

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

On Algebras of Left Cyclic Representation Type

By Tensho YOSHII

§1. Let *A* be an associative algebra (of finite dimension) with a unit, *N* its radical and let $\sum_{i=1}^{n} \sum_{j=1}^{f(i)} Ae_{ij}$ be the direct decomposition of *A* into directly indecomposable components, where $Ae_{ij} \simeq Ae_{i1} = Ae_i$. If every indecomposable A -left module is homomorphic to one of Ae_i , then we define such an algebra *A* to be of left cyclic representation type.

Now it is well-known that, if every indecomposable *A-leίt* module is homomorphic to one of Ae_{λ} and every indecomposable A -right module is homomorphic to one of $e_{\mu}A$, A is generalized uniserial¹³.

In this paper we shall study the structure of an algebra of left cyclic representation type. The main result is as follows:

An algebra A is of left cyclic representation type if and only if the following conditions are satisfied:

(1) *Each e{A has only one composition series.*

(2) *Each Nβj is the direct sum of at most two cyclic left ideals, homomorphic to Ae^⁹ each of which has only one composition series.*

§ 2. In this section we suppose that $N^2 = 0$ and show some lemmas which are necessary for the proof of our main theorem.

Lemma 1. If there exists at least one e such that $eN = v₁A \oplus v₂A$, A *is not of left cyclic representation type.*

The proof of this lemma is obtained from the well-known result.

Next suppose that $e'Ne = \bar{e}'\bar{A}\bar{e}'u_1 \oplus \bar{e}'\bar{A}\bar{e}'u_2 \oplus \bar{e}'\bar{A}\bar{e}'u_3 = u_1\bar{e}\bar{A}\bar{e}.$ Then it is easily shown that $e'Ne = u_e\bar{e}A\bar{e} = u_s\bar{e}A\bar{e}$ and there exist ξ_1 , $\xi_2 \in \bar{e}A\bar{e}$ such that $u_1 \xi_1 = u_2$, $u_1 \xi_2 = u_3$. Moreover we put $S_{ij} = [\eta | u_i \eta = \eta' u_j]$, $\eta \in \bar{e}A\bar{e}$ and $\eta' \in \bar{e}' \bar{A} \bar{e}'$. Then each S_{ij} is a module and we have

Lemma 2. *Suppose that e'Ne has the above structure. Then* $\bar{e}\bar{A}\bar{e} = S_{11} + S_{12} + S_{13}$, $S_{11} = S_{22}^{(1)} + S_{23}^{(2)}$, $S_{12} = S_{23}^{(1)} + S_{21}^{(2)}$, $S_{13} = S_{21}^{(1)} + S_{22}^{(2)}$, $S_{22}^{(1)} = S_{33}^{(1)}$, $S_{21}^{(1)} = S_{32}^{(1)}$, $S_{23}^{(1)} = S_{31}^{(1)}$, $S_{21}^{(2)} = S_{33}^{(2)}$, $S_{23}^{(2)} = S_{32}^{(2)}$ and $S_{22}^{(2)} = S_{31}^{(2)}$ where $S_{ij}^{(k)}$ ($\kappa = 1, 2$) *are submodules of* S_{ij} *such that* $S_{ij} = S_{ij}^{(1)} + S_{ij}^{(2)}$.

1) cf. T. Nakayama I.

