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1. Introduction

BP is the Brown-Peterson spectrum for a fixed prime p. It is an associa-
tive and commutative ring spectrum whose homotopy is BPy=2Z(,[v;, ***, Vs ***]-
Following Ravenel [9] we denote by L, the localization with respect to v; ' BPy-
homology and by L.. that with respect to & o5 !BP,-homology. Then there is
a tower

X—>L. X —>LX—>L, X —LX

for each CW-spectrum X. A CW-spectrum X is said to be harmonic if
X=L.X, and s-harmonic if X = L..X where we put L.Xx :E_rrlL,,X. X is

harmonic whenever it is s-harmonic. In this paper we study some properties
of s-harmonic spectra. Especially we discuss L.E when E is an associative
BP-module spectrum which satisfies one or two of the following conditions:
1) E s v,-torsion for any m<n,
II) Ey is v,-torsion for any m>n,
III) BP*/I,,,B§ Ey. is v,,~torsion free for any m=mn,

.

IV) Torp"(BPy/l,, Ey) is v,,-divisible for any m<n, and
V) hom dimgpEx=<n.

As such associative BP-module spectra we bhave P(n), k(n), BP<{n>, N,BP
and so on.

We show that an associative BP-module spectrum E is s-harmonic if
hom dimgp, E4 is finite (Theorem 4.8). This implies Ravenel’s result ([9,
Theorem 4.4] or [6, Theorem 1.3]) that a p-local connective CW-spectrum
X is harmonic if hom dimgp, BP4X is finite (Corollary 4.9). However the
finiteness assumption is not necessarily essential because L..BP<{n) is s-harmonic
although hom dimgp, L..BP<{n) is infinite for n=1 (Proposition 4.12).

We intend to describe elementary properties of s-harmonic spectra corre-
sponding to those of harmonic spectra. The product of harmonic spectra is
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always harmonic. But its property is not valid for s-harmonic spectra. By
computing ‘li_rgl Nypii(lls2m Ey)x where E,=N,.,BP or N, BP<{n), we finally

show that ne’i'ther II N,+,BP nor II L.BP<{n) is s-harmonic (Theorems 6.3 and

6.4). This says that L., is never a localization functor, and hence L.X#L.X
in general.

2. Associative BP-module spectra N,E and M, E

Let us denote by L, the localization functor with respect to the (v;'BP)y-
homology, and by L. and L, those with respect to the (V v;'BP)4- and

(IT v»'BP)4-homologies respectively. Then there is a tower
LS =id _>LBP — Lw'_) L,—— L” —>ere—> Lo — LSQ

consisting of localization functors.
Define cofibrations

(2.1) N,X = M,X - N,.,.X

inductively by setting NyX=X and M, X=L,N,X. Then there is a commuta-
tive diagram

SMX = 3"M,X

! y
2.2) X—>LX—> 35"N,.X
li ! y

X—- L, X—> ST"INX
involving four cofibrations [9, Theorem 5.10].

Lemma 2.1. i) If E is an (associative) BP-module spectrum, then L,E,
N,LE and M E are all so.
ii) If f: E—F is a BP-module map of BP-module spectra, then L,f, N,f and
M., f are all so.

Proof. i) Consider the following diagram

BP_E -> BP_L,E — BP.5""N,,,E — BP S'E
\ ! V y

E‘—‘H LnE —_—> E_nN”.H_E _—> EIE

with cofibering rows. There is a unique map BP L,E—L,E making the left
square commutative since BP, N, E is v;'BPy-acyclic. Thus L,E inherits
a BP-module structure from that of E. The associativity of L,E is assured
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by the uniqueness of induced maps. Moreover there is a unique map
BP_N,..E—N,,E making the other squares commutative. This also gives a
BP-module structure on N, E.

i) It is easy to show ii) along the above line.

Let E be an associative BP-module spectrum such that
(D), Ey is v,-torsion for each m<n.

Notice that BP E=BP4BP ® E, is also v,-torsion for each m<nm. Asis easily
v e . Py
seen, the multiplications ?

1®v,: v;'BPxBP @ E, — v;'BP,BP ® E,

BPy BPyx

2,®1: BPyBP ® v;'Ey — BP4BP @ v, 'E,
BPy BPy

are isomorphisms. This means that both of the maps
19, v;'BP E—v;'BP E and v, 1: BP,v;'E — BP v;'E
are homotopy equivalences. Hence the canonical maps
(2.3) v, 'BP E — v;'BP _v;'E < BP v;'E
are homotopy equivalences, too.

Proposition 2.2. Let E be an associative BP-module spectrum whose homo-
topy Ey is v,,-torsion for any m<n. Then L,E=pt for any m<n, and L,E=2;"'E.

Proof. The canonical map E—v;'E is a v,;'BPy-equivalence. On the
other hand, we consider the commutative diagram

f

W _> 'U,TIE
| N
BP_W ——> BP v7'E—— v;'E

! I
v;'BP, W —> v;'BP_v;'E

for any map f: W—v;'E. 'The map f is trivial whenever W is v;'BPg-acyclic.
This says that v;'E is v;'BPy-local. Therefore L,E=v;'E, and hence L, E=
vy E=pt for any m<n.

