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1. Introduction

A Riemannian manifold ¥, g ) is called an Einstein manifold i$ iRicci tensor
ric, satisfies rig =cg for some constant . This paper deals withcompact homo-
geneous Einstein manifolds. All known examples of nonflataoonpact homogeneous
Einstein manifolds are isometric to solvable Lie groupswet with left invariant
Einstein metrics. It has been conjectured by D.V. Alekskigtkat every noncompact
homogeneous Einstein manifold has maximal compact isptsybgroups. This con-
jecture implies that the classification of honcompact hoemegus Einstein manifolds
is reduced to the investigation of solvable Lie groups wéft Invariant Einstein met-
rics. The conjecture is still an open problem.

The purpose of this paper is to construct a class of noncontyfmmogeneous Ein-
stein manifolds, which we call Boggino-Damek-Ricci typen&iein spaces (abbreviated
to BDR-type Einstein spaces). Each element of this clasgpsesented as a simply
connected solvable Lie group with a left invariant metrin. 1985 J. Boggino con-
structed a class of Einstein manifolds with nonpositivetieaal curvature which in-
cludes rank one symmetric spaces of noncompact type ([3igs@ spaces are now
called Damek-Ricci Einstein spaces ([2]). The class of Bippe Einstein spaces is
constructed as a 1-dimensional solvable extension of @@+stpotent Lie algebra and
contains Damek-Ricci Einstein spaces. Note that DamekiMgstein space has neg-
ative sectional curvature if and only if it is symmetric spa@3], [9]). In this paper
we prove that there exist nonsymmetric BDR-type Einsteiacep with negative sec-
tional curvature.

In Section 2 we define BDR-type spaces and investigate auevgiroperty and
Einstein condition of the BDR-type spaces. Using the Kaplah ([7]), we give for-
mulas for curvature and Ricci transformation of BDR-typaags (Lemma 2.1, 2.2).
From Lemma 2.2 we see that the Einstein condition is reducethe condition of
the nilpotent part of BDR-type spaces (Proposition 2.3). Mé® give a sufficient con-
dition that BDR-type space has nonpositive sectional dureain Proposition 2.5. A
Damek-Ricci Einstein space satisfies the condition of Pstjpm 2.5 and thus this
gives another proof of the fact that it has nonpositive seeti curvature.

In Section 3 we construct BDR-type Einstein spaces whichnateDamek-Ricci
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Einstein spaces. We define a class of BDR-type Lie algebrasevhilpotent parts are
obtained by a decomposition of isometry groups dihker C-spaces. By computing
the Ricci transformations of 2-step nilpotent algebrashe &bove type we construct
BDR-type Einstein spaces. Note that BDR-type Einstein epanay not always have
nonpositive sectional curvature. In Theorem 3.2 we prow there exist nonsymmet-
ric BDR-type Einstein spaces with negative sectional cunea

The author would like to express his gratitude to Profesamuke Sakane for his
valuable discussions and encouragement.

2. Boggino-Damek-Ricci type spaces

2.1. BDR-type spaces Let n denote a finite dimensional Lie algebra over
For each integer > 1 we defineny), an ideal ofn, by ng = [n, n;_y)], whereng) =
n. The Lie algebran is n-step nilpotentf n,) = {0} andn(,_1) 7 {0}.

Let (n, (, ),) be a 2-step nilpotent Lie algebra with a positive definiteeinprod-
uct, a a one-dimensional real vector space ahd a non-zero vectar liet 3 denote
the center ofn and letv denote the orthogonal compliment gfin n.

We define theR-linear mapf a — End{) by

f(AX = gX f(A)Z=kZ for Xev,Zey
wherek is a positive constant. Since the endomorphfsm () livad®n of n, the
semi-products = nx .a becomes a solvable Lie algebra whose derived subalgebra is
We define an inner produgt, ), ona and(, ) ons by

(A, 4), =L ()=0 e e

In this way, §, (,)) becomes a Lie algebra with a positive definite inner procunct is
called BoggineDamekRicci type Lie algebrgabbreviated to BDR-type Lie algebra).

