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Introduction

The purpose of this note is to present the following criterion for unknotting
in a weak sense which gives us a simple geometric proof of Theorem of Kawa-
uchi stated below.

Theorem 1. Let M be a smooth I-connected 4-manifold and S2 a smoothly
embedded 2-sphere in M. Suppose that ^(M-S2)^Z and S2—0 in M. Then, S2

is unknotted in M% (#S2 X S2) for some n 2^0.

Here S2 is called unknotted if there is a smoothly embedded D3 which
is bounded by S2. As a corollary we shall give a proof of Theorem of Kawa-
uchi. His original proof uses the partial Poincare duality associated to in-
finite cyclic covering (see [3], [4] and Suzuki [9, Th. 8.6]). Other proofs are
founded in [1], [8] and [10].

Corollary (Theorem of Kawauchi). Let S2 be a smoothly embedded 2-
sphere in the ^-sphere S4. Suppose that ^(S*—S2)^Z. Then, it is algebraically
unknotted, i.e. S*—S2—S\

Is a smooth 2-knot with TΓ^S4— S2)^Z unknotted? This is a unsolved
question. We stabilize the problem by making connected sum of the ambient
manifold with $(S2xS2) and another stabilization may be done by making
connected sum of the embedded manifold S2 with trivially embedded ^(S1

X S1). There is a result due to [2].

Theorem 2 (Hosokawa-Kawauchi [2]). Under the same assumption of
Theorem 1, S2 surgered by attaching n trivially embedded l-handles is unknotted

in M for some n^O.

We refer the reader to [ibid] for the precise meaning of trivial (=trivially
embedded) l-handles and unknottedness of surfaces. We shall give also a
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proof of Theorem of Kawauchi using this theorem in the last section.

1. Proof of Theorem 1

Since S2—0 in M, we have S2xD2dM. And *x9D2cM-S2 gives
a generator of π^M— S2)^Z. This implies that there exists a map /: M—S2

χD2-*S1 which is an extension of the projection S2XdD2-*S1. We make
/ transversely regular at a point of S1 and get a connected smooth 3-manifold

NdM such that ΘN=S2 in M.

In case M has a spin structure, we can restrict the spin structure of M
on N and extend it over N\JD3, because the spin structure is determined by
a framing of the stable tangent bundle over the 2-skelton (cf. Milnor [7]). Since
the 3-dimensional spin cobordism group vanishes [ibid], we have a smooth
spin cobordism (W*\ N3, D3) relative to the boundary. We may assume that

W* is the union of the elementary cobordisms consisting of one of 1-handles,
2-handles and 3-handles in this order. The elementary cobordism Λ Γ x / U
(1-handle) is easily embedded in M and the spin structure on the other boundary
is compatible with that of M. By an inductive argument on the number of
1-handles, the level manifold NI just above all the 1-handles is embedded in

M and QN1=S2. Remark that the spin structure of NidW is compatible
with that of Λ^cM. The elementary cobordism NI X / U (2-handle) cannot
be embedded in M but can be embedded in M$(S2xS2). In fact, we take
SldNι which is the boundary of the axis of the 2-handle. Then, S1—0 in
M—S2, because S1 does not link with S2 and π^M— S2)^Z. The framing of
S1χDB is uniquely determined by the spin structure of Λ^ and the surgery

