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Introduction

The purpose of this note is to present the following criterion for unknotting
in a weak sense which gives us a simple geometric proof of Theorem of Kawa-
uchi stated below.

Theorem 1. Let M be a smooth 1-connected 4-manifold and S* a smoothly
embedded 2-sphere in M. Suppose that m\(M—S?)=Z and S*~=0in M. Then, S*
is unknotted in M#($S* X S?) for some n=0.

Here S? is called unknotted if there is a smoothly embedded D*® which
is bounded by S% As a corollary we shall give a proof of Theorem of Kawa-
uchi. His original proof uses the partial Poincaré duality associated to in-
finite cyclic covering (see [3], [4] and Suzuki [9, Th. 8.6]). Other proofs are
founded in [1], [8] and [10].

Corollary (Theorem of Kawauchi). Let S® be a smoothly embedded 2-
sphere in the 4-sphere S*. Suppose that =,(S*—S?)=Z. Then, it is algebraically
unknotted, i.e. S*—S?*~=S".

Is a smooth 2-knot with 7,(S*—S%=Z unknotted? This is a unsolved
question. We stabilize the problem by making connected sum of the ambient
manifold with #(S?XS?) and another stabilization may be done by making
connected sum of the embedded manifold S? with trivially embedded #(S*
X 8"). 'There is a result due to [2].

Theorem 2 (Hosokawa-Kawauchi [2]). Under the same assumption of
Theorem 1, S? surgered by attaching n trivially embedded 1-handles is unknotted
in M for some n=0.

We refer the reader to [ibid] for the precise meaning of trivial (=trivially
embedded) 1-handles and unknottedness of surfaces. We shall give also a
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proof of Theorem of Kawauchi using this theorem in the last section.

1. Proof of Theorem 1

Since S$?’=0 in M, we have S?xD’CM. And *x3dD*CM—S* gives
a generator of z,(M—S?%=Z. This implies that there exists a map f: M—S?
x D?— S' which is an extension of the projection S?x9D*—S'. We make
f transversely regular at a point of S and get a connected smooth 3-manifold
N c M such that 9ON=.S?%in M.

In case M has a spin structure, we can restrict the spin structure of M
on N and extend it over N UD? because the spin structure is determined by
a framing of the stable tangent bundle over the 2-skelton (cf. Milnor [7]). Since
the 3-dimensional spin cobordism group vanishes [ibid], we have a smooth
spin cobordism (W*; N3, D?) relative to the boundary. We may assume that
W* is the union of the elementary cobordisms consisting of one of 1-handles,
2-handles and 3-handles in this order. The elementary cobordism NXxIU
(1-handle) is easily embedded in M and the spin structure on the other boundary
is compatible with that of M. By an inductive argument on the number of
1-handles, the level manifold N, just above all the 1-handles is embedded in
M and 0N,=S? Remark that the spin structure of N;CW is compatible
with that of N;CM. The elementary cobordism N,XxI U (2-handle) cannot
be embedded in M but can be embedded in M#(S?xS?). In fact, we take
S'CN; which is the boundary of the axis of the 2-handle. Then, S'=0 in
M—S? because S* does not link with S? and 7 (M—S?=<Z. The framing of
S'XD? is uniquely determined by the spin structure of N, and the surgery
along this framed S'xD? changes M—S? into (M—S?)#(S?x S?) because of
the choice of the spin structure. Of course, the spin structure on the other
boundary is compatible with that of M#(S?xS?. The level manifold N,
just above all the 2-handles is embedded in M #(-T?S2 %X S?) and ON,=S?,

where k is equal to the number of the 2-handles of (W, N). We note that
there is a diffeomorphism h: (§ S* x S2—D?, 8) — (N, 8), where / is the number
1

of 3-handles of (W, N) i.e. 1-handles of (W, D?. Take the component S*
of S8'x 8% and consider h(S‘)CNsz#(i.‘rSszz). As before, A(S')=0 in