Proof. It is clear that $S_{11} \xi_1 = S_{12}$, $S_{11} \xi_2 = S_{13}$ and $\bar{e}A\bar{e} =$ Hence if we denote the dimension of S_{ij} by $d(S_{ij})$ we have $d(S_{11}) = d(S_{12})$ $= d(S_{13}) = \frac{d(eAe)}{3}$. Moreover $S_{\kappa_i} \cap S_{\lambda_i} = 0$ and $S_{\kappa_i} \cap S_{\kappa_i} = 0$ if $\kappa \neq \lambda$. For if $S_{\kappa_i} \wedge S_{\lambda_i} \ni \zeta \neq 0$ we have $u_{\kappa} \zeta = \zeta' u_i$ *,* $u_{\lambda} \zeta = \zeta'' u_i$ *,* $\zeta'^{-1} u_{\kappa} \zeta = \zeta''^{-1} u_{\lambda} \zeta$ and $\zeta'^{-1} u_{\kappa}$ $=\zeta''^{-1}u_{\lambda}$ and this contradicts to the assumption that $\bar{e}'\bar{A}\bar{e}'u_{\lambda} + \bar{e}'\bar{A}\bar{e}'u_{\lambda}$. Hence $S_{\rm z_2} \cap S_{\rm z_1} \neq 0$ or $S_{\rm z_2} \cap S_{\rm z_3} \neq 0$. Now if we put $S^{(1)}_{\rm z_2} = S_{\rm z_2} \cap S_{\rm z_1}$ and $S^{(2)}_{\rm z_2} = S_{\rm z_2} \cap$ S_{13} . Then $S_{22} = S_{22}^{(1)} + S_{22}^{(2)}$. For $S_{22} \cap S_{12} = 0$. Next $S_{21} \cap S_{11} = 0$ and if we put $S_{13} \cap S_{21} = S_{21}^{(1)}$ and $S_{12} \cap S_{21} = S_{21}^{(2)}$ we have $S_{13} = S_{22}^{(2)} + S_{21}^{(1)}$) and and $d(S_{22}^{(2)}) = d(S_{21}^{(2)})$. Similarly $S_{12} = S_{21}^{(2)} + S_{23}^{(1)}$. Moreover But $d(S_{23}^{(2)})=d(S_{21}^{(2)})=d(S_{22}^{(2)})$. Hence Thus $S_{11} = S_{22}^{(1)} + S_{23}^{(2)}$. Next if $S_{33} \cap S_{11} \neq 0$ and $S_{33}^{(1)} = S_{33} \cap S_{11} \subseteq S_{23}^{(1)}$ $_2^{\textrm{L}}$, we have $S_{33}^{(2)} = S_{12} \cap S_{33} \supsetneq S_{21}^{(2)}$. For $d(S_{33}^{(1)}) \not\subseteq d(S_{22}^{(1)})$ and $d(S_{33}^{(2)}) \not\subseteq d(S_{21}^{(2)})$. Thus $S^{(2)}_{33} \cap S^{(1)}_{23} = 0$ but this is a contradiction and $S^{(2)}_{33} = S^{(1)}_{22}$. In the same way | as above we can prove this lemma.

Next we shall show that if *Ne* is the direct sum of three simple components isomorphic to $\overline{A} \overline{e}'$ and if $e'N$ is a simple right ideal, then A is not of left cyclic representation type. For this purpose we shall prove

Lemma 3. Suppose that $e'Ne = \bar{e}'\bar{A}\bar{e}'u_1 \oplus \bar{e}'\bar{A}\bar{e}'u_2 \oplus \bar{e}'\bar{A}e'u_3 = u_1\bar{e}\bar{A}\bar{e}.$ Then $\mathfrak{M} = Aem_1 + Aem_2$, where $u_1m_1 \neq 0$, $u_2m_1 = 0$, $u_3m_1 = u_3m_2$, $n_2m_2 \neq 0$ and $u_1m_2=0$, is directly indecomposable.