Theorem 2.3. Let E be an associative BP-module spectrum. Then the
CW-spectra N,E and M,E are associative BP-module spectra, and moreover
M,E=v;'N,E. (Cf,[9, Theorem 6.1]).

Proof. By induction on # we will show that IV,E is an associative BP-
module spectrum whose homotopy N,Ey is v,-torsion for any m<<n. By using
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Proposition 2.2 the induction hypothesis implies that M,E=v;'N,E. Hence
N, Ey is clearly v,-torsion for any m<n. From Lemma 2.1 it follows that
M,E and N, E are associative BP-module spectra. Therefore N,.,E has the
desired property.

Corollary 2.4. Let E be an associative BP-module spectrum. Then L,E X=
L(E X) and N.E X=N,(E X).

Proof. Assume that the BP-module map N,E X—N,(E X) is a homo-
topy equivalence. Then it follows from Theorem 2.3 that the BP-module
map M,E X— M, (E X) is so, and hence the BP-module map N,,,E X—
N, (E X) is so, too. Moreover the BP-module map L,E X—L,/(E X) is
also a homotopy equivalence.

Similarly we obtain

Corollary 2.5. Let E,, NEA, be associative BP-module spectra. Then
\)( LnE}\:Ln(\)‘/ E)\) and Y NnEA:Nn(Y EA)‘

Let E be an associative BP-module spectrum such that
(I), E is v,-torsion for each m>n.

Then N, ,Ey is v,-torsion for every m=0. So we have

Proposition 2.6. Let E be an associative BP-module spectrum whose homo-
topy Ey is v,,-torsion for anv m>n. Then L.E=L,E.

Putting Propositions 2.2 and 2.6 together we obtain

Corollary 2.7. Let E be an associative BP-module spectrum whose homo-
topy Ey is v,,-torsion except for m=n. Then L.E=v;'E.

The associative BP-module spectra P(n) and k() satisfy the condition
(I),, and both BP<{n> and k(n) satisfy the condition (II),. So we have

(24)  L,P(n) = v;i'P(n) = B(n), L.k(n)=v;'k(n) = K(n) and
L.BP<{n> = L,BP{n>.

3. v,-torsion free and v,-divisible

Let A=(ay ay, **, a;, -*) be an infinite sequence of positive integers.
Denote by BPJ,A the associative BP-module spectrum with BP],A,=<BP,|
J.A where J,A=(p", vf1, -, v,%7'). There is a cofibering

Sx#"-beBPJ A — BPJ,A — BPJ,..A

which induces the short exact sequence 0—BPy/ ],,Av—”>BP*/ [JuA—>BPy/[],+;A—0
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of BPy-modules. The composite BPJ,A—>3*""'"Denst1BPJ 4 —>.c.—>
S/n41*nBP yields a BP-module map

na: BPJ,A — SN, BP

where | J,A|=3,<,<,2(p'—1)a;. The induced homomorphism 7 ,+: BPy/],A—
N,BP, carries 1 to p~%vy%---0; -1,

For any two sequences A=(ay,a,, *, a;, *=*) and A’ =(ag, af, -+, al, -+*)
with 1<q;<a}, we write A<A’. For such a pair A<A’ the triangle

BP*/J,,A 7 Ax

BP}/J,,A’ =

NA *

N,BP,

is commutative where the left vertical arrow is just the multiplication by plov{:
"'”:111 with b;=a’—a;. So we have an isomorphism

3.1) lim BP,/J,4 — N,BP;

of BP4-modules.
Let N be a BPy-module. There is an exact sequence 0—'Tors?*(BPy/

0 Mo
J.A, N) = Tor2? (BPy/|J,-.A, N)z——la Tor2?#*(BPy/ J,-14,N). Hence we verify
that TorZ”* (BPy/J,A, N)={x&N; vftx=0 for each k<n}. The projection
BP,/],A'—BP,/],A induces a homomorphism

pas: Torf? (BPy/],A', N) — Tor%* (BP,/J,A, N)

which is just the multiplication by plov{i---vi27!, and the multiplication
plovfr---virit: BPy[J,A—BPy/],A’ induces a homomorphism

par,a: Tory?* (BPy[],A, N)— Tor; "* (BPy/],A’', N)
which is the inclusion. As is easily checked, we have
(3.2) 04Pa,ar = VNP4, 400 and Bypn 4= Ba’ 404 -

Notice that TorZ”* (N,BP4, N)= {xEN; x is v,-torsion for each k<n}. The
BP-module map 7,: BPJ,A—3/*4N,BP yields the inclusion

XA: TOrfP* (BP*/J”A, N) - TOI’fP* (N"BP*, N) .
Obviously we see

(3.3) A'A/II‘A/,A = XA and anA = XA .
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Let E be an associative BP-module spectrum such that

(IIT), BPy/I, @ Ey is v,,-torsion free for each m=n.
BPyx

For example, take BP{n> as E satisfying (III),. Given a sequence 4=
(@, @y, +++, a@;y +++) With ;=1 we can show by induction on Z<;<,a;=n+1 that
for any m=n,

(3.4) BP4/].A4 %E* is vy-torsion free, and Tori **(BPy[] w114, Ex)=0 for each
k=1. *

Moreover we have an isomorphism

(3.5) BP*/],,,+1AZ§ BPyX — BP [, Ax X

of BPy-modules for any m=<n, when E=BP_X satisfies (III),.

