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1. Introduction

BP is the Brown-Peterson spectrum for a fixed prime p. It is an associa-
tive and commutative ring spectrum whose homotopy is BP*=Z(p)[υ1, " ,vn, •••].
Following Ravenel [9] we denote by Ln the localization with respect to vήιBP*-
homology and by L^ that with respect to © ^PP^-homology. Then there is
a tower

for each CW-spectrum X. A CW-spectrum X is said to be harmonic if
X=LooX, and s-harmonic if X=LooX where we put LooX=lιmLnX. X is

n

harmonic whenever it is s-harmonic. In this paper we study some properties
of s-harmonic spectra. Especially we discuss L^E when E is an associative
jBP-module spectrum which satisfies one or two of the following conditions:
I ) E* is vm-torsiov for any m<n,

II) E* is vm-torsίon for any m>n,
III) BP*/Im 0 E* is vm-torsίon free for any m^n,

IV) ΎormP*(BP*IImy E*) is vm-divisible for any m<ny and
V) horn diniβp*!?* ̂  n.

As such associative .BP-module spectra we have P{n), k(n), BPζn>, NnBP
and so on.

We show that an associative .BP-module spectrum E is s-harmonic if
horn dim5P+ E* is finite (Theorem 4.8). This implies RaveneΓs result ([9,
Theorem 4.4] or [6, Theorem 1.3]) that a pΛocal connective CW-spectrum
X is harmonic if horn dimβPίlc BP*X is finite (Corollary 4.9). However the
finiteness assumption is not necessarily essential because LooBPζn} is s-harmonic
although hom dimBP* LooBPζn}* is infinite for n^l (Proposition 4.12).

We intend to describe elementary properties of s-harmonic spectra corre-
sponding to those of harmonic spectra. The product of harmonic spectra is
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always harmonic. But its property is not valid for s-harmonic spectra. By
computing lim1 Nm+1(T[n>m En)* where En=Nn+1BP or Nn+ιBP<n>y we finally

m

show that neither ΐ[Nn+1BP nor ΐ[LooBPζny is ί-harmonic (Theorems 6.3 and
6.4). This says that L^ is never a localization functor, and hence LooX^LooX
in general.

2. Associative UP-module spectra NnE and MnE

Let us denote by Ln the localization functor with respect to the (vήιBP)*-
homology, and by L^ and Lω those with respect to the (V v^BP)*- and

n

(Π ^SP^-homologies respectively. Then there is a tower

x>5 = l Q > -Ljβp == J-Jω ^ -L/oo > ' *' ^ Lin >• * * * > IJQ z = JL*sQ

consisting of localization functors.
Define cofibrations

(2.1) NnX -^ MnX -> Nn+1X

inductively by setting N0X=X and MnX=LnNnX. Then there is a commuta-
tive diagram

(2.2) X > LnX v Ί,-"Nn+ιX

lί I 1

involving four cofibrations [9, Theorem 5.10].

Lemma 2.1. i) //" £" is an (associative) BP-module spectrum, then LnE}

NnE and MnE are all so.
ii) If f: E->F is a BP-module map of BP-module spectra, then Lnf Nnf and
Mnf are all so.

Proof, i) Consider the following diagram

BPJ:
\

E—
ί

^LnE

BP^Σ-«Nn+1E
i

-> 2-Nu+1E -

with cofibering rows. There is a unique map BP^LnE-^LnE making the left
square commutative since BP^Nn+1E is ^BP^-acyclic. Thus LnE inherits
a .BP-module structure from that of E. The associativity of LnE is assured
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by the uniqueness of induced maps. Moreover there is a unique map
BPJVn+1E->Nn+1E making the other squares commutative. This also gives a
i?P-module structure on Nn+1E.

ii) It is easy to show ii) along the above line.

Let E be an associative BP-module spectrum such that

(I)w E% is vm-torsionfor each m<n.

Notice that BP*E^BP*BP ® E* is also zv-torsion for each m<n. As is easily
seen, the multiplications

BP*

vn®l: BP*BP®v~ιi
BP* 1

are isomorphisms. This means that both of the maps

1 Λ : vήλBPJE->VnlBPJE and vn^ί: BP^

are homotopy equivalences. Hence the canonical maps

//} <2\ _,—•1 D D XT' (Tί — 1 ~D~D ,•,> — 1 E 1 -̂  D 7 ) Λ«~~l 3J1

/ j t/« JDJL I-J > ^ / ^ #"Si ^ / O T x]/ < AJJΓ VΊΛ J-J

are homotopy equivalences, too.

Proposition 2.2. Le£ J? fe αw associative BP-module spectrum whose homo-
topy E% is vm-torsionfor any m<jt. ThenLmE=ptfor any m<jι^ andLnE=VnlE.

Proof. The canonical map E-^v^E is a ^^^P^-equivalence. On the
other hand, we consider the commutative diagram

W

I
BPJV

1 II
V >v-ιBP^v~ιE

for any map/: W->vήιE. The map/is trivial whenever W is ^ .
This says that vήιE is ί -^P^-local. Therefore LnE=v71E, and hence LmE=
vή1E=pt for any m<n.