Deriniion 2.1, For a BDR-type Lie algebra,((, )), the corresponding connected
and simply connected Lie group S with the induced left-iravatr Riemannian metric g
is called a Boggino-Damek-Ricci type space.

We compute the Levi-Civita connectioR, the sectional curvatur&k  and the
Ricci transformation Ric of the Boggino-Damek-Ricci typpase §, g ) in terms of
the metric Lie algebras( (, )).

Let (G, g) be a simply connected Lie group with a left-invarianetnt ¢ and
(g, (, )) be the associated metric Lie algebra. Regardthgt , 2&nd g as left in-
variant vector fields orG we obtain the following formulas:

(2.1) 2(VxY, Z) = ([X.Y],Z) - (V. Z]. X) — ([X. Z]. )
(2.2) K(X AY) = |VxY|? = (VxX, VyY) — (ady®X, X) — |[X, Y],
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where K (X A Y) = <R(X, Y)Y, X> = <(VXVY —VyVy — V[X,Y])Y, X>

Ricci tensor is defined by rig, Y ) = tracé(— R(Z, X)Y) for all X,Y in g.
The Ricci transformation Ricg — g is symmetric (1, 1)-tensor induced by the Ricci
tensor. Let £; ), is an orthonormal basis af with respect to( , ), then Ric is given
by

. 1 * 1 * 1 s
(2.3) Ric =7 > adg, o adg,” - 5 > ady” o adg, — 5B —ad,’,

iel iel

where ( ) is the adjoint operator with respect {0, ), o is the vector dual to the
1-form X — tr(ady), () is symmetrizer, i.ead,’ = (ad, + ad,*)/2, and B is the
Cartan-Killing operator, i.e(B(X), Y) = tr(adx o ady) (cf. [1]).

We are primarily interested in the case that the Lie groupdgdino-Damek-Ricci
type space. From now on, lef(¢ ) be a Boggino-Damek-Ricci tgpace (abbrevi-
ated to BDR-type space)s,((, )) be the corresponding metric Lie algebra and((),,)
be the derived subalgebra of In our caseud, , which is defined by A( ), is symmet-
ric, hence formula (2.1) yields the following expressiom foe Levi-Civita connection
V.

VA =0
(24) VxA 7adA(X) for Xen
VxY V”XY+<adA(X), Y)A for X,Y en,

where V" denotes the Levi-Civita connection of,((, ) ).

For 2-step nilpotent Lie algebra, we define theR-algebra homomorphisnd
3 — End() introduced by A. Kaplan in [7]. For each elemefitc 3 we define a skew
symmetric linear transformatiod Z( »:— v by

J(2)X = (adx)' ™Mz for X ev,
where (J™ denotes the adjoint operator with respect(10 . Notice that the transfor-
mations{J(Z) | Z € 3} characterize the Lie algebra structure of metric 2-stepotéint

Lie algebra.
Now we can express the connecti®husing this operato/ . we obtain

1 1 1
Vv1+zl(V2 +Zy+aA) = _EJ(ZZ)Vl — E](Z]_)V2 + E[Vl’ V]
k ka
+ §{<V1, Vo) +2(Z1, Z2)} A — 7(V1 +27;)

for Vi, Vo € v, Z1,Z, € 3, a € R. By a straightforward computation using (2.2) we
get the following lemma.
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Lemma 2.1. ForaeR, X =Vi+Z;+aA andY = Vo + Z,

K(XAY)

(R(X, Y)Y, X)

%u (Z1)Vo+ J(Z)Vi|? — (J(Z1) V1, I (Z2)V2)

2

k k?
+ Z((Vl, Vo) + 2(Z1, Z2))? — Z(Wﬂz +2|Z1)2)(|Val* + 2| Z,)

3 a’k?
— Z|[V1’ V2] + akZ2|2 - T(|V2|2 + |Z2|2)
Next we determine the Ricci transformation of BDR-type ssadJsing the uni-
modularity ofn we obtain the following:

Lemma 2.2. If {Z4,...,Z,} is an orthonormal basis of and {Vi,...,V,} is
an orthonormal basis ob, then

@) Ric(A) = —k2 (% +m) A,
1 k2 /n

(b) Ric(V)==Y J(Z)>V——=(=z+m)V forVeov,
2}2 J 2 (2 )

©) RiC(Z):%Z[V,-,J(Z)V,-] sz(gm)z for Z ¢ 3.

i=1

In particular Ric leavesa, v and 3 invariant.

