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On a Non-Parametric Test

By Masashi OKAMOTO

1. Introduction. Let X be a random variable having the distribution
function (d.f.) F(2). We want to test the hypothesis H, that F(z) is
identical with a specified continudus d.f.Fy(x). F. N. David [1] has
recently proposed the following test (though this is slightly modified in
comparison with the original one):

Let ,,&,, ..., %y be N independent observations of X. As F (%) is
continuous, there are real numbers {@;}, i=1, ..., 7n—1, such that F(a,)
—Fya,_))=1/n,i=1, ..., n, where ¢,= —co, a,= +oco. Let C be the set
of intervals on the real line on each of which F' (z) is constant and C’
be its complementary set. The intersection of (@,_,, a,] with C’' will be
called “part”. Let v be the number of parts which contain no 2’s and
w be the number of 2’s which fall in C. If either w is positive or v is
too large we reject H,.

David conjectured that under the null hypothesis H, v is asym-
ptotically normally distributed when %, N—»co, N/n— const. This can
be proved by the method of B. Sherman [2]. Furthermore this test is
consistent and unbiased against a rather general class of alternative
hypotheses. As Lehmann [3] says, very little work has been done on
the existence of unbiased tests for non-parametric problems. It is
remarkable that David’s test has this property.

2. Distribution of v under H,. Put u=n—v, i.e.,, u is the number
of parts which contain at least one «. First we shall determine the
distribution of » under H,.

Denote by P, the probability that N a’s “fill” k given parts (i.e.,
every x; falls in some of them and each of them contains at least one
x). The probability that N a’s fall into %k given parts is

E\Y & (K
Therefore, for every positive integer v,
v _ v-xl¥ JiN—v 4\ }J)k<k
SEo()(5) =Hev() &R
Gy Ne_1yw-k[Y—1
=50 ()
:Pv ’
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S (f)=1 it a=0,

=0 if n>0.
Thus

P(u = ») ")Pv
Replacing v by n—v,
Plo=1)= nﬂ(f> p3 (—-1)“—”-'6(’7';“)10*’ L v=0,1,...,10—1.

3. Moments of v under H,. Define 2 for every non-negative
integer s as

I

U =xx—1 a—2)...(x—s+1) if s >0,
w‘”—l

Then the s th factorial moment is

E@™®) = "}j VOP(v = )
=0

=St OB

13 kY noy wfM—I—
n¥ &k (n—s )‘Z( D \ v--8 )

Putting s =1, 2,
E@)=nn—1)"n"" ,
Ev(v—1)=nn-1)n—-2)"n" ,
whence, if N = nr (r is a constant),
E(w/n)=e"(1—r/2n)+0(n %),
DX(v/n) = e ¥(e"—1—rm 1+ 0(n?) .
4. Asymptotic normality of » under H, .

Theorem 1. v/n is asymptotically normally distributed with mean
e" and variance e *(e"—1—r)n-1, where r =N /n = const.

As the proof is almost parallel to that of Theorem 2 of B. Sherman
[2], we shall only sketch it.

It is sufficient to prove that moments of (n/c)%(v/n—-e”) tend
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to the moments of the standard normal distribution, where c=e 2(e"—1
—#). It can be shown that if the limiting moments of even order exist
the limiting moments of odd order are zero. Thus we may restrict
ourselves to even order moments.

Denoting by B the Bernoulli’s number of order » and degree 7,

ko L k (Q=k)gy k=2
P = E}(q)B,, v .
Then

o) (5ol = (2 B o) )
:( )m 3 (2 m)( e r>2m nt Z( )Bﬁf-k-* E(v™ ")

m 2

$

M

k

il
?‘ <

:Mz 2m~—(1)’° err - © nY(n—k+tI)”
@ —1—r)" & & (2m—k)(k—q)! n" H(n—k+q)!
___n"(2m)! [ G, O, O ]
BiCe e AR
We have to ShOW that aL,:O, i:(), 1,2, vee ,m—‘l. Then 1im[<%@)ﬁ'<%_e'r)]2m

=a,(2m)! (e"—1—7)"". If we denote by «,, the coefficient of %’ in the
expansion in powers of n-! of

o (=1)e B1-® '”" (" k*“‘])”
= 2m—k)(k—q) ””(n k+q)' ’

we have
k1

:Za’m/q!y i=0,1,...,m.