Theorem 2.3. Let E be an associative BP-module spectrum. Then the
CW-spectra NnE and MnE are associative BP-module spectra, and moreover
MnE=VnlNnE. (Cf, [9, Theorem 6.1]).

Proof. By induction on n we will show that NnE is an associative

module spectrum whose homotopy NnE* is τ^-torsion f°Γ a n y m<n. By using
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Proposition 2.2 the induction hypothesis implies that MnE=vή1NnE. Hence
Nn+ιE* is clearly z;m-torsion for any mtίn. From Lemma 2.1 it follows that
MnE and Nn+1E are associative BP-module spectra. Therefore Nn+1E has the
desired property.

Corollary 2.4. Let E be an associative BP-module spectrum. Then LnE^X=
Ln(E^X) and

Proof. Assume that the BP-module map NnE^X-^NJβ^X) is a homo-
topy equivalence. Then it follows from Theorem 2.3 that the BP-module
map MnE^X->Mn(E^X) is so, and hence the .BP-module map Nn+1E^X->
Nn+1(E^X) is so, too. Moreover the BP-module map LnE^X->Ln(E^X) is
also a homotopy equivalence.

Similarly we obtain

Corollary 2.5. Let Eλ9 λEΛ, be associative BP-module spectra. Then

V LnEλ=Ln(V Eλ) and V NnEλ=Nn(V Eλ).

Let E be an associative BP-module spectrum such that

(Π)M E* is vm-torsionfor each m>n.

Then Nn+1E* is ^-torsion for every m^O. So we have

Proposition 2.6. Let E be an associative BP-module spectrum whose homo-
topy E* is vm-torsionfor any m>n. Thm LooE=LnE.

Putting Propositions 2.2 and 2.6 together we obtain

Corollary 2.7. Let E be an associative BP-module spectrum whose homo-
topy E* is vm-torsion except for m=n. Then L^E^=VnlE.

The associative BP-module spectra P(n) and k(n) satisfy the condition
(I)Λ, and both BPζri) and k(n) satisfy the condition (Π)w. So we have

(2.4) LnP(n) = v-ιP(n) = B(n)y L^k(n) = v~ιk(n) = K(n) and

L«,BP<n> = LnBP<n>.

3. ι?m-torsion free and ^-divisible

Let A = (a0, #i, ••*, ah •••) be an infinite sequence of positive integers.
Denote by BPJnA the associative BP-module spectrum with
JnA where JnA=(pao, v"i, •••, vn

nSιι). There is a cofibering

_> BPJnA -> BPJn+1A

Va

n

n

which induces the short exact sequence 0->BP*IJnA -^BP*IJnA-+BP*IJn+1A->0
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of SiVmodules. The composite BPJnA^Ίt

2{p'"1-1)a-^ιBPJn.ιA
^/nAi+nβp y i e l d s a BP-module map

VA:

where \JnA\—Έtl^i<n2(pi—l)ai. The induced homomorphism ηA*\ BP*jJnA-+

NnBP* carries 1 top-aoΌϊβι—Όϊ't-κ

For any two sequences A=(a0) aly •••, aiy •••) and A'=(a'Oy a[y •••, α', •••)

with l ^ β ^ β j , we write A^A'. For such a pair A^A' the triangle

is commutative where the left vertical arrow is just the multiplication by pbov{i

""Vn-i1 w ^ t n bi=a/

i—ai. So we have an isomorphism

(3.1) \\mBP*jJnA — NnBP*

of BP* -modules.

Let N be a 12P*-module. There is an exact sequence 0->Torf p*(BP*/

JnA, N) - ΎorSIf (BPtlJ^A, AT)— ΎoxξlΐiβP^J^A.N). Hence we verify

that Ύorξp*(BP*IJnA,N)^{χ(=N;Vkkχ=0 for each &<rc}. The projection

BP*\JnA'-+BP*\JnA induces a homomorphism

pAtAr. Torf' (BPJJnA', N) -* Tor? ' (SP*//^, ΛO

which is just the multiplication by ph*vii-"Vb

n

nSi1

y and the multiplication

^oϋίi. .ί J l 1: BP*jJnA->BP*IJnA' induces a homomorphism

^ t i l : Torf ^* (BP+IJA N) -> TorΓ* (BP*\JnA\ N)

which is the inclusion. As is easily checked, we have

(3.2) §APA,A' = ^n-ipA^A' and dA'μA',A = μA'tAdA .

Notice that Tor«p* (NnBP*f N)s* {x<=N; x is ^-torsion for each k<n}. The

.BP-module map VA: BPJnA->VJnMNnBP yields the inclusion

λ^: TorΓ (BP*/JnAy N) - TorΓ* (NnBP*y N).