Proof. SinceR W,A X\ =ad,?W for W s, we obtain

k2
ROLMA:—Z% for i=1,...,n, R(Z;,A)A=-k*z; for j=1,...,m,

and (a) follows immediately. By third equation of (2.4) wevbla
(2.5) Ric(X ) = RI¢'(X) — tr(ad,) - ads X for X en,

where Ri¢ denotes the Ricci transformation of,(, ),). Notice that in the case of
nilpotent Lie algebra the formula (2.3) is reduced to thdofeing form:

.1 « 1 .
(2.6) R|c:ZZadE,. cadp” — Ezadﬂ. oadg,.

iel iel

Using (2.6) Ri¢ is computed as

Ric"(V) = % Em: J(Z;)?V
j=1
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n

RIC'(7) = 7 3 [V, J(Z)Vi. O

i=1

Remark. For 2-step nilpotent metric Lie algebras, the Ricci transfations are
computed in [5].

2.2. Einstein condition of BDR-type spaces A Riemannian metricg is called
Einstein metric if its Ricci tensor satisfies ricce  for somenstantc . If a BDR-type
space §, g ) is Einstein manifold then the Einstein constant troas-k2((n/4) +m)
from (a) of Lemma 2.2. Since Ricis symmetric and leaves and 3 invariant we can
choose an orthonormal bas{%1, ..., V,} of v and {Z,, ..., Z,} of ; which diago-
nalize Ri¢, that is

RiC”(V,-)Ia,-%, RiCn(Zj):ijj.
From (2.5) we deduce that ifS(g ) is Einstein then

2.7) ai:—%kz, bj:%kz for i=1,...,n, j=1,...,m.

Conversely suppose that (2.7) holds, then it is easily addkat €, ¢ ) is Ein-
stein manifold with the Einstein constantk?((n/4) +m). We therefore have the fol-
lowing proposition.

Proposition 2.3. A BDR-type spacds, g) is Einstein manifold if and only if
Ric" satisfies

Ric"|, = —%kz]ldu, Ric"|, = %kzlldz,,
wherem =diny andn = dimo.

Remark. T. Wolter [10] studied the Einstein condition of metric Lédgebra of
Iwasawa type. Proposition 2.3 is regarded as the special ea$roposition 1.5 and
Theorem 1.6 in [10].

ExavmpLE (Damek-Ricci space). A 2-step nilpotent Lie algebra with @sifive
definite inner product is oH-type if there exists a positive constantsuch that

J(Z)? = =)\?|Z|1d,

for everyz € 3. A BDR-type spacey, g ) is calleBamekRicci spaceif the Lie alge-
bra of the nilpotent part of equipped with the induced innevdpct is H-type Lie
algebra. A Damek-Ricci space is callstandardif it satisfies \ = k.
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If (S, g) is DR space, equivalentlyn( (, ),) is of H-type, then from the definition
we immediately obtain the following facts.

a) [J(Z)V|=\NZ||V| for Zej, Ve

b) J(Z1) 0 J(Z2) + J(Z2) 0 J(Z1) = —=20%(Z1, Zo)Id,  for Zy, Zs €
c) (J(Z)V, J(Z)V) = N2(Z1, Z2)|V > for Zy,Z,€3, Ve

d) (J(Z)V1, J(Z)Va) = N°|Z|2(Vy, Vo) for Z €3, Vi, Vo€

e) [V.J(Z)V]= N°|V|?Z for Zec3 Ve

Corollary 2.4, Let (S, g) be Damek-Ricci spacehen the following(1) and (2)
are equivalent.
(1) (S, g) is Einstein manifold. (2) (S, g) is standard DR space.

