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Abstract
For the elastic wave, there are waves of different modes and aremarkable

phenomenon called “mode-conversion” which causes seriousdifficulties in the
analysis of singularities of the scattering kernel. In the present paper, by considering
the case of a non back-scattering, we examine singularitiesof the scattering kernel
for the elastic wave equation in the case of mode-conversion.

1. Introduction

Let � be an exterior domain inR3 with smooth and compact boundary. We con-
sider the isotropic elastic wave equation with the Dirichlet boundary condition

(1.1)

8>><
>>:

(�2
t � L)u(t; x) = 0 in R��;

u(t; x) = 0 on R� ��;
u(0; x) = f1(x); �tu(0; x) = f2(x) on �;

whereu(t; x) = t (u1;u2;u3) and fi (x) = t ( fi 1; fi 2; fi 3) (i = 1;2). Recall thatL has the
following form:

L =
3X

i ; j =1

ai j �xi �x j ;
whereai j are 3� 3 matrices of which (p;q)-entry is expressed byai p jq . We say that
the elastic medium� is isotropic, if ai p jq is given by

ai p jq = �Æi pÆ jq +��Æi j Æpq + ÆiqÆ j p
�;

where�;� are Lame’s constants satisfying the following inequalities:

� +
2

3
� > 0; � > 0:
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Under the assumption that the elastic medium� is isotropic, Yamamoto [14] and
Shibata-Soga [8] have formulated the scattering theory which is analogous to the the-
ory of Lax-Phillips [5]. Let k�(s; !) and k+(s; !) 2 L2(R � S2) denote the incoming
and outgoing translation representations of an initial data f = t ( f1; f2) respectively (see
[5]). Recall that the scattering operatorS is the mapping

S: k�(s; !) 7! k+(s; !):
The scattering operatorS admits a representation of the form with a distribution kernel
S(s; �; !) called the scattering kernel:

(Sk�)(s; �) =
ZZ

R�S2
S(s� s̃; �; !)k�(s̃; !) ds̃ d!:

Majda [6] has obtained the representation formula of the scattering kernel S(s; �; !)
for the scalar-valued case. This representation formula isvery effective to investigate
inverse scattering problems (cf. Majda [6], Soga [9], Petkov[7]). For the elastic case,
Soga [10] and Kawashita [3] have derived the representationformula of the scattering
kernel.

The characteristic matrixL(� ) of the operatorL(�x) has the eigenvaluesC2
1j� j2

and C2
2j� j2, where

C1 = (� + 2�)1=2; C2 = �1=2:
Let Pi (� ) be the eigenprojector for the eigenvaluesC2

i j� j2 (i = 1;2), where

P1(� ) = � 
 �; P2(� ) = I � P1(� ):
Then P1(� )R3 is the space spaned by� , and P2(� )R3 is the orthogonal complement
of P1(� )R3. Associated with the eigenvaluesC2

i j� j2 (i = 1;2), there are waves of two
different types (modes). The one propagates with the speedC1, and the other with
C2. Furthermore their amplitudes are longitudinal and transverse to the propagation di-
rection respectively, and therefore these waves are calledlongitudinal and transverse
waves respectively. For elastic waves there is a remarkablephenomenon called “mode-
conversion,” that is, when longitudinal or transverse incident wave hits the boundary��, both longitudinal reflected wave and transverse reflected wave appear. This phe-
nomenon causes serious difficulties in the analysis of singularities of the scattering ker-
nel for the elastic wave equation.

In view of results concerning mode-conversion (cf. Chapter5 of Achenbach [1]
and Theorem 2.1 of Soga [12]), we can expect that corresponding phenomenon oc-
curs for the scattering kernelS(s; �; !), because in the asymptotic sense the kernel
Pi (�)S(C�1=2

i � � x � t; �; !)Pl (!) expresses theCi -mode component of the scattered
wave in the direction� for the Cl -mode incident plane wave in the direction!. In
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the back-scattering case (i.e.� = �!), by Soga [10, 11] and Yamamoto [14] we can
obtain results of the same type as in Majda [6]:

supp[Pi (�!)S( � ;�!;!)Pl (!)] � (�1;�r i l (!)];(i)

Pi (�!)S(s;�!;!)Pi (!) is singular (notC1) at s = �r i i (!);(ii)

where r i l (!) = (�i (�!)�1=2 + �l (!)�1=2) minx2�� x � !. In Soga [11], he has derived an
asymptotic expansion ofPi (�!)S( � ;�!;!)Pl (!) which is valid near the right end
point of the singular support fors 2 R (i.e. s = �r i l (!)):

Pi (�!)S(s;�!;!)Pl (!)