Obviously we see

(3.3) ^A'PA'.A = ^A and \AdA = λ^ .
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Let E be an associative SP-module spectrum such that

(III)n BP*IIm ® E% is vm-torsion free for each m^n.
BP*

For example, take BPζrΐ) as E satisfying (ΠI)n. Given a sequence A —
(a0}al9 •• ,α t , •••) with a^ί we can show by induction on Σo^^A ^ w + l that
for any m^n,

(3.4) BP*IJmA ® JE* w vm-torsίonfreey and Torf p*(BP*IJm+1A, E*)=0for each®

Moreover we have an isomorphism

(3.5) BP*IJa+1A J> β P * X - BPJm+1A*X

of SPjj.-modules for any w^w, when E—BP^X satisfies (ΠI)M.

Lemma 3.1. Let E be an associative BP-module spectrum such that
BP*jIm®E% is vm-torsion free for any m^n. Then the BP-module map

jsp*

Nm+1BP^E->Nm+1E induces an isomorphism Nm+1BP* ® E^->Nm+1E^ of BP*-
BPi,

modules for each m^n. And the sequence 0->NmE*->MmE*->Nm+1E*-+0 of
BP^-modules is exact for each m^n.

Proof. In the commutative diagram

Torf ^ (Nm+1BP*, E*)-*
• BJP* . i3P* . 5P*

y y y

JVΆ > M Λ > Nm+ιE*

with exact rows, we observe from (3.1) and (3.4) that Torf p*(Nm+1BP*> E*)=0.
Apply induction on m to obtain our result.

Corollary 3.2. Let E be an associative BP-module spectrum as in Lemma
3.1. Then we have an isomorphism Nn+1BPJmA*®E*->ΎoriP*(BP*IJmA,Nn+1E*)

BPi,

for each m^n-{-l where A=(aOy au •••, aiy •••) with α, ^ l .

Proof. Proceed induction on m^09 the m=0 case being immediate from
Lemma 3.1.

Lemma 3.3. Let E be an associative BP-module spectrum such that BP^j
Im ® E* is vm-torsion free for any m^n. Then BP^/In+1 ® E*=0 if and only

BP* 23P*

if Nn+1E=pt.

Proof. If BP*/In+1 ® £ * = 0, then BPJJn+1A ® E* = 0, and hence
BP* BP*
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Nn+1BP* ® £ * = 0 . By Lemma 3.1 this means that Nn+1E=pt. On the other
JBP*

hand, the canonical map BP*βn+ι ® E%->Nn+1BP% ® E* is monic since the
BP* BP*

map BP*jIn+ι ® E*->BP*IJn+ιA ® E* is so. The converse is now clear.
J5P* ϋP*

Proposition 3.4. Let E be an associative BP-module spectrum such that
BP^jIm ® E% is vm-torsion free for any m^n. Then L0E%=E*®Q and the short

BP*

exact sequence 0->E%—>LmE%—>Nm+ιE%-j>0 is split as a BP^-module for each my

ί^m^n. (Cf., [9, Theorem 6.2]).

Proof. Consider the commutative diagram

0 -> E* Lm-iE

I

0
I

I

I
o

with exact rows and columns. Define the splitting φm: Nm+1E*->LmE* by
setting φm(z)=km(y) where z=jm(y).

Corollary 3.5. Let E be an associative BP-module spectrum as in Proposi-
tion 3.4. Then we have an exact sequence 0^^Nn+ιE^->LnE^->LmE^-^Nm+1E^-^0
of BP ̂ -modules for each m<n.

Φnt+l

Proof. Use the fact that the composition Nm+2E* • Lm+ιE* -> LmE%
is trivial.

Let E be an associative -BP-module spectrum such that

(IV)n+1 Tor£p* (BP*IIm, E*) is vm-dίvίsible for each m^n.

For example, take Nn+ΪBP as E satisfying (IV)M+1. As is easily shown, it follows
that for any m^n,

(3.6) W * (BP*/JmA, E*) is vm-dwisibley and Tor?p* (BP+IJ^A, E*)=0 for
each

where A=(a0> aly •••,#,-, •••) with a^ί. Moreover there is an isomorphism

(3.7) BPJa+1A*X -* Ύoxill (BP*/Jm+1A,
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of BP*-modules for any m^n, when E=BP^X satisfies (IV)W+1.

Lemma 3.6. Let E be an associative BP-module spectrum such that
Tor£p* (BP*IIm, E%) is vm-divisible for any m^n. Then there is an isomorphism
Nm+1Eilt-*Ύoriζi(Nm+ιBP^E^) of BP^-modules for each m^n. And the
sequence 0->Nm+1E%->NmE*-:>MmE*->0 of BP ̂ -modules is exact for each m^n.

Proof. Since Tor£p* (Nm^BP*, E*)=0 by (3.1) and (3.6), we have a
commutative diagram

I

0-+Toτ*ζt{NM+ιBPWίf E*)

with exact rows. Apply induction on m.

Lemma 3.7 Let E be an associative BP-module spectrum such that
ToriP*(BP^/Im) £*) is vm-divisible for any m^n. Then Torζff(BP*IIn+1, E*)=0
if and only if Nn+1E=pt.