along this framed S^D3 changes M—S2 into (M— S2)$(S2xS2) because of

the choice of the spin structure. Of course, the spin structure on the other

boundary is compatible with that of M#(S2xS2). The level manifold N2

just above all the 2-handles is embedded in M#(#S2xS2) and QN2 = S2,

where k is equal to the number of the 2-handles of (W, N). We note that

there is a diffeomorphism h: (#S1 X S2—Z)3, 9) -* (N29 9), where / is the number

of 3-handles of (W, N) i.e. 1-handles of (Wy D3). Take the component S1

of S'xS2 and consider A(S1)cJV2cM#(#52xS2). As before, A(5X) —0 in

M#(#S2χS2)—S2. The spin structure of N2 induces a framing of the tubu-

lar neighborhood of h(Sl) so that the surgery along h(Sl) changes M$($S2

XS2)-S2 into (M$($S2xS2)-S2)%S2xS2. Then N^^xS^D3) is

easily embedded in M $ ($ S2 X S2) such that QN2=S2. By induction we get
* + l

a smooth submanifold N3 of M$($S2xS2) such that QN3=S2 and N3 is
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diίFeomorphic to D3. This means that S2 is unknotted in M#(#S2X S2).
In the other case that w2(M)Φθ, we have only to remark that the surgery

along the trivial circle with any framing gives us M$(S2xS2). Since the
closed 3-manifold NUD3 is orientable and the tangent bundle is trivial, there
is a spin structure on NlίD3 and any choice of the spin structure on N(JD3

leads to the same proof as above. q.e.d.

2. Proof of Corollary

Let E be the universal covering space of E—S4—S?. Then, E#($S2

X S 2 ) is diίFeomorphic to S1xR3#(#S2xS2) by Theorem 1. Hence, we

have H*(E] Z)=0 for *^3 and there is an isomorphism as Z[Z]-modules,
a: H2(E\ Z)®(Z[Z])2n-+(Z[Z])2n, where Z[Z] is the group ring of Z over Z.
(From this fact the argument in the last paragraph of [5] completes the proof.
We present here a little modified one.) Let β=poa~1 where p: H(E\ Z)0
(Z[Z])2n -> (Z[Z])2n is the projection onto the 2nd factor. Since β is a surjec-
tion onto a free Z[Z]-module, there exists a Z[Z]-module homomorphism 7
such that /3oγ=zid. But, since Z[Z] can be embedded in a field Q(t), the right
inverse matrix 7 over Q(t) is also a left inverse of β. In particular, β is an
injection and so is p=βoa. Hence, H2(E\ Z)=Q, which implies that E is
contractible and E has the homotopy type of S1. q.e.d.

3. Further discussions

3.1. In Theorem 1, π^M— S2)^Z implies S2—0 in M if M is a closed
manifold. In fact, [/(S2)] Π [S2]=0 for any immersion /: S2^M, because
we can assume that f(S2) and S2 intersect transversally and hence the algebraic
intersection number times generator of π1(M—S2)=H1(M—S2) is zero. By
the fact that πz(M)=H2(M) and the Poincare duality this means S2—0 in M.

3.2. Theorem of Kawauchi is valid for the locally flat topological 2-knot
S2 if it has a normal micro-bundle. In this case S2xD* is embedded in S4

so that the interior of E=S*—S2xD2 is homeomorphic to E. Then, Kawa-
uchi's proof can be applied to E to get /?—S1. Our method is also applicable.
In fact, we consider an embedding of S1 parallel to QD2 in Int E. Since
H\E-S\ 9E)=H\Sl xS2x [0, + oo), S1 X S2X 0)=0 for any ί, the non-compact
4-manifold E—S1 admits a smooth structure relative to the boundary QE (see
[6, V. 1.4.1]). So we get a smooth embedding of S2 into a 1-connected smooth
4-manifold M which is homeomorphic to S4—S1 such that π^(M—S2)^Z
and S2— 0 in M4. By Theorem 1 S2 is unknotted in M$($S2xS2). Then

E$($S2xS2) is homeomorphic to SlxR*$($S2xS2). This implies E^S1 by

the argument of §2.
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3.3. Proof of Corollary by using Theorem 2: Let T(n) be S2 surgered
by attaching n trivially embedded 1-handles in S4. Then by Theorem 2 we
can assume that T(n) is unknotted. By 3.3 of [5], S*—T(ri) has the homotopy
type of 51V(V52). On the other hand we see in the same way that S*—T(ri)

2n

—EV(VS2). Now the same argument as in §2 leads to the conclusion of

Corollary.
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