� c3(i; l ; !)
NX

k=1

K (ak)�1=2Æ(1)(�s� r i l (!))Pi (!)Pl (!) + � � � ;(1.2)

where c3(i; l ; !) is a constant,fx ; ! � x = r (!)g \ �� = fat gt=1;:::;N and K (at ) is
the Gaussian curvature of�� at at . For the detailed proof, see Theorem 6.1 in [11].
Since the leading term of the above expansion vanishes in themode-conversion case
(i.e. i 6= l ), in the analysis of the singularity we can use it only wheni = l . In the
mode-conversion case, by Kawashita-Soga [4], it is necessary to examine the lower
term of the asymptotic expansion of the scattering kernel. However, considering the
case of non-back scattering (i.e.� 6= !) and making more precise studies of oscillatory
integrals than those in [11], we shall show that the first termof Pi (�)S(s; �; !)Pl (!)
does not vanish, ifi 6= l and j� + !j is different from zero and sufficiently small.

The main theorem is stated precisely in Section 2. The proof of our theorem is
based on methods in Soga [11]. In Section 3, we derive the asymptotic expansion of
Pi (�)S(s; �; !)Pl (!) which is valid not only for the casei = l but also for the case
i 6= l . Using the results of Section 3, we prove our theorem in Section 4.

2. Main results

Before giving the main results in the present paper, we give adefinition for stating
those.

We set r i l (�; !) := minx2�� x � ni l (�; !), where ni l (�; !) := ��C�1
i � � C�1

l !�.
Next, we denote the first hitting points at�� by Ni l (�; !) := fx ; ni l (�; !) � x =
r i l (�; !)g \ ��. Furthermore, we arbitrarily pick a pointat 2 Ni l (�; !) and choose a
system of orthogonal local coordinatesy = (y0; y3), with y0 = (y1; y2), in R3 such that
y3 = (r i l (�; !)� ni l (�; !) � x)jni l (�; !)j�1, and thaty = 0 expresses the reference point
at . Then� is represented byy3 >  (y0) in a neighborhoodU of at , where (y0) is
a C1 function defined in a neighborhood ofy0 = 0.

If the Hessian matrixH (y0) of  (y0) is negative definite aty0 = 0 for every such
picked point, we say thatni j (�; !) is a regular direction for��, which does not de-
pend on the choice of the coordinatesy = (y0; y3). If ni l (�; !) is a regular direction,
the setNi l (�; !) consists of a finite number of isolated points.
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For a distribution f (s) on R we use the notation

f (s) � f0(s) + f1(s) + � � � at s0;
which means that there exists an integerm and aC1 function '(s) with '(s0) 6= 0
such that for every integerN � 0

'(s)f f (s)� ( f0(s) + � � � + fN(s))g 2 Hm+N(R):
Then we have

Theorem 2.1. Let !; � 2 S2. Assume thatj� + !j is different from zero and suf-
ficiently small, and ni l (�; !) is a regular direction for��. Then we have

supp[Pi (�)S( � ; �; !)P1(!)] � (�1;�r i 1(�; !)] (i = 1;2);(i)

Pi (�)S(s; �; !)P1(!) is singular (not C1) at s = �r i 1(�; !) (i = 1;2):(ii)

3. Asymptotic expansion of the scattering kernel

In order to examine the singularities ofPi (�)S(s; �; !)Pl (!), it is useful to know
the asymptotic behavior of the scattering kernel. In this section we shall derive an as-
ymptotic expansion of the scattering kernel which plays an essential role in the proof
of Theorem 2.1.