Proof. From lemma (2.2), in the case of DR spaces, we haveoileving:
Ric"|, = —%)\Z}Idn, Ric"|, = %/\Z]Idé. O

2.3. BDR-type spaces with nonpositive curvature If the positive constant is
sufficiently large, the BDR-type space has nonpositiveiseat curvature ([6]). In fact
the following proposition holds:

Proposition 2.5. Assume that there exists a positive const@nt  such that
|J(Z)v| < C|z||V|] for Ze€j, Veo.

Then if C < k the BDR-type spaces corresponding 40  have nonpositivéosatt
curvature.

Proof. LetS, be a BDR-type space correspondingkto . From Lemrianwe
have
a?k?

K(X+aA)AY)=K(XAY)+ i—i\[x, Y]|? - %[x, Y]+ akY;|* — T|Y\2,

where X, Y € n and Y, denotes thg-component ofY” .

To prove thatS, has nonpositive sectional curvature, it idigaht to show that
if X,Y €n then
(2.8) K(X/\Y)+§1|[X, Y12 <.

We divide the left-hand side of (2.8) into two partd ( ) arRl ( s)fallows:

(4) = %ll(zl)vz|2 + %1|J(Zz)v1|2 - %U(Zl)vl, J(Z2)Va)
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k2
+ 7{2<V1, Vo)(Z1, Z2) — (|Val?|Z2f* + |V2[?| Z1 %)},

(B) = %{(J(Zz)Vl, J(Z) Vo) — (J(Z1) V1, J(Z2) V) }

k2
+ 100 Vo) = PV} + k2{(20, 22)° — |23 2017
whereX =Vi+Zy, Y =Vo+Zy, Vi, Vo€ v, Z1,Z2€ 3.
If X and Y are orthogonal, thefy, V,)(Z;, Z,) < 0. Thus we may assume that
(V1, Vo)(Z1, Z2) < 0 without the loss of generality.
Then

C? 2, 2.C% 22, C? k? 25 12 25 12
(A) < T|Zl‘ | V2 +7|Zz| |V +?|Zl||22|‘vl||v2‘ - E(|V1| |Z2|" + | V2|*| Z4]%)

—C? k? — C?
= - (Vil|Zal - |Val|Zal)? = S (VAP 2 + [Vl 1.
Next we put
Zy = alyt+ Z3, <Z1, Z3> =0
Vo = BVi+ V3, (Vi, V3) =0,

wherea, 3 € R andZz € 3, V3 € v.
Then

2
(B) %{u(zg)vl, J(Z1)Va) = (J(Z1) V1, J(Z3)Va) } — %IV1|2|V3|2 — k|24 Z3?
k2 o C2
4

A

1 2
< -2 (3mlva - zilzal) - SZEqvAvR s AzPiz®. D

Remark. In the case of DR spaces, we haW&Z)V| = A|Z||V| and hence
Damek-Ricci Einstein spaces have nonpositive sectionalature.

3. BDR-type Einstein spaces

In this section, we shall construct a class of BDR-type Eimsspaces which are
not DR Einstein spaces. We shall also prove that there exissymmetric BDR-type
Einstein spaces with negative sectional curvature. Ndtieg if a DR Einstein space
has negative sectional curvature then it is symmetric (Eg).

3.1. BDR-type Einstein spaces Let g be a simple Lie algebra ovef andh a
Cartan subalgebra af. We denote by andIT the root system and the fundamental
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root system relative tdy respectively. Take a Weyl basiE,, | a € A} with

(l) B(Eou E—a) =-1

_ | NagEa+p if a,B,atfe A
@ [Ea, Egl = { 0 otherwise

Naﬁ = N,a,B S R,

where B is the Killing form ofg.
Let ITp be a subset ofl and suppose that

H:{al,...,a,}, l'[():{oz,-l,...,a,-r}.
For k1, ..., k) € (Z>0)" — {0} we put

[
A(kl,...,kr): ijozj€A+‘mil=k1,...,mi‘=k,

r

J=1

where A* denotes the set of all positive roots relativello . We defirng-subspace
of gr associated ta\(ky, ..., k) by

n(ky, ... k)= > RE,.