Proof. Suppose that \mathfrak{M} is directly decomposable and $\mathfrak{M} = Aen_1 \oplus$ Aen_z where $n_1 = \alpha_1 m_1 + \alpha_2 m_2$, $n_2 = \beta_1 m_1 + \beta_2 m_2$, α_i , $\beta_j \in \bar{e} \bar{A} \bar{e}$ and $\bar{\alpha}_i \neq 0$, $\beta_j = 0$. If $u_1 n_1 = 0$, $u_1 \alpha_1 m_1 + u_1 \alpha_2 m_2 = 0$. Hence we can suppose that $\alpha_1 = \xi_{12} + \eta_{13} + \gamma$, $\alpha_2 = \xi_{11} - \eta_{13} + \gamma'$ where $\xi_{12} \in S_{12}$, $\eta_{13} \in S_{13}$, $\xi_{11} \in S_{11}$ and , $\gamma' \in eNe$. Then we can write $\xi_{12} = \xi_{21}^{(2)} + \xi_{33}^{(1)}$, $\eta_{13} = \eta_{22}^{(2)} + \eta_{21}^{(1)}$, $\xi_{11} = \xi_{22}^{(1)} + \xi_{23}^{(2)}$ where $\xi_{ij}^{(k)} \in S_{ij}^{(k)}$. Thus $u_2 n_1 = u_2 \alpha_1 m_1 + u_2 \alpha_2 m_2 = (u_2 \xi_{21}^{(2)} + u_2 \xi_{23}^{(1)} + u_2 \eta_{22}^{(2)} +$ $u_2\eta_{21}^{(1)}\right) m_1 + (u_2\eta_{22}^{(2)} + u_2\eta_{21}^{(1)}+u_2\xi_{22}^{(1)}+u_2\xi_{23}^{(2)})m_2$ and if $u_2n_1 = 0$, we have $\xi_{23}^{(2)} =$ $-\xi_{23}^{(1)}, \xi_{21}^{(2)} = -\eta_{21}^{(1)}$ and $\eta_{22}^{(2)} = -\xi_{22}^{(1)}$. But $S_{23}^{(2)} \cap S_{23}^{(1)} = 0$. Hence $u_2n_1 \neq 0$.

Similarly $u_3n_1\neq0$. Moreover we can prove that $u_2n_1\neq u_3n_1$. Now suppose that $u_2n_1 = u_3n_1$. First we may suppose that $u_2\rho = u_3$ where $\rho \in S_{23}^{(1)}$. For if $u_2 \rho = \overline{\rho} u_3$, we can take $u_3' = \overline{\rho} u_3$ in place of u_3 and it is easily shown that $S_{\kappa\lambda}^{(i)}$ are invariant for u_1, u_2, u_3' . Then $(u_2 \xi_{21}^{(2)} + u_2 \xi_{23}^{(1)}$ $u_3 \xi_{33}^{(1)} + u_3 \xi_{32}^{(2)}$) m_2 where we can put $\xi_{21}^{(2)} = \xi_{33}^{(2)}$, $\xi_{23}^{(1)} = \xi_{31}^{(1)}$, $\eta_{22}^{(2)} = \eta_{31}^{(2)}$, $\eta_{21}^{(1)} = \eta_{32}^{(1)}$, $\eta_{22}^{(2)} = \eta_{31}^{(2)}$, $\eta_{21}^{(1)} = \eta_{32}^{(1)}$, $\xi_{22}^{(1)} = \xi_{33}^{(1)}$ and $\xi_{23}^{(2)} = \xi_{32}^{(2)}$. Hence $u_1 + u_2 \xi_{23}^{(1)} m_1 + u_2 \eta_{21}^{(1)} m_1 + u_2 \eta_{22}^{(2)} m_2 + u_2 \xi_{22}^{(1)} m_2 + u_2 \xi_{23}^{(2)} m_2 = u_2 \rho \xi_{33}^{(2)} m_1 + u_2 \rho \xi_{31}^{(1)}$ $+u_2 \rho \eta_{31}^{(2)} m_1 + u_2 \rho \eta_{32}^{(1)} m_2 + u_2 \rho \xi_{33}^{(1)} m_2 + u_2 \rho \xi_{32}^{(2)} m_2$ and from the independency of u_2m_2 and $u_3m_1 = u_3m_2$ we have $\xi_{21}^{(2)} + \eta_{21}^{(1)} = \rho \xi_{31}^{(1)} + \rho \eta_{31}^{(2)}$, $\xi_{23}^{(1)} + \xi_{23}^{(2)} = \rho \xi_{33}^{(2)}$ and $\eta_{22}^{(2)} + \xi_{22}^{(1)}$:

Now from the assumption we have $\rho \in S_{23}^{(1)} = S_{12}^{(1)} = S_{31}^{(1)}$. Hence $\rho S_{11}^{(1)} = S_{12}^{(1)}$, $\rho S_{12}^{(1)} = S_{13}^{(1)}$, $\rho S_{13}^{(1)} = S_{11}^{(1)}$, $\rho S_{12}^{(2)} = S_{13}^{(2)}$, $\rho S_{11}^{(2)} = S_{12}^{(2)}$ and $\rho S_{31}^{(2)} = S_{23}^{(2)}$. Thus we have $\eta_{21}^{(1)} = \rho \xi_{31}^{(1)}$, $\xi_{21}^{(2)} = \rho \eta_{31}^{(2)}$, $\xi_{23}^{(1)} = \rho \xi_{33}^{(1)}$, $\xi_{23}^{(2)} = \rho \xi_{33}^{(2)}$, $\eta_{22}^{(2)} = \rho \xi_{32}^{(2)}$ and $\xi_{22}^{(1)} = \rho \eta_{32}^{(1)}$. But $\xi_{22}^{(1)} = \xi_{33}^{(1)}$, $\eta_{32}^{(1)} = \eta_{21}^{(1)}$ and $\xi_{31}^{(1)} = \xi_{23}^{(1)}$. Hence we have $\rho^3 = e$ $(\rho \neq e)$. But if this is true, $e = \frac{e + \rho + \rho^2}{2} + \frac{2e - \rho - \rho^2}{2}$ is the decomposition **o** *o* of e into two idempotents orthogonal to each other, where we assume that the characteristic is not 2 and not 3, and this contradicts to the fact that *e* is a primitive idempotent. Thus we have $Au_2n_1 \neq Au_3n_1$. fact that e is a primitive idempotent. Thus we have $\Delta u_2 h_1 + \Delta u_3 h_1$.
If the eperatoriation is $2/(a-a)^3$, 0 and $a - \epsilon \overline{a} \overline{A} \overline{a}$. But this is a son If the characteristic is 3, $(e-p) = 0$ and $e-p \in eAe$. But this is a con-
the little set of the characteristic is θ and e^2 and the continuous tends tradiction. If the characteristic is α , $e + \rho + \rho^2$ and $\rho + \rho^2$ are idempotents orthogonal to each other and $e = (e + p + p) + (p + p)$.

In the same way as above, if $u_1h_1 = 0$, we have $u_2h_2 = 0$, $u_3h_2 = 0$ and $Au_2u_2 + Au_3u_2$ and the largest completely reducible A -left submodule of \mathfrak{M} is the direct sum of at least four simple components. But this contradicts to the assumption, since the largest completely reducible A -left submodule of ω is the direct sum of three simple components. Thus the proof of this lemma is complete.

If *Ne* is the direct sum of at least three simple components (not all isomorphic to each other), it is proved by the same way as above or [III] that *A* is not of left cyclic representation type.

Lastly we can easily prove

Lemma 4. If $e_1 \neq e_2$ and Ne_1 and Ne_2 contain simple components iso*morphic to each other, A is not of left cyclic representation type.*

Hence if A is of left cyclic representation type and $N\!e_{\scriptscriptstyle 1}$ and $N\!e_{\scriptscriptstyle 2}$ contain simple components isomorphic to each other, we have $Ae_1 \cong Ae_2$.

From the above lemmas we have

Theorem 1. Suppose that $N^2 = 0$. If A is of left cyclic represent*ation type, it satisfies the following conditions*:

- (1) *Every* $e_{\lambda}N$ *is simple*
- (2) Every Ne_{κ} is the direct sum of at most two simple components.

§3. In this section we suppose that N^2+0 . First of all we shall prove the following

Lemma 5. If $Ne/N^2e = A\bar{u}_1 \oplus A\bar{u}_2$, then there exist v_1 , v_2 such that *where* $v_1 \equiv \bar{u}_1$ (N²) and $v_2 \equiv \bar{u}_2(N^2)$.