In order to derive an expansion ofPi (�)S(s; �; !)Pl (!), we review some results in
[11]. Let vl (t; x;!) be the solution of the following boundary value problem:

(3.1)

8>><
>>:
��2

t � L
�vl (t; x;!) = 0 in R��

vl (t; x;!) =
�
2
p

2���2
C�3=2

l Æ�t � C�1
l ! � x�Pl (!) on R� ��

vl (t; x;!) = 0 for t < C�1
l r (!)

where r (!) = minx2�� x � !. Namely vl (t; x;!) is the scattered wave for the inci-
dent wave

(3.2)
�
2
p

2���2
C�3=2

l Æ�t � C�1
l ! � x�Pl (!):

The scattering kernel is represented by means ofvl (t; x;!):

S(s; �; !) =
2X

i ; j =1

C�3=2
i

Z
��
�

Pi (�)(�t Nv j )
�
C�1

i � � x � s; x;!�
� C�1

i Pi (�)t (N(� � x))
��2

t v j
��

C�1
i � � x � s; x;!�	dSx

(3.3)

where N =
P3

i ; j =1 ai j �i �x j and � = (�1; �2; �3) is the unit outer normal to�.
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By the Hamilton-Jacobi method we have a real-valuedC1 function 'k
l (x) (k; l =

1;2) satisfying

(3.4)

8>>>>>>><
>>>>>>>:

��r'k
l (x)

�� =
1

Ck
in � \U�;

'k
l (x) =

1

Cl
! � x on �� \U�;

�'k
l�� (x) < 0 on �� \U�;

whereU� = fx ; jni l (�; !) � x � r i l (�; !)j < �g with a small� > 0.

We set

� j (t) =

8><
>:

t j�1

( j � 1)!
for t � 0

0 for t < 0

when j = 1;2; : : : ;
� j (t) = � 0j +1(t) when j = 0;�1;�2; : : : :

Let us note that

�0(t) = Æ(t); � 0j +1(t) = � j (t) for any integer j .

Lemma 3.1. Assume that there exists a sufficiently smallÆ > 0 such that��r'k
l tan

�� < Æ. Then the solutionvl of (3.1) admits the following asymptotic expansion
for t 2 R sufficiently close to ri j (�; !)

(3.5) vl (t; x;!) � 2X
k=1

X
j�0

� j
�
t � 'k

l (x)
�
uk

l j (x);
where ukl j (x) are some C1functions defined in̄�\U� and r'k

l tan denotes the tangen-

tial part to �� of r'k
l .

Proof. Combining Theorem 2.1 in Soga [11] and Theorem 1.1 in [12], we can
derive the above asymptotic expansion in this case.

Let vl (t; x;!) be the solution of (3.1). Thenu = vl Pl (!) satisfies the equation��2
t � L

�
u = 0 in R � � and verifying the same boundary condition asvl . Hence, by

the uniqueness of the solutions, we obtain thatvl (t; x;!) = vl (t; x;!)Pl (!). Moreover
combining the representation of the scattering kernel (3.3) and the asymptotic expan-
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sion (3.5), we have

Pi (�)S(s;�;!)Pl (!)

� 2X
k=1

C�3=2
i

2
4X

j��1

Z
��� j�1(�s�ni l (�;!) �x)

�Pi (�)
3X

p;q=1

apq�p(x)
����xq'k

l (x)
�
uk

l j +1(x)+�xq uk
l j (x)

	
Pl (!) dSx

�C�1
i

X
j�0

Z
��� j�2(�s�ni l (�;!) �x)Pi (�)

3X
p;q=1

tapq�p(x)�quk
l j (x)Pl (!) dSx

3
5:

(3.6)

For a regular directionni l (�; !) we haveNi l (�; !) = fa1; : : : ;aM g. By using a par-
tition of unity, it is enough to examine the terms whose integrands are supported on
a small neighborhood of the reference pointat 2 Ni l (�; !). Then we can rewrite the
above integrals (3.6) as

PM
t=1 I t (�; !). Since the analysis of above integrals near each

point at is same, it is sufficient to study the leading term inI t (�; !) for only oneat ,
where we may assumeat = 0.

We take an orthonormal framefp1; p2; p3g where p3 = �ni l (�; !)jni l (�; !)j�1, and
choose the local coordinate systemy = (y1; y2; y3) such thatx = y1 p1+y2 p2+y3 p3. Let
us denote byT the 3�3 orthogonal matrixT = (tpq) such thatT(ej ) = p j ( j = 1;2;3),
where fe1;e2;e3g is the canonical basis inR3. Then �� is represented byy3 =  (y0)
near 0. Since the equation is isotropic, we have the following result.