Finally we define

Notice thatn(ITo) = {>-m;a; € A" | 3m;, > 0}. Thenn(Tly) is a nilpotent Lie
algebra overR since the structure constam,s's are R-valued.

Let A"M) be the set of all roots that define(Ily), that is, n(ITly) =
> wcanng RE,. We define the inner produgt, >ﬂ(no) on n(Tlp) such that{E, | a €
A s an orthonormal basis af(I1g). Then the Ricci transformation af(I1o) is
diagonalized with respect t0E, | a € A™MM)} since {E, | o € AMM)} is a basis
compatible with the grading of(ITp).

A 2-step nilpotent Lie algebra with a positive definite inmeoduct is said to be
nonsingularif each J (Z )Z € 3 —{0}) is nonsingular transformation af ([5]). H-type
Lie algebra is the typical example of a nonsingular 2-stéporént Lie algebra. On the
other hand most of the 2-step nilpotent Lie algebras of thevatiype are singular.

Now we consider the BDR-type space whose nilpotent part imel by a 2-step
nilpotent Lie algebra of the above type. We denote $yIl, o) and s (I1, I1p) the
BDR-type space and its Lie algebra induced by the triple datal, I1y) respectively.
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If a, 3, v € A™MM) anda = 3+~ then
(3.1) J(EL)Eg = Ng,E,,.
The next lemma follows from (2.6) and (3.1).

Lemma 3.1. Let (n(Ip), {, >n(1'[0)) be a2-step nilpotent Lie algebra of the above
type. Fora € A™M) we define

() = {f € A | o+ 3 AT}
W(a) = {(B,7) € A" 5 AN | g4y = o},

Then the eigenvalug, of the Ricci transformatiorRic™™ with respect to the eigen-
vector E,, is given by

1 .
-5 Z (Nap)? if Eq €
fa - 1 BeD(a)
2 > (Ngy)? if Eq €5
(B.AEY(0)

Combining this lemma with Proposition 2.3, we can decide thwiea given BDR-
type spaceS; I, I1p) is Einstein manifold or not and the decision does not depmnd
the choice of a Weyl basis.

We give here the table of BDR-type Einstein spaces obtainethé construction
above in the case of classical simple Lie algebras (Table 1).

Remark. BDR-type Einstein spaces induced by tyde algebra were alfs0
tained in [11] in a different way from ours.

3.2. BDR-type Einstein spaces with negative curvature BDR-type Einstein
spaces do not always have nonpositive sectional curvaluré. € v, Z € 3 then the
formula of Lemma 2.1 is reduced to

_1 2 K22
K(V/\Z)—ZU(Z)V\ —5\2\ VI~

By using this equation we can check that many of the BDR-typestBin spaces ob-
tained in the table do not have nonpositive sectional cureatFor instance lefl
be the fundamental system of the tygg algebra andbe {a,,}. If 4 < [ and
3<m <1-1, the BDR-type Einstein space

1

Se(I1, Tp), k= W‘Fl)
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g (H,Ho) k dlm;, dim v Sk(l_[,l_[o)
1 i j -1 1
A, I+1=i+j) | 2i(j —i) |not DR (i #1),
@< CH' (i=1)
1 2 i -1 1
O—O— +++ —%— -+ —0O=—30
B, 2<i<li sa—g| 5 |i(2—2i +1)|not DR (i #2),
2<0 CH?72 (i = 2)
1 2 i -1 1
O—O0— =+ —X%— -+« —0&=0
C (1<i<i-1) e ) 2i(l —i) |notDDR (i #1),
(B3<1) CH' (i=1)

3 3
4 4

Ds 3—\1/5 3 6 not DR
1 2 i [-1
oo e e
D (2<i<i-2) R = 2i( —i) |notDR (i #2),
@< CH*3 (i=2)
1 2 -1
Dy T ] e B not DR
(4<0