Now
nl(n—k+q)" _ 1( k=a\Y N (1
W =T @) n 1 o )n(n D (n—k+q+1)
=2 [1-(k—q@)x]""(1—2)1—-22)--- (1—(k—q—1)2)
=2"'F(x) ,
where # = 1/% and

k—qa-1
F@)=[1-(k=q2]" J[ (1—j2) .
Expanding this, we have

F(2) = Qpqo + gy @ + Qg+ -+,
where
a‘lcqo — e~(k—q\'r ,
1 d"F(z)

ﬁ d:L” z=0 ! p= 1’ e 80

kqp
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@4y Can be written as
1

p-1
Qigp = — 2 @gep—s—1> b/rqs ’
p &
where b,,, is a polynomial in %k of degree s+2 and particularly

bp=—1+7rk*/2+Ak+B, A, B depending on ¢ only. Hence

J— —-(k—-Q.7
Grgeiqy = € By »

where
B, =1G—a)](b;,,) *+terms of lower degree in Ik
= [G— )] (~(+ry2y-aet o+ S A
J=v
Now

5 (=1 paow .
%= 2 Gm (k=g o

e (=1 pap

= R Em—Ri(— ot B

As B{-* is the polynomial in & of degree ¢ with 2-¢ as the coefficient
of the term of the highest degree and as
2m (—1) .0 if 1< 2m—q,

L A—

@(2%—‘1&)1@—(1)!’“ 1 if 1=2m—q,

we obtain
a,=90 if i<m,
Cng = €2 [(m—q) ] (=1 +1)/2)" 7,
and |
a, =0 if i<m,
U= 3" G/} = 277("—1—7)"/m] .
Thus -

lim[<g>% (%—e")]m = a,(2m)!(e"—1—7r)"
— 2-"(2m)l/m! ,

which is the 2m th moment of the standard normal distribution.

5. Computation of the power. The power of the test with respect
to the alternative hypothesis H, is, for a given integer (< n),
P=Pw >0|H)+Pw=0,u<l|H,) .

Denoting by »,, 1, ... , », the probability of C and » parts under H,,
it is readily seen that
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P(w > 0[Hy) = 1—(1-py)" .

Denote by Pi,...;, the probability that w=0 and N a’s fill (see the
section 3) ¢, th, ..., ¢, th parts. The probability that w=0 and Nx’s fall
in the union of the i th, ..., i, th parts is

J
(pi1+ +pij)N = Pil...i'1+(t o %}_ )Pi(tl)...i(fj_l)+ © (IZ)Pl(fl) ’

where 2 denotes the summation over all combinations (%, ..., t,) drawn
(t1-.t0)
from (1,2, ...,7). In another from

J J
N
(D, + =+ +0)" = tg(tgn)Pf(t‘)'"i(m .

Then for every positive integer Z,

X
— -J
;(Dkk_kgfm e 9"
J J
i( 17 n_y\ 2 Z Pict))..icth)
j=1 I (i) 1)

— KZ\ SV Puyom, Zﬁ( 9 y)(”:—“)

=1 (my..my,) J—v

H

=S Py (— 1)L u(Z—*V>Z( 1y v(’u )

I

E Pu,.my,=Plw=0, u—hlfl)

(my..m;)
Thus
Pw=0,u=1kH)=3 1} 3 (Pt e )
J (11 iy) '
Iu == 1, ey N
Therefore
Plw =0, u<l|H,) = 2 Pw =0, u=Fk|H)
¢ k-g (W .7 < %
= - (3] S} (e +1;)
k=1 J=1 (11 ke
=0 2D () S+ )
=n-(*7 77 ﬁzml +,)"
J=1 \
Thus

P=1--p) + B (") 3 ey
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6. Moments of v under H, with p,=0. If p,=0, so P(w=0)=L1.
Then, from the result of the preceding section

P(u= k|H,) = P(w = 0, u = k| H,)
= 2( 1 ’<,c_ )(IIZ‘” (P, + e +2)7
Hence
E(® |H,) = 2‘ KOP(o=k | H,) = §1k<S>P(u — n—Fk|H,)

n -1

S g j<n ]> 2 oyt 0"

N
%

l I

n— S)' n . b n~k41<72—‘8—j>
v +9. —
Z s 2, Bt e B (M
st 20 @+ +p;, )Y

(f1e0eln- s)
=s! 3 (- —p,— )
(iy...05)
Putting s=1, 2, we get
E(o|Hy) =3 (1-p)" ,
Bw—1)|H) =3 1-p=p)" .
7. Consistency.

ll

Theorem 2. The test based on v is consistent against the class of
alternative hypothesis H, as far as we are concerned with absolute
continuous d.f.’s whose densily functions are differentiable.