Proof. If Tor3*?(BP*/In+1, E*) = 0, then we observe that Torf/f
(Nn+1BP*yE*) = 0 and hence Nn+1E=pt by Lemma 3.6. The converse is
also valid since Torf/ί (BP^In+ly E^Ύorξ^iN^BP*, E*) is monic.

4. Harmonic spectra and s-harmonic spectra

A CW-spectrum X is said to be harmonic if it is (V VnlBP)*-\oc2λ, thus
n

if X=LooX. X is said to be s-harmonic if X=limLnX.
n

We first list elementary results on harmonic spectra [3].

(4.1) If X-*Y->Z is a cofibering and only two of X, Y and Z are harmonic,
then so is the third.

(4.2) A retract of a harmonic spectrum is also harmonic,

(4.3) The product of a set of harmonic spectra is harmonic.

(4.4) An s-harmonίc spectrum is always harmonic.

Lemma 4.1. Let E be an associative BP-module spectrum which is con-
nective. Then E is harmonic if and only if so is BP^E.

Proof. Recall t h a t £ * £ P ^ £ ^ | V ,*n, •••]• P u t ^ = t f i tf :
for a finite sequence A — (aly •••, an, 0, •••) where \A\=Ίll^i^n2(pi—ί)ai. All
the maps tΛ give rise to a BP-module map t: V ΣU]E->E^BP, which is a
homotopy equivalence. Under our assumption that E is connective, V
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Π Σ u l ί . Therefore BP^E is a product of suspensions of E. So our result

is evident.

Lemma 4.2. Assume that a CW-spectrum X is connective. If BP^X is

harmonic, then XZ(p) is harmonic, too.

Proof. Let BP=BP/S be the cofiber of the unit S-+BP and put BPn=

y //-times. By induction on n using Lemma 4.1 we can show that

BPJgpn^X is harmonic. Let KnX be the cofiber of ΊΓnΈFt

ΛX-J>X. Then we

have a cofibering Kn+1X-*KnX-*Έ,-nBPJΪP\X. Therefore KnX becomes

harmonic for every n ^ 0. When X is connective, it follows that XZ(P) =

lim KnX, and hence it is harmonic.
n

We next discuss elementary results on ^-harmonic spectra. Put LooX=

\mιLnX and ti00X

Lemma 4.3. A CW-spectrum X is s-harmonic if and only if timNn+1X*=

Proof. By applying Verdier's lemma [1] we see that X=LOOX if and only

i£ ftββX=pt.

Lemma 4.4. Let X-+Y-^>Z be a cofibering of CW-spectra. If any two

of X, Y and Z are s-harmonic, then so is the third.

Proof. By Verdier's lemma we obtain that NooX=^ίoOY if and only if

^Z=pt.

Lemma 4.5. Let X be a retract of a CW-spectrum Y. If Y is s-har-

monic, then so is X.

Proof. The composition NooX-^NooY ̂ NooX is a homotopy equivalence

if the composition X-+Y-+X is just the identity. Hence iv^Y—pt implies

fi»X=pt.

Corollary 4.6. Let E be a BP-module spectrum. Then E is s-harmonic

ifsoisBPj:.

A CW-spectrum X is said to be dissonant if it is (V ΐ ^ j
n

Lemma 4.7. Let C be the cofiber of X-^L^X. Then LooX is s-harmonic

if and only if C is dissonant.

Proof. Note that L^L^X^LooX. It is easy to show that LooX^L^X

if and only if C is dissonant.
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For a BP*-module N we define wdimg&N^n if Torf P (JV, M ) = 0 for
all k>n and all associative AP^JSP-comodules M. Notice that vrdimg&v^N^n
for any BP* -module N [6].

Theorem 4.8. Let E be an associative BP-module spectrum such that
w dirndl?* is finite. Then E is s-harmonic.

Proof. By induction on d = w dimcgcpE*. We first assume that E% is
J3£P-flat. By use of Lemma 3.1 we see that the sequence 0-+NnE*-^>MnE*^>
Nn+1E*->0 are exact for all w^O. This implies that limNn + 1E*=0= limW^Z?*.
Therefore E is ί-harmonic by Lemma 4.3. Next, take a cofibering Y->W-+E
which induces a short exact sequence 0-+BP*Y-^BP*W-^BP*E->0 of BP*-
modules such that BP*W is BP^-free. Note that w dirng^BP^E^w dirngcpZ?*.
By induction hypothesis, BP^Y and BP^W are both ^-harmonic. Hence BPJE
and therefore £ are s-harmonic.

Combining Theorem 4.8 with (4.4) and Lemma 4.2 we have

Corollary 4.9 [9, Theorem 4.4]. Let X be α connective CW-spectrum
such that w dim^^> BP*X is finite. Then XZ^p) is harmonic.

Remark that w dim$g>BP*X is the same as the PP^-projective dimension
of BP*X when X is connective.

Lemma 4.10. Let E be an associative BP-module spectrum such that
w dλm$gE*^Ln. Then 0->E*-+LnE*->Nn+1E*->0 is a short exact sequence of
BP ̂ .-modules.