Table 1. (The vertexx denotes the element aio)

does not have nonpositive sectional curvature. To see #us fve choose the Wyle
basisE,, Es € v and E,, € 3 such thata+3 =~ and~ is a long root. SinceN,z)? =

(v2( +1))"2, we obtain

};|
22m(l +1)

1
K(Eo N Es) = Z(Nog)?|Egl* - Eal’|E,

m—2

T e+

Now we are in a position to show the following theorem.
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Theorem 3.2. (i) LetIT be the fundamental system of the tyje algebra and
[y be {asz}. If 4 <[, the BDR-type Einstein space

_ 1
Si(T1, Tp), k= m

has negative sectional curvature.
(i) LetIT be the fundamental system of the type algebraHpde {as}. If 5<
[, the BDR-type Einstein space

1

Sk(l'[, H()), k= ﬁ

has negative sectional curvature.
In particular there exist nonsymmetric BDR-type Einstepaces with negative
sectional curvature.

To prove the above theorem, we need the following lemma.

Lemma 3.3. LetIT be the fundamental root system of the typel < ) and I1g
be {asz}. If 1/(2\/(2l — 1)) <k then(A) <0 and (B)<O.

Proof of Lemma 3.3. We assign the indices to the elements®fo) as follows:

!
a1=Y o (1<i<3)
t=i

j+l
Oé,‘j:ZOét (1§l§3’ 2§]§172)
1=i
1 1
aij:Zat+ Z a; (1<i<3, 1-1<j<2-5)
(=i s=j—I+5

I
ﬁ1:a2+22a,

t=3

!
Bo=arton+ E 2a

1=3

I
Ba=a1+ 20
=2
We choose the Weyl basis such thét, ; o> 0 if i1 <iz, No, e, < 0 if i1 > i,

for 1 <iq1,ip<3,2< j1<1-2,1-1< j, <2 -5, where the structure constants
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satisfy

if o, 3, a+p e Ao

1
(Nag)? = { 2(2 - 1)
0 otherwise

We put
3
Vs=> VEa, Zs=Y zjEs for =12
ij h=1

Then for 1< 4,0’ <2,1<j <2 -5 we get

J(Z5)V5/ =
1 / / ’ ’ ’ ’
5.8 o 5.5 5.8 5.8 5.8 . 5.5
s [<12v31+13v21) Eop, + (11031 - Z3')11) Eqp — <11U21+22”11) Eqy
NG
2-5
5.8 5.8 5.8 5.8
+ E {(1203,217371' +13U2,21737j) Eq,; + (Z1U3,21737j - Z3U1,21737j) Eq,
=2
5.8 5.8
- ( 1V22 3 +sz1,21—3—j) Eaa,-H .
Next we put

P(;j(;, = z‘fv‘ls;- — zgvg;- +zgv§; for 1<6,8/<2,1<j<2 -5

Then we obtain the following equation:

1
(3-2) Z<J(251)V52’ J(Z5/1)V5’z> <Z51’ Z5’1><V52’ V5'2>

1
82 -1)

1 . 4
— J
- 8(21 — 1) Z P5j15'2P5’15z'
j=1

21-5

Since 2Vy, Vo)(Z1, Z2) — (V1|2 Z2|? + |V2|2|Z1|?) < 0, to prove @ )< 0 it is
sufficient to show that ik = 1(2/2/ — 1) then @A )< 0. Using (3.2) we get

1 1
(4) (ZLMZDVHZ vﬂﬂzﬂ2)+-<ZN(Z»Vﬂ2 Vﬂﬂlﬂz)

82 -1) 82 -1)

-2 (%<J(Zl)vl’ J(ZZ)V2> - <V1, V2><Zl, Zz>)

1
8(2 — 1)
1 21-5

=Y (P,,— P}y’ <0.
8(2] _ 1) ; 12 21
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To prove B )< 0 we will show that

(3.3) [(J(Z2) V1, J(Z1)V2) — (J(Z1)V1, J(Z2)V2)| < |Z1]| Z2|[ V1| V2]

22 - 1)

for Z1,Z, € 3, V1, Vo € v, If (3.3) holds, the same estimates as the proof of Proposi-
tion 2.5 accomplish the proof. In fact

(B) = :—2L{<J(23)V1, J(Z1)V3) — (J(Z1)V1, J(Z3) V) }

k2
=7 Vil IVal® = k% 24| Z4?