Proof. From the assumption $Ne = Av_1 + Av_2 + N^2e$ where $v_1 \equiv \bar{u}_1$ and $v_z \equiv \bar{u}_z(N^2)$. Now $N^2 e = N v_1 + N v_2 + N^3 e$. Hence $N e = A$ Thus if we continue this process, we have $Ne = Av_1 + Av_2$.

Next we suppose that $Ne = Au_1 + Au_2$ where $e'u_1 = u_1, e'u_2 = u_2$. Then we can put $w_1 = u_1$ or $w_1 = u_2$.

Thus we have

Corollary 1. Suppose that $Ne/N^2e = \bar{A}\bar{u}_1 + \bar{A}\bar{u}_2$ where $\bar{A}\bar{u}_1 \simeq \bar{A}\bar{u}_2 \simeq \bar{A}\bar{e}',$ *and e'N*| $e'N^2$ *is simple.* Then $Ne = Au_1 + Au_2$, $e'N = u_1A$ and, if $\eta, \gamma \in \bar{e}'\bar{A}\bar{e}',$ *there exist* $\eta', \gamma', \eta'' , \gamma'' \in \bar{eA} \bar{e}$ *such that* $\eta u_1 = u_1 \eta', \ \gamma u_2 = u_1 \gamma'$ *or* $\eta u_1 = u_2 \eta''$ *,* $\gamma u_2 = u_2 \gamma''$.

From the above lemma we have also

Corollary 2. If $Ne_i = Au_1^{(i)} + Au_2^{(i)}$, an arbitrary element of N is *the sum of* $u_{\kappa_1}^{(j_1)} \cdots u_{\kappa_n}^{(j_n)} \alpha$ where $\alpha \in \bar{e}_{j_n} \bar{A} \bar{e}_{j_n}$.

Next suppose that $Ne = Au_1 + Au_2$, $e'N = u_1A = u_2A$, $Ne' = Av_1 + Av_2$ and $e''N = v_1A = v_2A$. Then $Nu_1 = Ne'u_1 = Av_1u_1 + Av_2u_1 = Av_1u_1 + Av_1\alpha u_1$ $= Av_1u_1 + Av_1u_1\alpha'$. Hence if $v_1u_1 = 0$, we have $Nu_1 = 0$.

Then we have

Lemma 6. Suppose that $Ne_1 = Au_1 + Au_2$ and $eN = u_1A = u_2A$. If $eN^2e_2\rightleftharpoons N^3$, then A is not left cyclic representation type.

Proof. In order to prove this lemma we have only to construct a directly indecomposable A-left module $\mathfrak{M} = Ae_{1}m_{1} + Ae_{2}m_{2}$ *.* For this purpose we suppose that $Ne_2 = Av_1$, $N^2e_1 = 0$ and $N^3e_2 = 0$. Since eN^2e_2 we have $e_1Ne_2\rightleftarrows N^2$. For if $e_4Ne_2\rightleftarrows N^2$ ($\xi\neq 1$), $eN^2e_2=eNe_1\cdot e_4Ne_2$ \mathcal{N}^3 . But since $e_1 e_2 = 0$, this is a contradiction.

Now we put $v_1m_2 \neq 0$, $u_1v_1m_2 \neq 0$, $u_2v_1m_2 \neq 0$, $u_1v_1m_2 \neq u_1m_1$ and $u_2m_1 \neq 0$. Then we can prove that $\mathfrak M$ is directly indecomposable. Namely if $\mathfrak D$ is directly decomposable, $\mathfrak{M} = Aen_1 \oplus Ae_2n_2$ where $n_2 = m_2$. If $u_1n_1 = 0$ we have $n_1 = m_1 - v_1 m_2$ and then $u_2 n_1 = u_2 v_1 m_2 + 0$ and $A e_2 n_2 \wedge A e_1 n_1 + 0$. This is a contradiction.