Lemma 3.1. Let E be an associative BP-module spectrum such that
BPy|1,QE, is v,-torsion free for any m=<mn. Then the BP-module map
BPx

N, ,BP_ E—N, .E induces an isomorphism N,,,+1BP*@E*—>N,,,+1E* of BPy-
BPx

modules for each m=n. And the sequence 0—N,Ey—>M,Es—>N, . E4—0 of
BPy-modules is exact for each m=n.

Proof. In the commutative diagram

TOI'IBP* (N"H_IBP*, E*)-)NMBP* ® E*_)MMBP* ® E*”N”H.IBP* ® E*—>0
l/ BPx l BPx i BPx

NmE* —> MmE* _— m+1E*

with exact rows, we observe from (3.1) and (3.4) that Tor{?*(N,,+;BPy, E4)=0.
Apply induction on m to obtain our result. '

Corollary 3.2. Let E be an associative BP-module spectrum as in Lemma
3.1. Then we have an isomorphism N, ,BP],A4QE—Tor,"(BPy[],A,N,.Ex)
BPx

for each m=n+-1 where A=(ay, a,, ***, a;, **+) with a;=1.

Proof. Proceed induction on =0, the m=0 case being immediate from
Lemma 3.1.

Lemma 3.3. Let E be an associative BP-module spectrum such that BP.[
I, ® Ey is v,-torsion free for any m=n. Then BPy[I, @ Ey«=0 if and only
BPx BPyx

Zf Nn+lE=Pt'
Proof. If BPg/I,., 1§) E, =0, then BP,/ jn+1AB§ E, =0, and hence
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N, BP, l(§> E,=0. By Lemma 3.1 this means that N,,,E=pt. On the other
hand, the canonical map BP*/I,,HB;@ E,—N,.,BP, }<§) E, is monic since the

map BPy/l,, g) Ey—BP,[], A (% E, is so. The converse is now clear.
* BPx

Proposition 3.4. Let E be an associative BP-module spectrum such that
BP|I,, Q E, is v,,-torsion free for any m=n. Then LiE,=EQQ and the short
BPx

exact sequence 0—E y—L,Ey—>N,, .. Ex—0 is split as a BPy-module for each m,
1=<=m=<n. (Cf.,[9, Theorem 6.2]).

Proof. Consider the commutative diagram

0

|
0— E* -> Lm—lE* - NmE* —0
V !
M,Ey——M,E,
B | Vim
0— Ey—L,Ey— w1y —0
y
0

with exact rows and columns. Define the splitting ¢,: Ny Ex—>L,Ey by
setting ¢,,(2)=Fka(y) where 2=j,(y).

Corollary 3.5. Let E be an associative BP-module spectrum as in Proposi-
tion 3.4. Then we have an exact sequence 0—N,\Ey—>L,Ey—>L,Ey—> N, E4+—0
of BPy-modules for each m<<n.

Proof. Use the fact that the composition N, ,Ey 2’"_’;1 L,,Ey—L,E,
is trivial.

Let E be an associative BP-module spectrum such that
(IV),+1 Torh™* (BPy/l,, Ey) is v,-divisible for each m<n.

For example, take IV,,BP as E satisfying (IV),,. As is easily shown, it follows
that for any m=<mn,

(3.6) Torh?* (BPy|J.A, Ey) is v,~divisible, and Tori ™ (BPy/] 114, E4)=0 for
each k=tm+1,

where A=(ay, ay, -+, a;, -*+) with a;=1. Moreover there is an isomorphism

(3.7) BPJ1A5X — Tori2t (BPy/J i, BP4X)
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of BP,-modules for any m=n, when E=BP, X satisfies (IV),,.

Lemma 3.6. Let E be ar associative BP-module spectrum such that
Tory?* (BPy/I,, Ey) is v,-divisible for any m=<n. Then there is an isomorphism
Ny Ey— Torsit (Ny41BPy, Ex) of BPy-modules for each m<mn. And the
sequence 0—N,, . \Ey— N, Ey—>M,E—0 of BP-modules is exact for each m<n.

Proof. Since Torp”* (N, BPy, Ex)=0 by (3.1) and (3.6), we have a

commutative diagram

Nm+1E* NME* MmE*

! ! v
0—>Tor2?4(N,1BPy, Ex)—>Tor2?*(N,BPy, Ey)—Tor?*(M,BPy, E4)—>0

with exact rows. Apply induction on .

Lemma 3.7. Let E be an associative BP-module spectrum such that
Tor5?*(BPg/I,,, Ey) is v,-divisible for any m<n. Then Tor;[#(BPy/I,.,, Ex)=0
if and only if N,..E=pt.