IN

ST @IV V) — 2V, T (Z)V3))
(3.4) —k?| V1| V3| Z4)| Z4),

therefore if (3.3) holds we getB( J 0.
We put

21-5 ) 21-5 )
Vl - Z V(j), V2 - Z V(j),
j=1 j=1

where VI, Vi € Spai E.,,, Ea,y» Eay }-
Using Schwarz’s inequality we get

Muzavmnuzo%9>—«Mzovmwmzavmﬂ
= 2(21 1)|(2122 Z%Zi)(v%lv%l v11v21) + (2123 Z%ﬁ)(”h”&l* U%lvfl)
+ (2325 — Z322)(”31”21 v31v31)]

1,2 1,2 1.2
= 2(21 1) Z (zi2f — 52)° Z (v — vjvi)?

1<i<j<3 1<i<j<3
1 \/ 2 1 1 1) (12
= = 172272 — (74, 7 \/V()zv()z_ vy
2(2171)|1||2| <1 2> |1||2| <1 2>
1
< | Z4]| Zo| [V VD).
< 2@ —pAllzlvitlive

Similarly for 2< j <1-2,1-1<j' <2 -5 we get

(J(ZVP, 3z V) — (1(Z) VP, J(Z) V)|
<Lt
= 2@ -1)
@IV, 1@z)VE) = (12, 1(22)VE))]

j+—3 j+l—3
|Z4)| Zo| [V v ).
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1 (' =143) |7~ 143)
< —— 1711 Zo|| VY vy .

Then

[(J(Z2) V1, J(Z1)V2) — (J(Z1)V1, J(Z2) V2)]

2/—-5
< W@V, 12 V) — 1z, 1(Z2) Vi)

j=1

1 21—5
[O)IRY40))

< 5@ 551 41Z ;Ivl 12"
< L jzz)vaval O
>~ 2(2l — 1) 1 2 1 2|

Proof of Theorem 3.2. We will prove (i). (i) can be proved Imetsame way as
(i) and hence the proof of (ii) is omitted.

From Lemma 3.3, if 4< [ then S, (1, Ip) (k = 1/+/3(2 — 1)) has nonpositive
sectional curvature. To prove th&f IT{I1p) has negative sectional curvature, it is suf-
ficient to show that ifX,Y e n and X andY are linearly independent then

(3.5) KXAY)+ 2\[){, Y]]2 <.

Again we divide the left-hand side of (3.5) into two partd ( nda(B) as the
proof of Proposition 2.5. Next we assume that there eXist € n such that

K(XAY)+ %[x, Y]] =0.

We have A )< 0, (B) <0 from Lemma 3.3. Combining this fact with the assumption,
we get A)=@)=0 wherk =A/3(Z —1).
From Schwarz’s inequality notice that
2(V1, Vo) (Za, Za) — ((Va| Z2f* + |V2f*| Z4?) < O
(Vi V)2 — [Va|Va2 < 0
(21, 22)* — | 21| 22 < 0,

and hence bothA ) andB( ) are decreasing functions with rédpek. Since @4 )<
0,(B) < 0 whenk = Y(2\/(2 — 1)), we conclude thatA ) =R ) = 0 wheh =

1/(2y/(2 - 1)).
Then

0=A=1yvaz=n — leyeva=)
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1

= a1y 2Ve Vel (70 Z2) = (ViP1Zaf + VPl 22 )

Combining similar comuputations foB( ), we get

2(V1, Vo)(Z1, Z2) — (|Vaf?|Z2f* + |V2[?| Z1[?) = 0
(Vi, Vo) — [Va]}|v2? = 0
(21, Z2)% — | 21|} Z2)? = 0

and henceX and are not linearly independent. So (3.5) holds.
As for the symmetricity, we can check th®R does not vanish for the BDR-type
Einstein spaces above. ]

Remark. For the typeBs; algebra, BDR-type Einstein spack I1,({as}) (k =
1/1/15) has negative sectional curvature. For the typealgebra, BDR-type Einstein
spacesS; KI, {Ckg, O[4}), Sk(l'I, {al, 043}), Sk(I'I, {al, Ck4}) (k = 1/(3\/5)) have negative
sectional curvature.