From this lemma we obtain

Corollary 3. If $Ne_1 = Au_1 + Au_2$ and $eN = u_1A = u_2A$ we have $eNie'$ $\left(\frac{1}{N}N^{i+1}\right)$ for each *i* and for every e'.

Next suppose that *A* is of left cyclic representation type. Then if $Ne = Au_1 + Au_2$ and $Ae_i \sim Au_i$, it is proved that $Au_1 \cap Au_2 = 0$. Namely if $e_1 + e_2$, we can prove this fact from Lemma 3 and Corollary 2. Next if $e_1 = e_2$, then there exists α such that $u_2 = u_1 \alpha$ where $\alpha \in \bar{e} \bar{A} \bar{e}$. If $Au_1 \cap Au_2 = 0$ then there exists $w = 0$ such that $w = \gamma v_1 \cdots v_m u_1 = \beta w_1 \cdots w_n u_2$ where γ , $\beta \in \bar{e}'\bar{A}\bar{e}'$ and we have $\gamma v_1 \cdots v_m u_1 = v_1 \cdots v_m u_1 \gamma'$ and $\beta w_1 \cdots w_n u_2$ $= v_1 \cdots v_m u_1 \alpha \beta'$. Now since $\alpha \beta' \in S_{12}$ and $\gamma' \in S_{11}$, we have $\alpha \beta' \neq \gamma'$. Hence from $v_1 \cdots u_m u_1 \gamma' = v_1 \cdots v_m u_1 \alpha \beta'$, we have $v_1 \cdots v_m u_1$ $(\gamma' - \alpha \beta') = 0$ and $v_1 \cdots v_m u_1 = 0$. But this is a contradiction.

Thus we have

Lemma 7. If $Ne = Au_1 + Au_2$ and $Ae_i \sim Au_i$, we have $Au_1 \cap Au_2 = 0$.

Lastly we shall prove that if $Ne = Au_1 \oplus Au_2$ and A is of left cyclic representation type, each Au_i $(i=1,2)$ has only one composition series.

Now suppose that $Ne = Au_1 \oplus Au_2$, where $N^{\mu}u_1 = 0$, $N^{\mu}u_2 = 0$, $N^{\mu-1}u_1$ $A(v_1 \oplus Av_2)$ and $N^{l-1}u_2 = Aw$. Then from Lemma 5 Av_1 , Av_2 and Aw are simple and are not isomorphic to each other and we can construct a directly indecomposable A-left module $\mathfrak{M} = Aem_1 + Aem_2$. Namely we put $v_1m_1 = 0$, $v_1m_2 \neq 0$, $v_2m_1 \neq 0$, $v_2m_2 = 0$ and $u_2m_1 = u_2m_2$. Then we can prove that \mathfrak{M} is directly indecomposable.

Moreover Lemma 6 can be obtained from the above result, Lemma 3 and Lemma 7.

Thus we have

Theorem 2. If A is of left cyclic representation type, the following *conditions are satisfied*:

(1) Each $e_{\lambda}N$ has only one composition series.

(2) *Each Nv is the direct sum of at most two cyclic left ideals, homomorphic to Ae^, each of which has only one composition series.*

§4. In this section we shall prove that, if two conditions of Theorem 2 are satisfied, *A* is of left cyclic representation type.

Now from the assumption it follows that an arbitrary block of this algebra is as follows:

(1) Every Ae_i has only one composition series.

(2) $\{Ae_1, \dots, Ae_{r-1}, Ae_r, Ae_{r+1}, \dots, Ae_n\}$, which has the following properties:

(a) Every Ne_i $(i=1,\dots,r-1)$ has only one composition series or $N e_i = A u_i^{(1)} \oplus A u_i^{(2)}$ $(i=1, \cdots, r-1)$, where $A e_{\kappa_1} \sim A u_i^{(1)}$, $A e_{\kappa_2} \sim A u_i^{(2)}$ $e_{\kappa_1} \neq e_{\kappa_2}$ and $Ae_{\kappa-1} \sim Ne_{\kappa}$.