Proof. If TorZ[r(BP«/l,+1, Ex)=0, then we observe that TorZ[*
(N,11BPy, Ex)=0 and hence N, E=pt by Lemma 3.6. The converse is
also valid since Tor27#(BPy/I,+1, E4)— Tory ¥ (N,.,BPy, Ey) is monic.

4. Harmonic spectra and s-harmonic spectra

A CW-spectrum X is said to be harmonic if it is (\V v;'BP)y-local, thus
if X=L,X. X is said to be s-harmonic if X zli_rg L. X.

We first list elementary results on harmonic spectra [3].

4.1) If X—>Y—Z is a cofibering and only two of X, Y and Z are harmonic,
then so is the third.

(4.2) A retract of a harmonic spectrum is also harmonic.
(4.3) The product of a set of harmonic spectra is harmonic.
(4.4) An s-harmonic spectrum is always harmonic.

Lemma 4.1. Let E be an associative BP-module spectrum which is con-
nective. Then E is harmonic if and only if so is BP E.

Proof. Recall that E4BP=<E[t,,--+,t,,---]. Putti=¢{1.--¢/»: 5!4—BP BP
for a finite sequence A=/(a,, -, a,, 0, -++) where |4|=3,<;<,2(p'—1)a;. All
the maps #4 give rise to a BP-module map ¢: VV ZE—E BP, which is a
homotopy equivalence. Under our assumption that E is connective, V 4 E=



LocaLizaTioN oF BP-MODULE SPECTRA 427

[I='E. Therefore BP E is a product of suspensions of E. So our result
is evident.

Lemma 4.2. Assume that a CW-spectrum X is connective. If BP X is
harmonic, then XZ,) is harmonic, too.

Proof. Let BP=BP/S be the cofiber of the unit S—BP and put BP"=
BP_---_BP, n-times. By induction on 7 using Lemma 4.1 we can show that
BP_BP" X is harmonic. Let K,X be the cofiber of 5 "BP" X—>X. Then we
have a cofibering K,,X —>K,X—>3""BP BP" X. Therefore K,X becomes
harmonic for every »=0. When X is connective, it follows that XZ,=

lim K, X, and hence it is harmonic.
n

We next discuss elementary results on s-harmonic spectra. Put L.X=
limL,X and N.X=1lim3"N,X.
NS PR

Lemma 4.3. A CW-spectrum X is s-harmonic if and only if lﬂ N, Xg=
O.—_—li_EIN,,HX e "

Proof. By applying Verdier’s lemma [1] we see that X=L..X if and only
if N X=pt.

Lemma 44. Let X—>Y—Z be a cofibering of CW-spectra. If any two
of X, Y and Z are s-harmonic, then so is the third.

Proof. By Verdier’s lemma we obtain that N.X=N.Y if and only if
N.Z=pt.

Lemma 4.5. Let X be a retract of a CW-spectrum Y. If Y is s-har-
monic, then so is X.

Proof. The composition N.X—>N.Y-N.X is a homotopy equivalence
if the composition X—Y—X is just the identity. Hence N. Y=pt implies
N.X=pt.

Corollary 4.6. Let E be a BP-module spectrum. Then E is s-harmonic
if so is BP_E.

A CW-spectrum X is said to be dissonant if it is (\V v;'BP)y-acyclic.

Lemma 4.7. Let C be the cofiber of X—L.X. Then L.X is s-harmonic
if and only if C is dissonant.

Proof. Note that L.(L.X)=L.X. It is easy to show that L.X=L.X
if and only if C is dissonant.
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For a BPy-module N we define wdimgeN=<n if Torg?*(N, M)=0 for
all 2> and all associative BPyBP-comodules M. Notice that wdimgevy:'N=<n
for any BPy-module N [6].

Theorem 4.8. Let E be an associative BP-module spectrum such that
wdimgaeE, is finite. Then E is s-harmonic.

Proof. By induction on d=wdimgpFE,. We first assume that E, is
BP-flat. By use of Lemma 3.1 we see that the sequence 0—N, E— M, E.—
N, E4—0 are exact for all n=0. This implies that liirl_.N,,HE*:O: lixEan*lE*'
Therefore E is s-harmonic by Lemma 4.3. Next, take a cofibering Y—>W—E
which induces a short exact sequence 0—BPyY—>BPW—>BP,E—0 of BPy-
modules such that BP, W is BP,-free. Note that w dimg@BP+E=w dimgaEy.
By induction hypothesis, BP_ Y and BP_ W are both s-harmonic. Hence BP E
and therefore E are s-harmonic.

Combining Theorem 4.8 with (4.4) and Lemma 4.2 we have

Corollary 4.9 [9, Theorem 4.4]. Let X be a connective CW-spectrum
such that w dimgp BPyX is finite. Then XZ,) is harmonic.

Remark that w dimge BP4X is the same as the BPy-projective dimension
of BP,X when X is connective.

Lemma 4.10. Let E be an associative BP-module spectrum such that
wdimgeEyx<n. Then 0—E4—L,E;—N, E—0 is a short exact sequence of
BP.-modules.