Proof. Consider the commutative square

E* > LnE*

I i

where the bottom is isomorphic. Since w dim (gcpBP^E^n, it follows from
[8, Lemma 3.4] that BP*E is svtorsion free So the left arrow is monic, and
hence the top one is monic.

By using Proposition 2.2 and Lemma 4.10 together we have

Corollary 4.11. Let E be an associative BP-module spectrum such that
E* is vm-torsion for any m<n and w d i r n ^ Z ? * ^ . Then E* is vn-torsionfree.
(Cf., [8, Lemma 3.4]).

Proposition 4.12. Let n^ί and E be an associative BP-module spectrum
such that BP*IIn+1® £ * φ θ . Assume that BP*jIm®E* is vm-torsion free
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for any m^n and E* is vk-torsion for any k>n. Then LooE is s-harmonic but
w diπiφcpZ/ooZ?* is infinite.

Proof. From Proposition 2.6 it follows that L^E is s-harmonic and more-
over that Nn+1EΦpt is dissonant, thus Nn+1E* is s;m-torsion for all m^O. As-
sume that wdim^cpjBJii<oo. Because of Lemma 3.1 it is easily checked that
w dim^cpNn+ιE^<oo, which contradicts to Corollary 4.11. Therefore w d i r n ^
E*=ooy and hence also w dimtgcpLooE:i:=oo by Proposition 3.4.

The iSίP-weak dimensions of P(w)*> K(ή)% and NnBP* are just n> but that
of LooBPζΐί)* is infinite when n^l. By Theorem 4.8 and Proposition 4.12
we obtain

(4.5) P(n), K{n\ NnBP and L^BPζn} are all s-harmonίc.

5. Cofiber of E-> L^E^ Um LmE

For associative BP-module spectra En the wedge sum V En and the pro-
n

duct Π En are both associative BP-module spectra. Denote by ωEn =
n n

Y[Enj\/En the cofiber of the canonical map \/En-+TJ En. This is a weak
associative BP-module spectrum. We now study Loo(\/En) and J L ^ Π En) f°Γ

suitable BP-module spectra En.

Proposition 5.1. Let En be associative BP-module spectra such that

w p
i) If En* is vm'torsionfor any m<n> then JL>(V En)=ΐl En.

ϋ) If ΐlfenEk* w vm-torsion for any m<n, then Loo(\/En) = J[En and it is s-
harmonic.

Proof, i) Put E=VEm. From Proposition 2.2 and Corollary 2.5 we
observe that LnE=LnE0\/ ••• VLnEn. Consider the commutative diagram

0 - ®m*uEM. > LnE* > ®m^nNn+1Em* -* 0

1 I I
0 -> θmsn-iEM* -* Ln-YE* —•> Θ ^ ^ Λ E , * -> 0

where two rows are exact by Lemma 4.10. By induction on ri^m we show
that wdim^cpΛ^i?^*^//. Assume that w άim^^NnEm*'^ny then Lemma 4.10
says that the sequence 0-^NnEm*->MnEm*-*Nn+1Em*-^0 is exact. Since
w dim$cpMnEm*tίn9 the induction hypothesis implies that w dim$g>Nn+1Em*ti
n-\-\. Hence the right vertical arrow is trivial in the above diagram. So we
obtain that ΐ[Em^limLnE* and lim 1Ln£# = 0. This yields that H EH =
lim (Eλ V V En)=lim LnE. <
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ii) Note that ωEn is clearly dissonant. Therefore Loo( V£w)=Loo(Π E*)=
Π En> and it is s-harmonic by i) and Lemma 4.7.

Corollary 5.2. Let En be associative BP-module spectra.
i) If En* is vm-torsion for any m<n, then L00(\/LnEn) = ΐ[ LnEn.

ϋ) If TlfenEk* is vm-torsion for any m<n> then L^VLnEn)=ΐ[ LnEn and it
is S'harmonic.

Proof. Since LnEn=v^1En by Proposition 2.2, it satisfies the conditions
stated in the above proposition.

Corollary 5.3. Let En be associative BP-module spectra whose homotopy
Ett* are v k-torsion for any k>n.
i) // En* is vm-torsion for any m<n, then J L ( V En)=Π LnEH.

ϋ) If^k^nEk* is vm-torsionfor any m<n, then L«,( V^ l l)=Lco(Π En)=L«>(TlEn)=
ULnEn.

Proof, i) Observe that J L ( VEn)=LOQ(\/LnEn) because of Proposition 2.6,
then use Corollary 5.2 i).

ii) Remark that L»(\/En) = LTO(Π-E«), L ( V EH) = L^VLJE,) and
L i ) . Apply Corollary 5.2 ii) and the above i) to obtain that

Applying Proposition 5.1, Corollary 5.3 and Lemma 4.7 we obtain some
examples.

(5.1) ^ 4 VNnBP)=ΐ[NnBP and L^{yNnBP) is not s-harmonic.
(5.2) L 4 V P ( Λ ) ) = J L ( VP(n))=Π P(n) and it is s-harmonίc.
(5.3) Ljy K{n))=L4y K(n))=R K(n) and it is s-harmonic.