Lemma 3.2. Assume that the elastic medium� is isotropic, then we have

T L( t T� ) t T = L(� ) and T
3X

p;q=1

apqtrptsq
t T = ars:

Proof. By the isotropicity of the equation,

T L( t T� ) t T = T
�
(�+�) t T� 
 t T� +�jT� j2I

	
t T = (�+�)� 
 � +�j� j2I =

3X
r;s=1

ars�r �s:
On the other hand, a direct computation shows

3X
p;q;m;n=1

timapmqntrptsqt jn = �Ær i Æq j +�(ÆrsÆi j + Ær j Æsi) = ar is j :
Thus the proof is complete.
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By Lemma 3.2 and an easy computation, we have the following identities:

L(�y)ujy= t T x = t T L(�x)T u( t T x) for any x 2 �;(3.7)

(Nyu)( t T x) = t T NxT u( t T x) for any x 2 ��;(3.8)

where Nx =
P3

pq=1 apq�p�xq , Ny =
P3

pq=1 apq��p�yq and ��(y) = t T�(T y). Then
from (3.7), it follows that ˜vl (t; y; !̃) := t Tvl (t; T y;!)T satisfies the same boundary
value problem (3.1) in�̃ = t T� where! is replaced by ˜! = t T!. Moreoverṽl (t; y; !̃)
admits the following asymptotic expansion:

(3.9) ṽl (t; y; !̃) � 2X
k=1

X
j�0

� j
�
t � '̃k

l (y)
�
ũk

l j (y):

Here ũk
l j (y) := t T uk

l j (T y)T and '̃k
l (y) := 'k

l (T y) which satisfies

(3.10)

8>>>>>>><
>>>>>>>:

��r'̃k
l (y)

�� =
1

Ck
in �̃ \ Ũ�;

'̃k
l (y)

��
y3= (y0) =

1

Cl
!̃ � y on ��̃ \ Ũ�;

�'̃k
l��� (y)

����
y3= (y0) < 0 on ��̃ \ Ũ�;

whereŨ� =
�
y ;
��ni l

��̃ ; !̃� � y� r i l
��̃ ; !̃��� < �	 with a small� > 0.

Since Pl (!) = T Pl (!̃) t T , Pi (�) = T Pi
��̃� t T , by Lemma 3.2,I t (�; !) takes the

following form:

2X
k=1

C�3=2
i Pi (�)

Z
R2
��2(�s + jni l (�; !)j (y0)� r i l (�; !))

�
8<
:

3X
p;q=1

apq�p(T y)
���xq'k

l (T y)
�� C�1

i

3X
p;q=1

tapq�p(T y)�q

9=
;

� uk
l0(T y)��2(y0)Pl (!) dy0

+
X
j��1

Z � j (�s + jni l (�; !)j (y0)� r i l (�; !))� j (y
0) dy0
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=
2X

k=1

C�3=2
i

Z
R2
��2

��s +
��ni l

��̃ ; !̃��� (y0)� r i l
��̃ ; !̃��

� T

8<
:Pi

��̃� 3X
r;s=1

8<
:t T

3X
p;q=1

apqtpr tqsT

9=
; ��r (y)

���ys'̃k
l (y)

�

� C�1
i

3X
r;s=1

8<
:t T

3X
p;q=1

tapqtpr tqsT

9=
; ��r (y)�̃s

9=
;

� �t T uk
l0(T y)T

	��2(y0)Pl (!̃) t T dy0
+
X
j��1

Z � j
��s +

��ni l
��̃ ; !̃��� (y0)� r i l

��̃ ; !̃��� j (y
0) dy0

=
2X

k=1

C�3=2
i

Z
R2
��2

��s +
��ni l

��̃ ; !̃��� (y0)� r i l
��̃ ; !̃��

� T

2
4Pi

��̃�
8<
:

3X
r;s=1

ars��r (y)
���ys'̃k

l (y)
�� C�1

i

3X
r;s=1

tars��r (y)�̃s

9=
;

� ũk
l0(y)��2(y0)Pl (!̃)

3
5 t T dy0

+
X
j��1

Z � j
��s +

��ni l
��̃ ; !̃��� (y0)� r i l

��̃ ; !̃��� j (y
0) dy0;

where� j (y0) are someC1 functions supported neary0 = 0 and��2(0) = 1.
Sinceni l (�; !) is a regular direction, by the Morse lemma we can take a new sys-

tem of local coordinates̃y0 so that ỹ0 = 0 meansy0 = 0 and that

 �y0�ỹ0�� = �1

2

��ỹ0��2;
det

� ỹ0�y0 (0) = K (at )
�1=2:

We can determine the phase functions ˜'k
l and the amplitudes̃uk

l0 by the methods in
Kawashita [2]. Applying the Taylor expansions to��(ỹ), r'̃k

l (ỹ)
��
y3= (ỹ0), ũk

l0(ỹ)
��
y3= (ỹ0):

��(ỹ) =
��ni l

��̃ ; !̃����1
ni l
��̃ ; !̃� + � � � ;

r'̃k
l (ỹ)

��
y3= (ỹ0) = C�1

l
t (!̃1; !̃2; �̃kl ) + � � � ;

ũk
l0(ỹ)

��
y3= (ỹ0) =

�
2
p

2���2
C�3=2

l P̃l
k;0Pl (!̃) + � � � ;

where ỹ = (ỹ0; y3), �̃kl =
q!̃2

3 + C2
l � C�2

k � 1 and
�r'̃1

l

��
y3= (ỹ0) � r'̃2

l

��
y3= (ỹ0)��1 �
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r'̃1
l

��
y3= (ỹ0) 
 r'̃2

l

��
y3= (ỹ0) = P̃l

1;0 + O(jỹ0j) and I � �r'̃1
l

��
y3= (ỹ0) � r'̃2

l

��
y3= (ỹ0)��1 �r'̃1

l

��
y3= (ỹ0) 
 r'̃2

l

��
y3= (ỹ0) = P̃l

2;0 + O(jỹ0j). We can rewrite the integralsI t (�; !) in
the following way:

�
2
p

2���2
C�3=2

i C�3=2
l

� Z
R2
��2

 
�s� ��ni l

��̃ ; !̃���
��ỹ0��2

2
� r i l

��̃ ; !̃�
!

� T

2
4Pi

��̃� 2X
k=1

8<
:

3X
p=1

2X
q=1

apqni l
��̃ ; !̃�

p

��C�1
l !̃q

�
+

3X
p=1

ap3ni l
��̃ ; !̃�

p

��C�1
l �̃kl

�

+
3X

p;q=1

tapqni l
��̃ ; !̃�p

��C�1
i �̃q

�9=;��ni l
��̃ ; !̃����1

P̃l
k;0Pl (!̃)

3
5

� t T K(at )
�1=2�̃�2

�
ỹ0�dỹ0

+
X

j +j�j��1

Z
R2
� j

 
�s� ��ni l

��̃ ; !̃���
��ỹ0��2

2
� r i l

��̃ ; !̃�
!
�̃�j �ỹ0�ỹ0� dỹ0;

(3.11)

where �̃ j
�
ỹ0� are someC1 functions supported near̃y0 = 0 and �̃�2(0) = 1. By using

Lemma 6.3 and Lemma 6.4 in Soga [11], we show that the leading term of (3.11) is
the following form:

�
2
p

2���2
C�3=2

i C�3=2
l

��ni l
��̃ ;!̃����2Æ(1)��s�r i l

��̃ ;!̃��K (at )
�1=2��S1

��
�T

2
4Pi

��̃� 2X
k=1

8<
:

2X
q=1

�
a3q
�
C�1

l !̃q
�
+ ta3q

�
C�1

i �̃q
�	

+a33
�
C�1

l �̃kl +C�1
i �̃3

�9=;P̃l
k;0Pl (!̃)

3
5t T:

Summing over all pointsat , we arrive at the following proposition.

Proposition 3.3. Let !; � 2 S2. Assume thatj� + !j is sufficiently small, and
ni l (�; !) is a regular direction for��. Then we have

Pi (�)S(s;�;!)Pl (!)

� �2p2���2
C�3=2

i C�3=2
l

��ni l
��̃ ;!̃����2Æ(1)

��s�r i l
��̃ ;!̃�� MX

t=1

K (at )
�1=2��S1

��

�T

2
4Pi

��̃� 2X
k=1

8<
:

2X
q=1

�
a3q
�
C�1

l !̃q
�
+ ta3q

�
C�1

i �̃q
�	

+a33
�
C�1

l �̃kl +C�1
i �̃3

�9=;P̃l
k;0Pl

�!̃�
3
5t T

+ ���;
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where T = (tpq) is 3 � 3 orthogonal matrix and x= T y, !̃ = t T!, �̃ = t T� and�r'̃1
l

��
y3= (ỹ0) � r'̃2

l

��
y3= (ỹ0)��1 � r'̃1

l

��
y3= (ỹ0) 
 r'̃2

l

��
y3= (ỹ0) = P̃l

1;0 + O(ỹ0j) and I ��r'̃1
l

��
y3= (ỹ0) � r'̃2

l

��
y3= (ỹ0)��1 � r'̃1

l

��
y3= (ỹ0) 
r'̃2

l

��
y3= (ỹ0) = P̃l

2;0 + O(jỹ0j).
4. Proof of Theorem 2.1

In this section, using Proposition 3.3, we investigate the support and singularities
of the scattering kernelS(s; �; !) for the non-back scattering, and prove Theorem 2.1.