(b) $Ne_r = Au_1 \oplus Au_2$ where $Ae_{r-1} \sim Au_1 \cong Au_2$ and Au_i has only one composition series.

(c) $N^2 e_i = 0$ ($i = r+1, \dots, n$).

(3) ${Ae_1, \dots, Ae_n}$ where $Ne_i = Au_1^{(i)} \oplus Au_2^{(i)}$, $Ae_k \sim Au_1^{(i)}$, $Ae_k \sim Au_2^{(i)}$ and $e_{\kappa} \neq e_{\lambda}$.

In the case (1) we can prove it by the same way as [I].

Now we shall prove it in the case (2).

Let $\mathfrak{M} = \sum_{\alpha} \sum_{\alpha} A e_{\alpha} m_{\alpha, i_{\alpha}}$ be an arbitrary A-left module. Then it is clear that $\sum A_{e_{r+1}} m_{r+1,i_{r+1}}, \dots, \sum A_{e_n} m_{n,i_n}$ are the direct components of We. Now if we prove that $\sum_{i} \tilde{A}e_r m_{r,i_r}$ is the direct sum of $Ae_r n_{r,i_r}$,

 $\sum Ae_{\kappa}m_{\kappa,i_{\kappa}}$ ($\kappa = r+1, \cdots, n$) are also the direct sums of $Ae_{\kappa}n_{\kappa,i_{\kappa}}$.

First we state the following

Lemma 8. If $e_{\lambda}w_1 = w_1$ and $e_{\lambda}w_2 = w_2$ where $w_1, w_2 \in Ne_r$, then there $exists \xi \in \bar{e}_r \bar{A} \bar{e}_r \text{ such that } w_1 = w_2 \xi.$

The proof of this lemma is easy from Corollary 2.

Now suppose that $\mathfrak{M} = (Ae_r m_1 \oplus \cdots \oplus Ae_r m_{n-1}) + Ae_r m_n$ and $(Ae_r m_1 \oplus$ $\cdots \oplus A e_r m_{n-1} \cap A e_r m_n \neq 0$. Moreover we assume that $N e_r m_n = A u_r m_n$ *+Au₂* m_n . Then we can prove that \mathfrak{M} is the direct sum of $Ae_r n_i$, in the following way:

(a) If $N^i u_1 m_n \subset (A e_r m_1 \oplus \cdots \oplus A e_r m_{n-1})$ we can put $v u_1 m_n = \alpha_1 v u_1 m_1$ $+\beta_1vu_2m_1 + \cdots + \alpha_{n-1}vu_1m_{n-1} + \beta_{n-1}vu_2m_{n-1}$, where $N^ie_{r-1} = Av$. Now if we p ut $m'_1 = \alpha'_1 m_1 + \beta'_1 \alpha m_1, \cdots, m'_{n-1} = \alpha'_{n-1} m_{n-1} + \beta'_{n-1} \alpha m_{n-1}$, where $\alpha_i v u_1$ $=vu_1\alpha'_i$, we have $vu_1m_n=vu_1m'_1+\cdots+vu_nm'_{n-1}$. Moreover we can assume that the length of Au_1m_n is larger than any Au_1m_i ($i \leq n-1$) and the length of Au_2m_n is larger than any Au_2m_n such that the lengths of all *Au*_{*i*} m_{κ} ($\kappa = \kappa_1, \cdots, \kappa_s$) are equal. Then if we put $m_{\kappa}^{\prime} = m_{\kappa} - m'_{\kappa_1} - \cdots - m'_{\kappa_s}$, we have $vu_1m_n' = vu_1m_{n_1} + \cdots + vu_1m_{n-s}'$ and $\mathfrak{M} = Ae_r m_{n_1} + \cdots + Ae_r m_{n_s} + \cdots$ $\{(Ae_{r}m_{\lambda_{1}}\oplus\cdots\oplus Ae_{r}m_{\lambda_{n-s}})+Ae_{r}m_{n'}\}$. By the same way as above, we can prove that $\mathfrak{M} = Ae_r n_1 \oplus \cdots \oplus Ae_r n_n$.