(5.4) L4V^n))=MΠΛ(Λ))=λ-.(VA(n))=ito.(Π*(Λ))=Π^(n), « ^ it is s-
harmonic.

Proposition 5.4. Let En be associative BP-module spectra such that
Im ® En* are vm-tσrsion free for any m^n and En* are vk-torsion for any k>n.

Then there is a cofibering VEn—L.(VEn)-+UNu+1En, and L.(TlEn)=ULaEu.

Proof. Put E=VEn. The cofibering E-*LmE-*Nm+1E gives us a short

exact sequence 0^-E^-^L^^-^-N^^^-^O. This yields that ()->.£„.->lim LmE*

-^•lίmΛ/ffl+1£'*-*0 is exact and \\τίύLmE*sa \irr}Nm+ιE^. Here we consider the

commutative diagram

0 - iVw+1(V„>„£„)* — iV.+1E* -> ®uSmN.+JE+ - 0

I I I
0 - ΛΓ.( V.>»_i^.)# — iVM£* -> θ( lS«_1iV,+1£,. -* 0
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with exact rows. Since the left vertical arrow is trivial by Lemma 3.1, it is
immediate that lim Nm+ιE* ^ Π Nm+1Em* and lim1iVw+1£

l

ίiί==0. Obviously the
composition E^LOoE->J[LmE-+~[[Nm+1E^>J]LNm+lEm is trivial and it induces
a short exact sequence Q->E^-^LooE^-^YiNm+ιEm^-^Q. Hence it is easily veri-
fied that the sequence E-^L00E^>YiNm+λEm is a cofibering.

Next, put E~T[En. By a similar discussion to the above we can show
that the sequence 2?-»JLJ?->Π Nm+1Em is also a cofibering, since BP*jIm ®

HP*

(ΐlk>n^k*) is ^w-torsion free for any m^n-\-ί. Consider the commutative
diagram

E —>LM—>TίN m + 1 E m

\ \ \
TIE—*ULmE-+ UNa+1E

1 4 i
-* UNm+1Em

where all the rows are cofiberings. Taking the homotopy groups and using
Five lemma we obtain that L°°E=ΐ[LmEm.

Proposition 5.5. Let En be associative BP-module spectrum such that
BP*\Im ® En* are vm-torsion free for any m^n. Then there is a cofibering

V LnEn->l4 V LnEn)->U Nn+1EJ V Nn+1En.

Proof. Put LE=VLnEn and NE=VNn+1En. By applying Corollary 3.5
we obtain a commutative diagram

0 -* Nn+1(V„>„£„)* — LE* - ^ LaLE* -* Nm+1(V„>„,£„)* - 0

I II I ϊ
0 - ΛΓ.+1( V„>„-,£„)* - L ^ -> L.-xLB* -ΛΓm(V„>„-£„)* - 0

with exact rows. Then it is easily checked that the sequence Q^>LE*->
HmLmL£'H.-^lim1ΛΓB+1(VB>mEa)ψ-*O is exact and lim1LML£'Hc=0, because the
right arrow is trivial. Obviously the composition LE->L^LE->ΐlLmLE^-
ΐ[NmnEm->ωNm+1Em is trivial. Consider the commutative diagram

0 — Nn+1(V„>„£„)* - LE* > LaLE* > iV M + 1 (V„>„£,)* -> 0

II i i
0 -> iV,+1(V^.^.)* - NE* - ®nάmNn+1En, - 0

with exact rows. Taking the inverse limits we have the following commutative
diagram

0 - LE* • LJ£* > Urn1 iVffl+1(V „ > „ £ „ ) * - 0

I I II
0 - NE* - ΠNn+1En* - JimW^ίVo,^,)* - 0
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with exact rows. This means that the sequence LE-^LooLE->ωNn+1En induces
a short exact sequence 0->LE*->LooLE*->JINtt+1En*l®Nn+1En*^0. Therefore
the sequence LE-^L0OLE-^ωNn+1En is a cofibering.

Notice that Π Nn+1BPζn>* is not ^-torsion for every m^O. Combining
Propositions 5.4 and 5.5 with Lemma 4.7 we have

(5.5) Loo(VBP<«», £oo(Π-frP<>>) and L..(VLnBP<n» are not s-harmonic.

We next discuss JJ En/VEn for suitable En.

Proposition 5.6. Let En be associative BP-module spectra such that BP*j
Im ® En* are vm-torsiσn free for any m^n. Then JVEnj\/En is s-harmonic.

BP*

Proof. BP*[Im ® (ΠJ?«*/ΘS«*) is ^-torsion free for each m^O, so
BP*

®En* is .S^-flat. Since BP*ωEn^BP*BP ® ( Π ^ /Θ^ι, ) ί s a l s o

BP^ωEn is ^-harmonic by Theorem 4.8 and hence ω£Λ itself is s-harmonic by
Corollary 4.6.