Proof of Theorem 2.1. (i) By using the method of the proof in the first half in
Proposition 3.3, we obtain

Pi (�)S(s; �; !)P1(!)

= C�3=2
i Pi (�)

Z
�� �t Nv1

�
C�1

i � � x � s; x;!�
� C�5=2

i Pi (�)
Z
�� t (N� � x)�2

t v1
�
C�1

i � � x � s; x;!�dSx:
(4.1)

Since due to the finite propagation speed for solutions to theisotropic elastic wave
equationv1(t; x;!) = 0 if t < C�1

1 ! � x, it follows that v1
�
C�1

i � � x � s; x;!� = 0
if C�1

1 ! � x > C�1
i � � x � s. Therefore since the right-hand side of (4.1) is equal to 0

if s > ��C�1
1 ! � x � C�1

i � � x�, by taking a supremum with respect tox 2 ��, which
proves (i) of Theorem 2.1.

(ii) Note that P1(� ) = � 
 � , P2(� ) = I � � 
 � and eachP̃1
k;0P1(!̃) (k = 1;2)

takes the following form:

P̃1
1;0P1(!̃) =

A(!̃)

Ā(!̃)

0
� !̃2

1 !̃1!̃2 !̃1!̃3!̃2!̃1 !̃2
2 !̃2!̃3j!̃3j!̃1 j!̃3j!̃2 j!̃3j!̃3

1
A ;(4.2)

P̃1
2;0P1(!̃) =

�2!̃3�̃21

Ā(!̃)

0
� !̃2

1 !̃1!̃2 !̃1!̃3!̃2!̃1 !̃2
2 !̃2!̃3j!̃3j!̃1z!̃3 j!̃3j!̃2z!̃3 j!̃3j!̃3z!̃3

1
A ;(4.3)

where A(!̃) = !̃2
1+!̃2

2+!̃3�̃21, Ā(!̃) = !̃2
1+!̃2

2+j!̃3j�̃21 and z!̃3 =
�
1�!̃2

3

�Æ!̃3�̃21. Recall

that ni 1
��̃ ; !̃�Æ��ni 1

��̃ ; !̃��� = (0;0;�1), we can rewritePi
��̃�P2

k=1

�P2
q=1

�
a3q
�
C�1

1 !̃q
�
+

ta3q
�
C�1

i �̃q
�	

+ a33
�
C�1

1 �̃k1 + C�1
i �̃3

��
P̃1

k;0P1(!̃) in the following form:

(4.4) Pi
��̃� 2X

k=1

f(a31 + ta31)!̃1 + (a32 + ta32)!̃2 + a33(!̃3 + �̃k1 + C1jñi 1j)g P̃1
k;0P1(!̃)

C�1
1

:
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Then, calculating each term in (4.4) more carefully, we can obtain

Pi
��̃� 2X

k=1

0
� 0 0 � +�

0 0 0� +� 0 0

1
A !̃1P̃1

k;0P1(!̃)

= (� +�)!̃1
A(!̃)(a
 !̃) + 2j!̃3j�̃21(ā
 !̃)

Ā(!̃)
;

Pi
��̃� 2X

k=1

0
� 0 0 0

0 0 � +�
0 � +� 0

1
A !̃2P̃1

k;0P1(!̃)

= (� +�)!̃2
A(!̃)(b
 !̃) + 2j!̃3j�̃21

�
b̄
 !̃�

Ā(!̃)
;

Pi
��̃� 2X

k=1

0
� � 0 0

0 � 0
0 0 � + 2�

1
A (!̃3 + �̃k1 + C1jñi 1j)P̃1

k;0P1(!̃)

=
C1jñi 1jA(!̃)(c
 !̃) + 2j!̃3j�̃21(!̃3 + �̃21 + C1jñi 1j)(c̄
 !̃)

