(D) \cap H(C)]H(B) \subseteq K(DB) \cap H(CB)$. Thus, $H(C/D)$ is homomorphic onto $H(CB)/(K(DB) \cap H(CB)) \cong H(CB/DB)$.

Theorem 3. Let $D \leq C$. Then, $H(C/D)$ contains a subgroup N such that N is homomorphic onto $H((C \cap A)B/(D \cap A)B)$.

The following is a basic theorem, which is a generalization of the "simplicity" theorem. ([1], Corollary 2) When $A \geq B$, $H(A/B)$ is a normal subgroup of $G(U/B)$ and hence a $G(U/B)$-group. As there is the homomorphism from G onto $G(U/B)$, we can consider $H(A/B)$ as a G-group.

Theorem 4. Let $A > B$. If there is no normal decomposition between A and B, then $H(A/B)$ is G-simple.

Proof. $H(A/B) \cong H(A)/(K(B) \cap H(A))$. So, it is enough to show that if N is a normal subgroup of G such that $K(B) \cap H(A) \subseteq N \subseteq H(A)$, then $N=K(B) \cap H(A)$. Let $D=D(N)$ for such normal subgroup N. Then, $A \leq D$. For, if $A \leq D$, then $H(A) \subseteq H(D) \subseteq N$ by Proposition 4, which is a contradiction. Next, we show $A \cap D=B$. For, $B \leq D(H(B)) \leq D(N)=D$ and hence $B \leq A \cap D < A$. So, $A \cap D=B$ by the assumption in Theorem 4. Since N acts trivially on $D(N)=D$ as is seen from the definition of $D(N)$, $N \subseteq K(D)$. Clearly, $N \subseteq H(A) \subseteq K(A)$. Therefore, $N \subseteq K(A \cap D)$. As we have shown $A \cap D=B$ in the above, we have $N \subseteq K(B)$. Thus, $N \subseteq K(B) \cap H(A)$, which implies that $N=K(B) \cap H(A)$. This proves Theorem 4. Note that in the above, "G-simple" means either $H(A/B)=1$ or else $H(A/B)$ does not contain a proper G-subgroup.

5. Jordan-Hölder Theorem

Proposition 8. Let $A > B$ and $C > D$. Suppose that $H(A/B) \neq 1$ and that there is no normal decomposition between C and D. If $A=(C \cap A)B$ and $B=(D \cap A)B$, then $C=(A \cap C)D$ and $D=(B \cap C)D$.

Proof. Clearly, $C \geq (A \cap C)C \geq (B \cap C)C \geq D$. If we show that $(A \cap C)D \neq (B \cap C)D$, then Proposition 8 follows due to the assumption on C and D. So, assume that $(A \cap C)D=(B \cap C)D$, and we are going to derive a contradiction. $A \cap C=(A \cap C) \cap (A \cap C)D=(A \cap C) \cap (B \cap C)D$. Apply Proposition 5 for $A \cap C$ and $B \cap C$ in place of A and B, and we obtain that $(A \cap C) \cap (B \cap C)D$ is trivial over $(B \cap C)(A \cap C \cap D)=(B \cap C)(A \cap D)$, or that $A \cap C$ is trivial over $(B \cap C)(A \cap D)$. Hence, $H(A \cap C) \subseteq K[(B \cap C)(A \cap D)]$. Next, we show that $B \cap C=(B \cap C)(A \cap D)$. Since $C \geq (B \cap C)(A \cap D)$ and $B=(D \cap A)B \geq (A \cap D) \cdot (B \cap C)$, we have $B \cap C \geq (B \cap C)(A \cap D)$, or $B \cap C=(B \cap C)(A \cap D)$. We have obtained that $H(A \cap C) \subseteq K(B \cap C)$. Now, $H(A/B)=H(\{(C \cap A)B\}/B)=H(\{(C \cap A)(C \cap B)\})$ (by Theorem 2). Since $H(C \cap A) \subseteq K(B \cap C)$, we have that $H(\{(C \cap A)(C \cap B)\})=1$, or $H(A/B)=1$, which contradicts the assumption that $H(A/B) \neq 1$.

Now we prove the Jordan-Hölder Theorem for pseudo-symmetric sets.

Theorem 5. Let $U=P_0 \geq P_1 \geq P_2 \geq \cdots \geq P_n=E$ and $U=Q_0 \geq Q_1 \geq Q_2 \geq \cdots$
> \mathcal{Q}_m = E be sequences of normal decompositions such that between \(P_i \) and \(P_{i+1} \) and between \(Q_j \) and \(Q_{j+1} \) there is no normal decomposition. Let \(X \) be the set of all non-trivial \(P_i/P_{i+1} \) and \(Y \) that of all non-trivial \(Q_j/Q_{j+1} \). Then, there is a bijection between \(X \) and \(Y \) such that if \(P_i/P_{i+1} \) corresponds to \(Q_j/Q_{j+1} \), then \(H(P_i/P_{i+1}) \cong H(Q_j/Q_{j+1}) \).

Proof. Let \(P_i/P_{i+1} \in X \). Let \(A = P_i \) and \(B = P_{i+1} \). Put \(R_k = (Q_k \cap A)B \) for \(0 \leq k \leq m \). Then, \(R_k \geq R_{k+1} \), \(R_0 = A \) and \(R_m = B \). So, there is \(j \) such that \(R_j = A \) and \(R_{j+1} = B \). Let \(C = Q_j \) and \(D = Q_{j+1} \). We show that \(C/D \in Y \) and that \(H(A/B) \cong H(C/D) \). By Theorem 3, \(H(C/D) \) contains a subgroup which is homomorphic onto \(H(A/B) \). Since \(H(A/B) \neq 1 \), this implies that \(H(C/D) \neq 1 \). So, \(C/D \in Y \). Clearly, \(H(C/D) \cong H(A/B) \), as \(H(C/D) \) is G-simple by Theorem 4. We have established a mapping from \(X \) to \(Y \). To show that it is a bijection, construct a mapping from \(Y \) to \(X \) in a similar manner. By Proposition 8, these mappings are inverse each other.

Reference