M#(#S"’X S§%)—8?% The spin structure of N, induces a framing of the tubu-
lar neighborhood of A(S') so that the surgery along A(S") changes M:{#("#S2
X 8%)—S8? into (M#(#SZXS2)~SZ)#S2><SZ. Then Né’:‘—-(I#ISIXSZ—D3) is
easily embedded in M#(& 1S2><SZ) such that 9N3=S% By induction we get
a smooth submanifold N; of M#g‘Sszz) such that dN;=S8% and NV; is
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diffeomorphic to D3. 'This means that .S? is unknotted in M# (#S% X S?).

In the other case that w,(M)==0, we have only to remark that the surgery
along the trivial circle with any framing gives us M#(S*x S?. Since the
closed 3-manifold VU D? is orientable and the tangent bundle is trivial, there
is a spin structure on N'UD? and any choice of the spin structure on N U D?
leads to the same proof as above. q.ed.

2. Proof of Corollary
Let E be the universal covering space of E=S*—S’. Then, Ei#(”ﬁS2
%X 8% is diffeomorphic to S'XR¥%(#S2x.S? by Theorem 1. Hence, we

have H*(E; Z)=0 for *=3 and there is an isomorphism as Z[Z]-modules,
o: H(E; Z)D(Z[Z])" — (Z[Z])?", where Z[Z] is the group ring of Z over Z.
(From this fact the argument in the last paragraph of [5] completes the proof.
We present here a little modified one.) Let B=poa™ where p: H(E; Z)®
(Z[Z])*"— (Z[Z])*" is the projection onto the 2nd factor. Since B is a surjec-
tion onto a free Z[Z]-module, there exists a Z[Z]-module homomorphism v
such that Boy=id. But, since Z[Z] can be embedded in a field Q(¢), the right
inverse matrix ¥ over Q(¢) is also a left inverse of B. In particular, @ is an
injection and so is p=@oa. Hence, H,(E; Z)=0, which implies that Eis
contractible and E has the homotopy type of S'. q.e.d.

3. Further discussions

3.1. In Theorem 1, 7 (M—S*=Z implies S?=0 in M if M is a closed
manifold. In fact, [f(S®)]N[S?*]=0 for any immersion f: S*— M, because
we can assume that f(.S?) and S? intersect transversally and hence the algebraic
intersection number times generator of z,(M—S%)=H,(M—S? is zero. By
the fact that z,(M)=H,(M) and the Poincaré duality this means S?°~=0 in M.

3.2. Theorem of Kawauchi is valid for the locally flat topological 2-knot
S? if it has a normal micro-bundle. In this case S?x D? is embedded in S*
so that the interior of E=S*—8?xD? is homeomorphic to E. Then, Kawa-
uchi’s proof can be applied to E to get E=S". Our method is also applicable.
In fact, we consider an embedding of S' parallel to 8D? in Int E. Since
H{(E—S',0E)=H'(S"x §?x [0, +o0), S*x §?x 0)=0 for any 7, the non-compact
4-manifold £—S" admits a smooth structure relative to the boundary 9E (see
[6, V. 1.4.1]). So we get a smooth embedding of S? into a 1-connected smooth
4-manifold M which is homeomorphic to S*—S' such that = (M—S?)=Z
and S?~=0 in M*. By Theorem 1 S? is unknotted in M #(iESszz). Then

E#(#5?x.S? is homeomorphic to S*X R® #(#S2x S?). This implies E=S' by

the argument of §2.
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3.3. Proof of Corollary by using Theorem 2: Let T(n) be S? surgered

by attaching # trivially embedded 1-handles in S*. Then by Theorem 2 we
can assume that T'(n) is unknotted. By 3.3 of [5], S*—T(n) has the homotopy
type of S‘V()/Sz). On the other hand we see in the same way that S*—T(n)

=EV(VS?. Now the same argument as in §2 leads to the conclusion of
2n

Corollary.
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