Ā(!̃)
;

where

a=t
�!̃1 p(13)

i

��̃�+j!̃3jp(11)
i

��̃�;!̃1 p(23)
i

��̃�+j!̃3jp(21)
i

��̃�;!̃1 p(33)
i

��̃�+j!̃3jp(31)
i

��̃��;
ā=t

�!̃1 p(13)
i

��̃�+j!̃3jz!̃3 p(11)
i

��̃�;!̃1 p(23)
i

��̃�+j!̃3jz!̃3 p(21)
i

��̃�;!̃1 p(33)
i

��̃�+j!̃3jz!̃3 p(31)
i

��̃��;
b=t

�!̃2 p(13)
i

��̃�+j!̃3jp(12)
i

��̃�;!̃2 p(23)
i

��̃�+j!̃3jp(22)
i

��̃�;!̃2 p(33)
i

��̃�+j!̃3jp(32)
i

��̃��;
b̄=t

�!̃2 p(13)
i

��̃�+j!̃3jz!̃3 p(12)
i

��̃�;!̃2 p(23)
i

��̃�+j!̃3jz!̃3 p(22)
i

��̃�;!̃2 p(33)
i

��̃�+j!̃3jz!̃3 p(32)
i

��̃��;
c=t
���p(11)

i

��̃�!̃1+ p(12)
i

��̃�!̃2
	

+(�+2�)p(13)
i

��̃�j!̃3j;
��p(21)

i

��̃�!̃1+ p(22)
i

��̃�!̃2
	

+(�+2�)p(23)
i

��̃�j!̃3j;
��p(31)

i

��̃�!̃1+ p(32)
i

��̃�!̃2
	

+(�+2�)p(33)
i

��̃�j!̃3j�;
c̄=t
���p(11)

i

��̃�!̃1+ p(12)
i

��̃�!̃2
	

+(�+2�)j!̃3jz!̃3 p(13)
i

��̃�;
��p(21)

i

��̃�!̃1+ p(22)
i

��̃�!̃2
	

+(�+2�)j!̃3jz!̃3 p(23)
i

��̃�;
��p(31)

i

��̃�!̃1+ p(32)
i

��̃�!̃2
	

+(�+2�)j!̃3jz!̃3 p(33)
i

��̃��;
each p(pq)

i

��̃� denotes (p;q)-entry of Pi
��̃� and ñi 1 = ni 1

��̃ ; !̃�. Hence, applying the
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asymptotic expansion derived in the Proposition 3.3, we obtain

Pi (�)S(s; �; !)P1(!)

� �2p2���2
C�5=2

1 C�3=2
i Æ(1)��s� r i 1

��̃ ; !̃�� MX
t=1

K (at )
�1=2��S1

��T M3
��̃ ; !̃�t T + � � � ;

(4.5)

where M3
��̃ ; !̃� is a 3� 3-matrix whose (p;q)-entry is expressed bympq

��̃ ; !̃�. As
shown above, it is represented in the following form:

M3
��̃ ; !̃�

=
�
(� +�)!̃1fA(!̃)(a
 !̃) + 2j!̃3j�̃21(ā
 !̃)g
+ (� +�)!̃2

�
A(!̃)(b
 !̃) + 2j!̃3j�̃21

�
b̄
 !̃�	

+ fC1jñi 1jA(!̃)(c
 !̃) + 2j!̃3j�̃21(!̃3 + �̃21 + C1jñi 1j)(c̄
 !̃)g�ÆĀ(!̃):
(4.6)

To show that the leading term of the right-hand side of (4.5) does not vanish, we shall
prove thatm33

��̃ ; !̃� 6= 0. According to (4.6),m33
��̃ ; !̃� is expressed as follows:

m33
��̃ ; !̃�

=
�
(�+�)!̃1

�
A(!̃)

�!̃1 p̃(33)
i + j!̃3j p̃(31)

i

�
+ 2j!̃3j�̃21

�!̃1 p̃(33)
i + j!̃3jz!̃3 p̃(31)

i

�	
+ (�+�)!̃2

�
A(!̃)

�!̃2 p̃(33)
i + j!̃3j p̃(32)

i

�
+ 2j!̃3j�̃21

�!̃2 p̃(33)
i + j!̃3jz!̃3 p̃(32)

i

�	�!̃3
Æ

Ā(!̃)

+
�
C1jñi 1jA(!̃)