Proof. If p, >0, (1--p,)” tends to zero and so P tends to 1 when
N—oo, that is, the test is consistent against this H, .

If »p,=0, F,(2) is absolutely continuous with respect to F,(2) and
its relative density is differentiable. Putting Y=F(X), Y is distributed
uniformly over [0, 1] under H, and according to d.f. G(y)=F,(F;(v))
under H,. As p,=0, G(y) is defined uniquely with differentiable deriva-
tive g(y) such that

P = V/n gydy , i=1..,n.
JGE~1)/n
By Taylor expansion
n=59(5) 2w (5) +o0

aor =e o o) o(£) o]

n
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whence

B(v/n) =3 (1-p)"/n

1 (1
=j e"'"'\'”)(lg/—»—zfs 92 (y)e "V dy +0(n7?) .
0 2n ),

In the same manner

D¥w/n) = X Y ¢ — o277 )l — Sl e-rdy) | +0(n?)
=) y—r(| ge"dy) |+ B
As

jle""’f-”)dy}_e"

0

with the equality if and only if g(y)=1, the test is, as in Sherman’s
case, consistent against H,.

8. Unbiasedness.
Theorem 3. The test based on v is unbiased against the class of all
alternative hypotheses.
Proof. We need only prove that for any integer /(< x) the following
relation holds :
P>Pu<I|H,),

where P is the power. This is trivial for I=0 or I=n.
As P attains its minimum with respect to p, at p,=0, we have only
to prove that, for I=1,...,n—1,

P, fz( 1y- J(” = ><,12m(p’1 ;)"

attains its minimum with respect to (p,, ...,»,) at p,= - =p,=1/n.
As the case I=1 is simple, we consider the cases 2<[<<n—1.
If all p, are not equal, there are i, (=1, ..., #n) such that p, < p,.
We can assume without any loss of generality that p,_ <p,. Put
Pu—D,_,=2¢ and

pi=2, i=1..,n—2;
Doy =D +2, Po=D,—%
1
=314, 3 (p Hoe DY,

J=1 (11 7j

a,==0=(" 071

P’ is a function of 2 and we have only to show dP’/dx<0 for 0<x<é&
in order to complete the proof of the theorem. Now

where
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P’ :A ZZ ’1\ + ZA/ 2 (le .e +pzfj)zv

J=2 (i)

= Algig )+ (P, ) +(pn_x)N}

+2A;§ | (19,l P )T Z @+ o+ F D+ )Y

J=2 (41...15) (1052 1) -1
+ Z} (p; + -+ Py +D—2)"+ Z (D + o+ 2y +Dua+0,)" }
(f1..035-1) (i1...i5-2) :
Therefore
O = A @+ 2y =,y ]

N dx )

+ szA;( paf {(p,-1+ e Dy AP )T = (D +p,-,_1+n,—w)”"}
=2 21,0051 *
In order to prove dP’/da<<0 for 0<x<&, we have only to show that

n-2

Ap™” ‘+2A; 2 (+py+ 49, )V, p>0,

J=2 (zl...ij71)
is a monotone increasing function of p. This is now a polynomial of p
and the coefficents B, of p"~*~* are

By=a+ 347 73)
Bs—< s >Z‘.A | (@, + - +2;, ) s=1L-,N—-1.

J=2 (f1...45-1)

It suffices to show that B, >0, s=0,1,..- ,N—1.
Now
X . ? _
B=2a(;71) = 2o GT)

=D B (=0,

as ! >1. On the other hand

Bs—< >2AJ+1 b3 (p,1+ +2; )

(f1..13)
=< ; >2(_1)z——;-—}<n —2— .7) 2 (p“ +pz'i)s .
J=1 (f1...15)
By the result of section 5
P(w=0, u—k]Hl)——E]( 1)+ f(” ) SV (e A2
(21...25)
Comparing these two equations, we obtain
B, >0,

which co.npletes the proof.
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9. Remark. There is another type of the non-parametric problem.
Given two random samples independently from two populations, it is
asked whether they have the same d.f.. The run test of Wald and
Wolfowitz [ 4] occupies the sams position in this problem as David’s test
in our problem. Wolfowitz [5] recently proved that their test statistic
is asymptotically normally distributed even under the alternative hypo-
thesis. Therefore we may perhaps expect so in our case, though we
have not yet succeeded in proving it.

It is a pleasure to express my hearty thanks to Professor J. Ogawa
for his valuable suggestions and instructions.

(Received December 17, 1951)
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