Combining Proposition 5.6 with Lemma 4.4 we have

Corollary 5.7. Let En be associative BP-module spectra as in the above
proposition. Then L^S/E,) is s-harmonic if and only if so is Loo(Π En)

Proposition 5.8. Let En be associative BP-module spectra such that
Ύor%p*(BP*/Im, Eni) are vm-divisible for any m^n. Then UEnlVEn is non
-harmonic if VNn+1EnΦΐ[Nn+1En.

Proof. Consider the composite map BPIn+1^En->ΣknBP^En->En where
l. In the following commutative diagram

//,+1> BP*E.)

the left vertical arrow is isomorphic by (3.7) and the bottom one is epic. More-
over the diagonal is obviously monic. So the upper composition is non-trivial
if Nn+1EnΦpt. This shows that the induced map ωBPIn+1^En->ωEn is non-
trivial. Therefore ωEn is not harmonic, because ωBPIn+1^En is dissonant.

Corollary 5.9. Let En be associative BP-module spectra such that BP*j
Im (g) En* are vm-torsion free for any m^n. If ϊ[Nn+1EnlVNn+1EHΦpt9 then it

-BP*

is non-harmonic.

Proof. By Corollary 3.2 we observe that for each m^n TorίP*(BP*/Imi
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Nn+1En*)^Nn+1BPIm* <g) En* and it is ^-divisible.
BJP*

6. Harmonic but not s-harmonic spectra

Let En be associative BP-module spectra such that ΎoriP*{BP^Im Z?n*)
are ^-divisible for any m^n. For each A=(a09 al9 •• ,<2ί, •••) w i t h α ^ l the
BP-module map ΐlBPJm+ιAyκEn->ΐ[Έl*BP^En->TlΈ(*En has a factorization

Π BPJm+1A^En -> 2 — 1 + < X , + 1 ( Π «.) - Σ* Π £*

where the product Π πins through all n*tm-{-s, s^O and <x= \Jm+iA \ -\-m-{-l=
. Consider the commutative diagram

UBPJm+lA*En > i

in which the left vertical arrow is isomorphic by (3.7), the bottom is epic and
the diagonal is monic. Note that every homomorphism ΠTor^+*(#?#/
Jm+iAyEn*)->Lm(ΐlEn)% is trivial because J[BPJm+1A^En is ^-torsion for any
k^m. So there exists a dotted arrow

(6.1) ΎA: U,>m

making the square and the triangle commutative in the above diagram. As is
easily seen, the triangle

( 6 2 )

is commutative for any pair AtίA'.

Lemma 6.1. Let En be associative BP-module spectra such that Tor£p*
(BP*IIm, En*) are vm-divisible for any m^n. The homomorphisms yA induce
an isomorphism

γ: Hrn Π . ^
A

for every m^O where s^O.

Proof. There is a short exact sequence Q-*Ύorlίζt(BP*IJm+1A,

Ύor*p*(BP*/JmA9 En*)^ΎoxB

m

p*{BP*IJmA, En*)->0 for any n^m. So we con-
sider the following commutative diagram
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0 -* MmΠTor5£ί(βP*//.+1Λ, £„,) - Urn Π ΎoxB

n

p*(BP*lJmA, En,)

with exact rows, where the direct limit lim runs through all sequences A =

fa, •••, aίt •••, am, 0, •••) with α,-^l and the product Π does through all

ra^m+ί+l. When the central arrow is isomorphic, the right is so and hence

the left is also so. Therefore we can show our result by induction on m.

Lemma 6.2. Let En be associative BP-module spectra such that

{BP*jIm,En,) are vm-dίvisible for any m^n. Then lim 1iVw + 1(ΠB a m£B)*φ0

if VNn+1En*UNn+1En.
n

Proof. For all n7>0 we may assume that Nn+ιEn4=pt, thus Torf/*

(BP*IIΛ+uEH.)Φ0. Denote by pA: TorB

m

p*(BP*IJmA, En*)->ΎorB

m

p*(BP*IIm,

En+) the induced homomorphism from the projection BP*/JmA^>BP*/Im.

Clearly it is epic for each m^n-\-l. Pick up an element ymn in Tor^p*

(BP*/JmAm, En*) for each m^n+ί such that pAm(ymn)Φθ where Am = (m, •••,

m, •••). These elements form an element ym={ymn}Am in l i m Π n ^ - i T o r ^ *

(BP*IJmAy E, )«ΛΓβ(ΠΛ.-A)*- ~*
We here assume that lim1ΛΓίn(Π»^»ί-i^«)*:=0. Then there exist elements

xm in Λ ^ I L ^ n - i ^ ) * such that ym = xm—h(xm+ύ where δ: Nm+ι(J\n>mEn)*->

NmEM^ι«®Nm(ΐln^MEH)^. Notice that for every my there is a certain sequence

Ax=(aOyal9 -> yaiy •••) with a^ί and elements xm>n in ΎoriP*(BP*IJmAXy En*)

such that xM= {xmJAχ in lΰn n ^ m - i T o r f ^ B P * / / ^ , En )
 U s i n g t h e i n c l u -

sion \A:Ύor^{BP^JmAyEn^ΎoriP*{NmBP^yEn,)^NmEn,y we obtain the

relation that λ i 4 w <(<yW ) M)=λ i4X(^m > M)—λ^m + l f W).