��� p̃(31)
i !̃1 + p̃(32)

i !̃2
�

+ (�+ 2�) p̃(33)
i j!̃3j	

+ 2j!̃3j�̃21(!̃3 + �̃21 +C1jñi 1j)��� p̃(31)
i !̃1 + p̃(32)

i !̃2
�

+ (�+ 2�)j!̃3jz!̃3 p̃(33)
i

	�!̃3
Æ

Ā(!̃)

=
�
(�+�)

�!̃2
1 p̃(33)

i + !̃2
2 p̃(33)

i

�
(A(!̃) + 2j!̃3j�̃21

�
+ (�+�)j!̃3j� p̃(31)

i !̃1 + p̃(32)
i !̃2

�
(A(!̃) + 2j!̃3j�̃21z!̃3

�
+�� p̃(31)

i !̃1 + p̃(32)
i !̃2

�fC1jñi 1jA(!̃) + 2j!̃3j�̃21(!̃3 + �̃21 +C1jñi 1j)g
+ (�+ 2�) p̃(33)

i j!̃3jfC1jñi 1jA(!̃) + 2j!̃3j�̃21(!̃3 + �̃21 +C1jñi 1j)z!̃3g�!̃3
Æ

Ā(!̃);
where p̃(pq)

i = p(pq)
i

��̃� and ñi 1 = ni 1
��̃ ; !̃�.

By Lemma 4.1 below, we can provem33
��̃ ; !̃� 6= 0, that is, we show that the

leading term of the right-hand side of (4.5) does not vanish.Thus the proof is com-
pleted.

Lemma 4.1. Assume that
���̃ + !̃�� is different from zero and sufficiently small.

Then we have m33(�; !) 6= 0.

Proof. (i) Let i = 1. Since, in the case of back-scattering, ˜! = (0;0;�1) and�̃ = (0;0;1), we can derive thatm33
��̃ ; !̃� = 2(�+2�)+ O

����̃ +!̃���. Therefore, by using
our assumption that

���̃ + !̃�� is sufficiently small, we can prove thatm33
��̃ ; !̃� 6= 0.
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(ii) Let i = 2. By ñ21
��̃ ; !̃�Æ��ñ21

��̃ ; !̃��� = (0;0;�1), that is,

C�1
1 !̃p = C�1

2 �̃p (p = 1;2); C�1
1 !̃3 = C�1

2 �̃3� ��ñ21
��̃ ; !̃��� and

���̃ �� = 1;
we can expressm33

��̃ ; !̃� as a function in
��̃1; �̃2

�
:

m33
��̃1; �̃2

�
=

F
��̃1; �̃2

�!̃3
��̃1; �̃2

�
Ā
�!̃��̃1; �̃2

�� ;
where

F
��̃1; �̃2

�
= (�+�)

��̃2
1 + �̃2

2

��!̃2
1

��̃�+ !̃2
2

��̃�� Ā�!̃��̃��
+ (�+�)C1C

�1
2

��̃2
1 + �̃2

2

���!̃3
��̃����̃3 Ā

�!̃��̃��
��C1C�1

2

��̃2
1 + �̃2

2

��̃3
�
C1jñ21jĀ�!̃��̃��+ 2

��!̃3
��̃����̃21

�!̃3
��̃�+ �̃21

�	
� (�+ 2�)

��̃2
1 + �̃2

2

���!̃3
��̃����C1jñ21jĀ�!̃��̃��+ 2

�!̃2
1

��̃�+ !̃2
2

��̃���!̃3
��̃�+ �̃21

�	
=
��̃2

1 + �̃2
2

�
F̃
��̃1; �̃2

�:
Here we note that

���̃ + !̃�� 6= 0 is equivalent to
��̃1; �̃2

� 6= (0;0). In order to show
m33

��̃ ; !̃� 6= 0, it suffices to show that̃F
��̃1; �̃2

� 6= 0.
Since F̃

��̃1; �̃2
�

is a C1 function near
��̃1; �̃2

�
= (0;0) and

F̃(0;0) =��(� + 2�)�̃21 +�C1C�1
2 �̃21

�
C1C�1

2 + 2�̃21
�	 < 0;

we can obtain that̃F
��̃1; �̃2

� 6= 0 provided
���̃+!̃�� is different from zero and sufficiently

small.
Thus the proof is completed.

REMARK 4.2. If �̃ = �!̃ (i.e. back-scattering case), thenm33
��̃ ; !̃� = 0.
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