Proof. Consider the commutative square

E, —— L,E,

V v
o7 BPLE — v;'BP,L,E

where the bottom is isomorphic. Since w dimgeBP+E=n, it follows from
[8, Lemma 3.4] that BPyE is v,-torsion free. So the left arrow is monic, and
hence the top one is monic.

By using Proposition 2.2 and Lemma 4.10 together we have

Corollary 4.11. Let E be an associative BP-module spectrum such that
Ey is v,-torsion for any m<n and w dimgpEx=<n. Then Ey is v,-torsion free.
(Cf., [8, Lemma 3.4]).

Proposition 4.12. Let n=1 and E be an associative BP-module spectrum
such that BPy[I,., l@ Ey=0. Assume that BP/I, @ Ey is v,-torsion free
* BPy
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for any m=n and E is v,-torsion for any k>n. Then L.E is s-harmonic but
wdimgeL.Eyx is infinite.

Proof. From Proposition 2.6 it follows that L.E is s-harmonic and more-
over that N,,,E=pt is dissonant, thus N, ,Fy is v,-torsion for all m=0. As-
sume that wdimggE,<<co. Because of Lemma 3.1 it is easily checked that
w dimg N, E4x<< oo, which contradicts to Corollary 4.11.  Therefore w dimge
Ey=oo, and hence also wdimggL..E,=oo by Proposition 3.4.

The BP-weak dimensions of P(n)y, K(n)y and N,BP, are just z, but that
of L.BP{n), is infinite when #=1. By Theorem 4.8 and Proposition 4.12
we obtain

(4.5) P(n), K(n), N,BP and L.BP<{ny are all s-harmonic.

5. Cofiber of E—L.E=limL,E

For associative BP-module spectra E, the wedge sum V E, and the pro-
duct IT E, are both associative BP-module spectra. Denote by oE,=
II E,/VE, the cofiber of the canonical map VE,—I[ E,. This is a weak

associative BP-module spectrum. We now study L.(VE,) and L.(II E,) for
suitable BP-module spectra E,.

Proposition 5.1. Let E, be associative BP-module spectra such that
wdimggE,«<mn.
i) If E,» is v,,-torsion for any m<n, then L..(\V E,)=1I E,.
il If TlsznEss is vy,-torsion for any m<a, then L.(VE,)=11E, and it is s-
harmonic.

Proof. i) Put E=VE,. From Proposition 2.2 and Corollary 2.5 we
observe that L,E=L,E,V -V L,E,. Consider the commutative diagram

0— eaménEm* I LnE* — EBmgnNn+1 m* > 0

V V V
0— @mén-—lEm* - Ln—lE* - Gam.ﬁn—INnEm* -0

where two rows are exact by Lemma 4.10. By induction on n=m we show
that wdimge N, E,«<n. Assume that wdimgeN,E,+=<n, then Lemma 4.10
says that the sequence 0—N,E,.—M,E,— N, ,E,~—0 is exact. Since
w dimge M,E,+<n, the induction hypothesis implies that w dimgep N, ,E«=
n+1. Hence the right vertical arrow is trivial in the above diagram. So we
obtain that [T E,, = ll‘__m L,E, and l@m‘LnE*=O. This yields that I] E,=
liE(Elv VE,,)=}_iE L,E.
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ii) Note that »E, is cleatly dissonant. Therefore L.(V E,)=L(II E,)=
II E,, and it is s-harmonic by i) and Lemma 4.7.

Corollary 5.2. Let E, be associative BP-module spectra.
i) If E is v,-torsion for any m<n, then L..(\ L,E,)=T1I L,E,.
i) If IliznEw is v,-torsion for any m<n, then L.(V L,E,)=1I L,E, and it
is s-harmonic.

Proof. Since L,E,=v;'E, by Proposition 2.2, it satisfies the conditions
stated in the above proposition.

Corollary 5.3. Let E, be associative BP-module spectra whose homotopy
E,. are v,-torsion for any k>n.
i) If E,u is v,,-torsion for any m<n, then L.\ E,)=II L,E,.
i) If Mz, By is v,-torsion for any m<n, then L..(V E,)=L.(ILE,)=L(ILE,)=
IIL,E,.

Proof. i) Observe that L.(\ E,)=L.(V L,E,) because of Proposition 2.6,
then use Corollary 5.2 i).

ii) Remark that L.(VE,)= L.(IIE,), L«(VE,) = Ls(VL,E, and
L(VE)=L.IIE,). Apply Corollary 5.2 ii) and the above i) to obtain that
L.(VE)=IIL,E,=L.(VL,E,).

Applying Proposition 5.1, Corollary 5.3 and Lemma 4.7 we obtain some
examples.

(5.1) L.(VN,BP)=TII N,BP and L..(\ N,BP) is not s-harmonic.

(5.2) Lm(\/P(n))——-LN(VP(n))zﬂP(n) and it is s-harmonic.

(5.3) L.(VK(n)=L.(VK(n)=TI K(n) and it is s-harmonic.

(54) Lo(Vk(n)=L.(II k(n))=L..(\ k(n))=L.(II k(n)) =TI K(n), and it is s-

harmonic.