By induction on n—m^ — l we will show that there exist elements Λ^W

in Tor2 p (BP*/JmAn+ly En*) such that λ ^ β + 1 ( < 0 = W * « . * ) a n d P^+iί^.O + O.

First put ̂ ^ - 1 = ^ ^ - ! since λ ^ w ( ^ , m - i H λ ^ x ( ^ , w - i ) We next suppose

that there exists an element x'm+itn in Tor%Pϊ(BP*IJm+1An+ly En*) such that

λ ^ + 1 ( ^ + l,n) = λ ^ Γ ( ^ + l M ) and pAH + 1(x'm + i,n)±0. Put < n = ^ + 1) J ^ . n ) +

8^+1K+i.«)» u s i n g t h e inclusions μAn+1 Am: ΎovB

m

p*(BP*jJmAmy En*)->Tor£p*

(BP*!JmAn+ly En*) and 9 W T o r ^

JmAn+ly En*). By use of (3.3) we see that

XAn+1{x'm,n) Moreover it follows from (3.2) that vlpAn+i(x'mtn)==dAιpAn+1{x'm+in)*

0 in Torip*(BP*/ImyEn*)y because pAn+1μAn+1,Am=0 for n+l>m. This'says

that p , w + 1 ( 4
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We now set n=Max(a0, aly •••, am^ for the above Ax. Then \Az{
χmtt)

=

^AM + 1I*AU + UAZ(XM,H) a n d ^AΣ{Xm,n) = ^An + 1{x'mn\ therefore Xm,n = μAn + 1,Ax(Xm,n)

This implies that pAu+1(x'm,n)==pAH+1M>An+1,AZ(xm,n)=Q, which is a contradiction.

At last we can state our main results.

Theorem 6.3. Let En be associative BP-module spectra such that Tor^ p *

(BP*IIm, En*) are vm-divisible for any m^n and w dxmcβcpEn*^n+1. If

VNn+1EnΦUNn+1En,then
n n

i) \/En is not harmonic, and

ii) Π En is harmonic, but not s-harmonic.
n

Proof. In the cofibering V EH-+ΐlEn->ωEn> HEn is harmonic by Theorem

4.8 and (4.3). However ωEn is not harmonic by Proposition 5.8. Hence

VEn is not harmonic by (4.1).

Put E=Y[Eny then consider the commutative diagram

0 -> J W I L a - t f , ) * -* Nr»+iE* - ®n<mNm+1En* -> 0

0 - Λ Γ ^ Π ^ M ^ ) * — NmE* —> 0^-χJV^ - 0
with exact rows. From Lemma 3.6 it follows immediately that w

^n-\-l for each k^ny in particular w dim$g>Nn+1En*^n-{-1. Making use

of Lemma 4.10 we observe that w άim$gNmEn*t=km and 0-*NmEn*->MmEn*-+

Nm+1En*->0 is exact for every m^n-\-l. Hence the right vertical arrow is

trivial in the above diagram. So ln^Nm+1(]Jn^mEn)=ljm_Nm+1E. However

Lemma 6.2 shows that lim Nm+ι(Y[n^mEn)
z¥pti and hence E is not ί-harmonic.

Theorem 6.4. Let En be associative BP-module spectra such that BP*I

Im ® En* are vm-torsion free for any m^n and En* are vk-torsion for any k>n.

i) If VNH + 1EΛ=T[NH + 1EH, then VLnEn and T[LnEn are both s-harmonic.

ii) If VNn+ιEnΦT[Nn+1Eny then VLnEH is not harmonic} and U.LnEn is
n n n n

harmonic but not s-harmonic.

Proof, i) From Proposition 5.5 it follows that VLnEn is s-harmonic.

Since ωEn=ωLnEn and it is ί-harmonic by Proposition 5.6, JJLnEn is also

s-harmonic.

ii) By Proposition 5.5 and Corollary 5.9 \jLnEn is not harmonic. Put

LE=ULnEny then NM+1(US)=Nm+1(Un±MLJEu). So we have a commutative

diagram

Nm+1(Un^mEn) -> Nm+1(LE) -> Nm+1{TLu*mNn+1EH)

I {_ I
Nu(ΏΛ^M^En) —+ Nm{LE) — Nm(Un^m-i^n+ιEn)
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with cofibering rows. By use of Lemma 3.1 we see that limNm + 1(LE) =

1(Π» f̂flNw+ii?n) However Lemma 6.2 insists that lim Nm+1(ΐ[n^mNH+1En)

because Tor* P*(BP*/Im, Nn+1En*) ^ Nn+1BPIm* ® En* is ^-divisible for

each m^n. Therefore LE is not s-harmonic.

By applying Theorems 6.3 and 6.4 we have

(6.3) i) \/Nn+ιBP is not harmonic, and

ϋ) Π Nn+1BP is harmonic, but not s-harmonic.

(6.4) i) \ZLnBP<ri)> is not harmonic, and

ii) Π LnBP(n> is harmonic, but not s-harmonic.
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