3.3. BDR-type Einstein spaces with nonpositve curvature As for the typeA,
and C, algebra we have the following theorem.

Theorem 3.4. (i) LetIT be the fundamental system of the type algebra and
Iy be {ay, oy_1}. If 4 <1, the BDR-type Einstein space

1

S(I, o), k=———

has nonpositive sectional curvature.
(i) LetIT be the fundamental system of the type  algebralpde {az}. If 3 <,
the BDR-type Einstein space

1
Se(IT, Ip), k=
(T, o) VKT

has nonpositive sectional curvature.

Proof. We will prove (ii). (i) can be proved in the same way &y dnd hence
the proof of (i) is omitted.
We assign the indices to the elements/of() as follows:

-1

ﬁ1:a1+2a,+a1

1=2
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-1
5222200*'041
1=2
-1
Ba= 20+
=1
Jjtl
=Y o (1<i<2 1<j<I-2)
t=i
Jjtl
aj=fei— Y o (B<i<4 1<j<1-2)
t=i—2
0 if

We choose the Weyl basis such tm:‘ma:‘m > 0if iy < iy, Noy oy, <

i1 >0y, for 1<iy, ip <4, 1< j; <1 -2, where the structure constants satisfy

1 .
2(l—+1) |f «, ﬂ S All(l‘[o) andOé + ﬂ S {52, ﬁS}
2 _
(Nog)® = 4(114_ 1 if a,3€ AMldanda+3=0;
0 otherwise

We put

3
Vs =Y VEa, Zs=Y zEs for 6=12
— —~

Then we get

J(Z5) Vs = + st”s,)Eal, + (Zlv?:j + \f12v4j)Ea2

2\/(ZT1 Z{(Zlv4j
— (@53, + V2250])) Eay, — (501 +V22505)) Ea,, }.

Hence we obtain the following equation:

1
_<J(Z51)V52’ J(Zé’l)V5/2> - <Z51’ Z5'1><V5z’ V5/2>

8( +1)
61,6 5’ 5
16(l + 1)2{(11 vif = V2550 v — V225 103))

(3.6) +( vzj V223 0] )8 vl — V22 o)
27! vsj V2 ”412)(1(; 1”35 - \/—13 1”25)

20140 81,68
+(Zl v4j \/Ezz 31 21 "5 — ‘/_Zz 1U3§)}-
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Using (3.6) we get

W) = (U@ - gl Velizi )+ (F1@ViF - g Vi zaF )

-2 <}<J(21)V1, J(Z2) Vo) — (V1, Vo) Z4, Z2)>

1
8( +1)
= 16( +1)Z |:{(Zlvlj \/_131)2/ (Zivlj \/523')2,)}2

+{(Zlvzj \/_Z2vlj (Zlv2j \/Ezzvlj)}z

+{(Zlvsj ‘/_231’41 (Zlv3j \/EZBU@)}Z

+ {(2104, ﬁZZUSj 1”4, \[2221)3,)}
<0.

To prove (B )< 0 it is sufficient to show the following inequality (see (3:4)

(3.7) [(J(Z2) V1, J(Z1)V2) — (J(Z1)V1, J(Z2)V2)| < |Z1]| Z2|| V1| V2

1
- 2(l +1)

for Z1,Z, €3, V1, Vo € v. (3.7) can be proved in the same way as the proof of (3.3).
In fact the left-hand side of (3.7) is given by

V2
T Z(lez 523)(v3;v3; — vl,vz,)+Z(zlzs 523)(vijv3; — v3;v3))

-2

1 2.1
+Z(2112 Z112)(1)31041 U3,”4,)+Z(2123 ZZs)(UajU4j v3;v2;) |-
j=1
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