Proposition 5.4. Let E, be associative BP-module spectra such that BPy|

I, @ E,. are v,,-torsion free for any m=n and E,. are v,-torsion for any k>n.
BPy

Then there is a cofibering \/ E,,—»L,,(v E\)—-IIN,.E,, and f,m(H E)=TIL,E,.

Proof. Put E=VE,. The cofibering E—L,E—N,,,E gives us a short
exact sequence 0—>E4—L,Ey—>N,,,,E4—>0. This yields that 0—E,—lim L,E
—>1i_1_n__N,,,+1E*—>0 is exact and 4IiLnlL,,'E*% liLn‘Nm+1E*. Here we consider the
commutative diagram

0 - Nm+1(vn>mEn)* - Nm+1E* g @n§mNn+1 > 0

y V !
O i Nm(vn>m—1En)* g NmE* g @ném—leﬁlEn* g 0
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with exact rows. Since the left vertical arrow is trivial by Lemma 3.1, it is
immediate that lim N,,,,Ex=TI N,1.E, and lim'N,,,,Ex=0. Obviously the
composition E—L.E—T[L,E—II Ny E-IIN,+.E, is trivial and it induces
a short exact sequence 0—Ey—L.Ex—IIN,..E,«—0. Hence it is easily veri-
fied that the sequence E—L.E—TI N,.+E, is a cofibering.

Next, put E=I[E,. By a similar discussion to the above we can show
that the sequence E—>L.E—T] N,.E, is also a cofibering, since BPy/I, 1§

(Ili>nEws) is v,-torsion free for any m=<n+1. Consider the commutative
diagram

E — LNE - HNm+1Em

J V !
]._.[‘E_> HLmE—> HNm+1E
v l y

where all the rows are cofiberings. Taking the homotopy groups and using
Five lemma we obtain that L*E=T] L,E,,.

Proposition 5.5. Let E, be associative BP-module spectrum such that
BPy/I, @ E,« are v,-torsion free for any m=m. Then there is a cofibering
BP x

VLnEn—')Lw( anEn)_)H Nn+1En/\/Nn+1En'

Proof. Put LE=VL,E, and NE=V N,,E,. By applying Corollary 3.5
we obtain a commutative diagram

0— Nn+1(vn>mEn)* - LE* - LmLE* g m+1(\/n>mEn)* -0

V I V y
0— Nn+l(vﬂ>m—1En)* - LE* g Lm—lLE* - Nm(vn>m—1En)* -0

with exact rows. Then it is easily checked that the sequence 0—LEy;—
liln_L,,,LE*—Zligl wr1(V o sm Eq)x—0 1is exact and <l_iglL,,,LE*:O, because the
right arrow is trivial. Obviously the composition LE—> L.LE—TIL,LE—
I N,nE,—©NyE, is trivial.  Consider the commutative diagram

0 g Nn+1(vn>mEn)* g LE* — LmLE* — Nm+1(vn>mEn)* - 0

I ! !
O - Nn+l(vn>mErx)* g NE* - ®n§mNn+lE7t* -0

with exact rows. Taking the inverse limits we have the following commutative
diagram
0—LEy— LwLE* - liilleH(anEm)* -0

! ! I
0— NE* g IINn+1En* g (l_i_rlll m+l(vm>nEm)* -0
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with exact rows. This means that the sequence LE—L.LE—wN,E, induces
a short exact sequence 0—LEy—>L..LEy—TI N, Eps| ON, 1 E,x—0. Therefore
the sequence LE—L.LE—wN,,E, is a cofibering.

Notice that TI N,;BP<{n)4 is not v,-torsion for every m=0. Combining
Propositions 5.4 and 5.5 with Lemma 4.7 we have

(5.5) L.(VBP<{n)), L.(II BP{n)) and L.(\ L,BP<{n>) are not s-harmonic.
We next discuss [] £,/ V E, for suitable E,.

Proposition 5.6. Let E, be associative BP-module spectra such that BPy|
I, @ E,. are v,-torsion free for any m<n. Then I1E,/VE, is s-harmonic.
BPx

Proof. BP./I, l§ (IL E,»|®E,s) is v,-torsion free for each m=0, so IL E,./
DE,« is BP-flat. Since BPywE,~BP,BP B@ (ILE,+/DE,s) is also BP-flat,

BP, wE, is s-harmonic by Theorem 4.8 and hence oE, itself is s-harmonic by
Corollary 4.6.

Combining Proposition 5.6 with Lemma 4.4 we have

Corollary 5.7. Let E, be associative BP-module spectra as in the above
proposition. Then L..(\/ E,) is s-harmonic if and only if so is L.(II E,).

Proposition 5.8. Let E, be associative BP-module spectra such that
Torp?*(BPy/I,, E,,) are v,-divisible for any m<n. Then TI1E,/VE, is non
-harmonic if \/ N,.,E,+=TIN,E,.