(b) Suppose that $N^i u_1 m_n \subset (Ae, m_1 \oplus \cdots \oplus Ae, m_{n-1})$ and $N^j u_2 m_n \subset I$ $(Ae_r m_1 \oplus \cdots \oplus Ae_r m_{n-1})$. Then we can put $vu_1 m_n = \alpha_1 vu_1 m_1 + \beta_1 vu_2 m_1 + \cdots$ $+\alpha_{n-1}vu_1m_{n-1}+\beta_{n-1}vu_2m_{n-1}$ and $wu_2m_n = \gamma_1wu_1m_1+\xi_1wu_2m_1+\cdots+\gamma_{n-1}wu_1m_{n-1}$ f^* ^E_{n-1}Wu₂ m_{n-1} where $N^i e_{r-1} = Av$ and $N^j e_{r-1} = Aw$. First if we take $m_n' = m_n - (\alpha_1' + \beta_1' \alpha) m_1 - \dots - (\alpha_{n-1}' + \beta_{n-1}' \alpha) m_{n-1}$ in place of m_n , we have $vu_1m_n' = 0$ and we can reduce this case to the case (a).

Next we shall show that $\sum_{i=1}^{r} \sum_{i=1}^{r} Ae_{\kappa} m_{\kappa, i_{\kappa}}$ is the direct sum of $A e_{\kappa} n_{\kappa, i_{\kappa}}$. From the above result and from [I] each $\sum_{i} Ae_{\lambda}m_{\lambda,i\lambda}$ ($\lambda = 1, \dots, r$) is the direct sum of $Ae_{\kappa}n_{\lambda,i_{\lambda}}$. Hence we assume that $Ae_{i}m_{i} \wedge (Ae_{i+1}m_{i+1} \oplus \cdots \oplus Ae_{i})$ $Ae_r m_r$) $\neq 0$ and $N^i e_i m_i \subset Ae_{i+1}m_{i+1} \oplus \cdots \oplus Ae_r m_r$. Here we remark that if $e'w_1 = w_1$ and $e'w_2 = w_2$ where $w \in Ne_\lambda$ and $w_2 \in Ne_{\lambda+j}$, there exists $p \in e_{\lambda}Ne_{\lambda+j}$ such that $w_1p = w_1$.

Now suppose that $wm_i = \alpha_i w_i m_{i+1} + \cdots + \alpha_{r-i} w_{r-i} m_r$. Then from the above remark we have $w_i = w p_i, \dots, w_{r-i} = w p_{r-i}$ and if we take $m_i' = w$ $m_i - \alpha'_i p_i m_{i+1} - \cdots - \alpha'_{r-i} p_{r-i} m_r$ in place of m_i , $A e_i m_i' \cap (A e_{i+1} m_{i+1} \oplus \cdots \oplus$ $Ae_{r}m_{r} = 0.$

In the case (3) we can prove by the same way as above. Thus we have

Theorem 3. Aw *algebra A is of left cyclic representation type if*

xK

and only if the following conditions are satisfied:

(1) Each $e_{\lambda}N$ has only one composition series.

(2) Each Ne_x is the direct sum of at most two cyclic left ideals, *homomorphic to Ae^, each of which has only one composition series.*

(Received September 22, 1958)

Bibliography

- (I) T. Nakayama: Note on Uniserial and Generalized Uniserial rings, Proc. Imp. Acad. 16, 285-289 (1940).
- (II) T. Nakayama: On Frobeniusean algebra II. Ann. of Math. 42, 1-21 (1941).
- (III) T. Yoshii: On Algebras on Bounded Representation Type. Osaka Math. 6, 105-107 (1956).

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\alpha} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\alpha} \frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}$