Proof. Consider the composite map BPI,., E,—3*BP E,—E, where
k=315i<,2(p'—1)+n+41. In the following commutative diagram

BPI”+1*E" —_—> BP*E” —_— E”aa
! 7
Torf—fl*(BP*/In+ls BP*En) g Torf—fl*(BP*/In+1’ En‘)

the left vertical arrow is isomorphic by (3.7) and the bottom one is epic. More-
over the diagonal is obviously monic. So the upper composition is non-trivial
if N,..E,#pt. This shows that the induced map wBPI,., E,— »E, is non-
trivial. Therefore wE, is not harmonic, because wBPI,,, E, is dissonant.

Corollary 5.9. Let E, be associative BP-module spectra such that BP|
I, @ E,. are v,-torsion free for any m=n. If II N,E,|\V N,.E,=pt, then it
BPx

is non-harmonic.

Proof. By Corollary 3.2 we observe that for each m<n Tor,?*(BPy/I,,
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N, E)=N,,,BPI,, L@ E,. and it is v,-divisible.

6. Harmonic but not s-harmonic spectra

Let E, be associative BP-module spectra such that Tor,”*(BPy/I,, E )
are v,-divisible for any m=<n. For each A=(ay, a, :**, a;, +**) with a;=1 the
BP-module map I] BPJ,+,A_E,—TI="BP E,—II 3"E, has a factorization

II BPJm+1A,\En - E—m—1+aNm+1(H En) - 311 E,

where the product I] runs through all n=m-+-s, s=0 and a=|/,.4| +m+1=
3 sism2(p*—1)a;+m+1. Consider the commutative diagram

H BP.]m+1A*En —_—> Nm+1(]1 En)* —_— ].-.[ En*
! N 7
T1'Tor224 (BPy/Jwsrd, BP4E,) — T1 Tor2i (BPy/Jmsid, E,)

in which the left vertical arrow is isomorphic by (3.7), the bottom is epic and

the diagonal is monic. Note that every homomorphism [I Tors:i(BPx/

Jmwn1d, E)—>L,(I1E,)y is trivial because II BPJ,+1A«E, is v,-torsion for any
k=m. So there exists a dotted arrow

(61) Va: Han+sTor££T (BP*/]ﬂHlA’ En*) g Nm+1(Hu2m+sEn)*

making the square and the triangle commutative in the above diagram. As is
easily seen, the triangle

H Torgi; (BP*/]m+1A) En*) 'YA

(6.2) T3 N,o(ITE,)«
HTorﬁfT(BP*/Jm+1A,, E,,*) T

is commutative for any pair A<4’.
Lemma 6.1. Let E, be associative BP-module spectra such that Torp®*
(BPy/I,, E,s) are v,-divisible for any m=mn. The homomorphisms 7, induce

an isomorphism
v: 1_1r_n_) Hn2m+s Torsz (BP*/]m+1A, En*) g Nm+1(Hn%m+sEn)*
A

for every m=0 where s=0.

Proof. There is a short exact sequence 0—Toryit(BPy/[pn1d, En)—

Torp?*(BPy/J w4, E,‘*)-qj—'n'TorﬁP *(BPy/JuA, E»)—0 for any n=m. So we con-
sider the following commutative diagram
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0 — Lim [T Tor2t (BPy/J i, E,e) = lim IT Tor3™* (BPy/J A, E,)

! !
Nm+l(H En)* - ,,,(HE,,)*
— lim v;" [T Tor5"*(BPy//,A, E,.) = 0
!
M, (11 E,)«

with exact rows, where the direct limit lim runs through all sequences 4=

(agy ***y @iy +**y @y 0, +++) with ;=1 and the product [] does through all
n=m-+s+1. When the central arrow is isomorphic, the right is so and hence
the left is also so. Therefore we can show our result by induction on m.

Lemma 6.2. Let E, be associative BP-module spectra such that Torp"*
(BP«/I,, E,.) are v,-divisible for any m<n. Then HNm+1(H"ng )0
if VN,LE,+IIN,.E,. "

Proof. For all n=0 we may assume that N, E,=pt, thus Tor;[

(BP4/I,41, E,») *=0. Denote by p,: Torp?*(BPy/]wA, E+)— Torn"*(BPy/I,,
E,,) the induced homomorphism from the projection BPy/],A— BPy/l,.
Clearly it is epic for each m<n+1. Pick up an element y, , in Torp™
(BPy/|JwAm, E,+) for each m=n+1 such that p, (y,,,)+0 where A, =(m, -
m, +--). These elements form an element y,={y,,}4, in lim H,,z,,, 1Tor
(BPy|Jnd, E,)=Ny(ILizm-1E,)s-

We here assume that (l_1£n_ No(Il,zm-1E,)x=0. Then there exist elements
% i0 Np(I1,2m-1E,)« such that y, =x,—8(x,,) where 8: N, (Il,2nE,)s—>
NLE, DN, (Il,2nE,)«. Notice that for every m, there is a certain sequence
Ay=(ay, ay, ++*, a;, ++) with a@;=1 and elements x,, , in Torn”*(BPy/],Ax, E,»)
such that x,= {x,,, o} 4y in lim lim J,2m- \Torp*(BPy/J 4, E,»). Using the inclu-
sion A,: Tor5?*(BPy/],.A, E, )—»Tor”*(NmBP*, E,)=N,E,., we obtain the
relation that X g (Vm,n) =N 4 g(¥m 1) =N ag(Fmr1,4)-

By induction on n—m=—1 we will show that there exist elements x;, ,
in Torp”* (BPy/JnA,+1, E,v) such that Xy, (%7 2) =N4z(% ) and pg, . (x5 »)F0.
First put x5, w_1=Yp m-1 since x,,m(y,,,,m_l)zx,lx(xm,m_l). We next suppose
that there exists an element %74, in Tors{i(BPy/[,1 4,1, Es) such that
Mg a1 (xm+1 n)—‘ 7\'Ay(xm+1 n) and pA,,+1(xm+1 n) +0. Put xm n = Ny, A,,,(ym n)+
04,.,(%ms1,4), using the inclusions g, ,, 4, Tors™ (BP*/ J Aoy E,)— Torn
(BPy/J A i1, Enx) and 04,0yt : Torp {1 (BPy/J w1441, E,) — Torn?*(BPy/
Ty Ew). By use of (3.3) we see that N 4 o(%m,n) =X ap(Vmn) T Nap s (Bma1 ) =
xAnH(x,,, »)- Moreover it follows from (3.2) that v5p 4, (%m,4) =04 P4, ,(Xn+1,0) F
0 in Torp®*(BPy/l,, E,), because p, , 4., 4, =0 for n4-1>m. This says
that p,,, (%0 .)F0.

BP*
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We now set n=Max(a,, a,, ***, @,,-;) for the above Ay. Then A, (%, )=

Mtysrltnsg,az(®mn) A0 Ny (X )=N4,, (%7 4), therefore x, v=pa,,  a7(Xm,a)-
This implies that p, , (¥n.2)=Pa,s,Ma,4+1,42(%¥m»)=0, Which is a contradiction.

At last we can state our main results.

Theorem 6.3. Let E, be associative BP-module spectra such that Torp"*
(BPy/I,, E,.) are v,-divisible for any m<n and wdimggeFE,.<n-+1. If
an+1E =’=HNM+1EM then
1) VE is not harmonic, and

ii) H E, is harmonic, but not s-harmonic.

Proof. In the cofibering V E,—II E,—~wE,, II E, is harmonic by Theorem
4.8 and (4.3). However wFE, is not harmonic by Proposition 5.8. Hence
V E, is not harmonic by (4.1).

Put E=]] E,, then consider the commutative diagram

0 g Nm+l(Hnngn)* g Nm+1E* - ®n<mNm+l > 0

| ! !
0— Nm(l—[nzm‘—lEn)*—) NmE* _— ®n<m—leEn* -0

with exact rows. From Lemma 3.6 it follows immediately that w dimg N, ,E .+
=n+1 for each k<m, in particular w dimgeN, ,F«<n+1. Making use
of Lemma 4.10 we observe that wdimgeN,E,<m and 0—-N,E,.—M,E, .—
NyiiE—0 is exact for every m=n-+ 1. Hence the right vertical arrow is
trivial in the above diagram. So 1i_rn_Nm+1(H”ng")=£iLn_ N, .E. However
Lemma 6.2 shows that E_rENmH(H,,;,,,E,,):!: pt, and hence E is not s-harmonic.

Theorem 6.4. Let E, be associative BP-module spectra such that BP,|

I, @ E,. are v,-torsion free for any m=n and E,. are v,-torsion for any k>n.
BPx

i) If \/N,,+1E HN,,HE,,, then VL E, and HL E, are both s-harmonic.
i) If \/N,,+1E =l=HN,,+1E,,, then VL,,En is mot harmonic, and IILE is

harmomc but not s-harmomc

Proof. i) From Proposition 5.5 it follows that VL,E, is s-harmonic.
Since wE,=wL,E, and it is s-harmonic by Proposition 5.6, [IL,E, is also
s-harmonic.

ii) By Proposition 5.5 and Corollary 5.9 VL,E, is not harmonic. Put
LE=IIL,E,, then N, (LE)=N,(Il,>»L,E,). So we have a commutative
diagram

Nm+1(]._.[n2m En) - Nm+l(E) g m+1(HanNn+1En)
| ! !
Nm(nnzm—IEn) - Nm(L—E) - Nm(nnzm—an—HEn)
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with cofibering rows. By use of Lemma 3.1 we see that l(l_n_l Np(LE)=
!i_rﬂ Npii(Il,2m Np+:1E,). However Lemma 6.2 insists that liEN,,,H(H,,g,,,N,,ﬂE,,)
=+ pt because Tor5"*(BP4/l,, N,+.E,)=N,,BPI,. ® E,* is v,-divisible for
each m<n. Therefore LE is not s-harmonic. e

By applying Theorems 6.3 and 6.4 we have

(6.3) i) VVN,.,BP is not harmonic, and

ii) TIN,.,BP is harmonic, but not s-harmonic.
(64) i) \L,BP<n) isnot harmonic, and

ity TI L,BP<n) is harmonic, but not s-harmonic.
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