<table>
<thead>
<tr>
<th>Title</th>
<th>Some remarks on polynomial rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Miyanishi, Masayoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 10(3) P.617-P.624</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1973</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/12695</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/12695</td>
</tr>
</tbody>
</table>
0. Introduction. Our main result of this paper is the following

Theorem. Let A be a noetherian unique factorization domain and let R be an A-algebra of finite type such that with $(n-1)$-indeterminates t_1, \ldots, t_{n-1}, $R \otimes_A \mathbb{A}[t_1, \ldots, t_{n-1}] \cong A[x_1, \ldots, x_n]$ is an n-dimensional polynomial ring over A. Then R is a one-dimensional polynomial ring over A.

When A is a field, this is a special case of

Problem of Zariski. Let k be a field of arbitrary characteristic, let A^n and A^m be the affine spaces over k of dimensions n and m respectively and let V be an affine variety over k such that $V \times A^m \cong A^n$. Then V is isomorphic to the affine space $A^n \setminus A^m$ of dimension $n - m$.

The theorem was proved independently by S. Abhyankar, P. Eakin and W. Heinzer in [1]. However the author publishes this paper because he believes that his viewpoint is different from theirs and because he hopes that the method employed in this paper would have a contribution to further investigations of higher dimensional case.

Our method is as follows: Since $\text{Spec}(R[t_1, \ldots, t_{n-1}])$ is isomorphic to $\text{Spec}(R) \times \text{Spec}(A[t_1, \ldots, t_{n-1}])$, the $(n-1)$-product $G_{n,A}^{n-1}$ of the additive group scheme $G_{a,A}^A$ defined over A acts canonically on $\text{Spec}(R[t_1, \ldots, t_{n-1}])$, hence on the n-dimensional affine space A^n over A and the ring R is recovered as the ring of invariants with respect to the action of $G_{n,A}^{n-1}$.

The crucial results are:

1° R is a unique factorization domain with units contained in A.

2° Let K be the quotient field of A. Then $R \otimes_A K$ is a polynomial ring of dimension 1 over K.

These results 1° and 2° combined will yield a proof of the above theorem.

Moreover we shall make one remark on relationship among the problem of Zariski, the conjecture of Serre and the Jacobian conjecture. (The last two conjectures will be given later.)
Throughout this paper, all rings are noetherian commutative rings with identity element and all homomorphisms of rings send the identity element to the identity element.

1. Let A be a ring and let $G^n_{a,A}$ be the n-direct product over A of the additive group scheme $G_{a,A}$ defined over A. Let R be an A-algebra and let $\sigma: G^n_{a,A} \times \text{Spec}(R) \to \text{Spec}(R)$ be an action of $G^n_{a,A}$ on $\text{Spec}(R)$. Let $\Delta: R \to R \otimes A[t_1, \ldots, t_n]$ be the coaction associated with σ. Define a set of endomorphisms of the abelian group R, $\{D_\alpha | \alpha = (\alpha_1, \ldots, \alpha_n), \alpha_i \in \mathbb{Z}^+=\{0, 1, \ldots\}\}$, by

$$\Delta(r) = \sum_{\alpha > 0} D_\alpha(r) t^n$$

for any $r \in R$ where $\alpha = (\alpha_1, \ldots, \alpha_n)$ with $\alpha_i \geq 0$ and $t^n = t_1^n \cdots t_n^n$. Then D_α's satisfy the following properties:

1) D_α is an A-linear endomorphism of R.
2) $D_\alpha = \text{id.}$ the identity endomorphism, where $0 = (0, \ldots, 0)$.
3) $D_\alpha(rr') = \sum_{\beta + \gamma = \alpha} D_{\beta}(r) D_{\gamma}(r')$ for $r, r' \in R$.
4) $D_\alpha D_{\beta}(r) = (\alpha_1, \beta_1) \cdots (\alpha_n, \beta_n) D_{\alpha + \beta}(r)$ where $\alpha = (\alpha_1, \ldots, \alpha_n), \beta = (\beta_1, \ldots, \beta_n)$ and (α_i, β_i) is the binary coefficient $\binom{\alpha_i + \beta_i}{\alpha_i}$.
5) For any element $r \in R$, there exists α_0 such that $D_\alpha(r) = 0$ whenever $\alpha \geq \alpha_0$.

From these relations, we can derive easily the following: Let $D^n_\alpha = D^n_{\alpha_1}D^n_{\alpha_2} \cdots D^n_{\alpha_n}$, where $\varepsilon^n_\alpha = (0, \ldots, 0, n, 0, \ldots, 0)$ with a positive integer n placed on the i-th place and 0 elsewhere. Then $\mathcal{D}_i = \{D_0 = \text{id.}, D_1, \ldots, D^n_1, \ldots\}$ is an A-trivial iterative infinite higher derivation in R and we have $\mathcal{D}_i \mathcal{D}_j = \mathcal{D}_j \mathcal{D}_i$ for all i and j. Moreover, we have $D_{\langle \alpha_1, \ldots, \alpha_n \rangle} = D^n_{\alpha_1} \cdots D^n_{\alpha_n}$.

Conversely, suppose that we are given a set of A-trivial iterative infinite higher derivations $\{\mathcal{D}_i | (i = 1, 2, \ldots, n)\}$ in R which satisfies the following properties:

1) $\mathcal{D}_i \mathcal{D}_j = \mathcal{D}_j \mathcal{D}_i$ for all i and j.
2) Let $D_\alpha = D^n_{\alpha_1} \cdots D^n_{\alpha_n}$ for $(\alpha_1, \ldots, \alpha_n)$. Then for any element $r \in R$, there exists α_0 such that $D_\alpha(r) = 0$ whenever $\alpha \geq \alpha_0$.

Then the A-linear homomorphism $\Delta: R \to R \otimes A[t_1, \ldots, t_n]$ defined by $\Delta(r) = \sum_{\alpha > 0} D_\alpha(r) t^n$ for any $r \in R$ gives rise to an action of $G^n_{a,A}$ on $\text{Spec}(R)$. For more details, we refer to [3].

With this description of an action of $G^n_{a,A}$, we have

Lemma 1. Let A be a ring and let R be an A-algebra of finite type which is a unique factorization domain. Suppose that an action of $G^n_{a,A}$ on $\text{Spec}(R)$ is given. Then the ring of invariants S in R with respect to the action of $G^n_{a,A}$ is a
unique factorization domain too.

Proof. Let \(s \) be an element of \(S \). It suffices to show that if \(s=r_1r_2 \) with \(r_1, r_2 \in R \), then \(r_1, r_2 \in S \). Let \(\Delta \) be the coaction of \(G_{a,b}^n \) on \(R \). Let \(\Delta(r_i) = \sum_{a} D_a(r_i) t^a, i=1, 2 \). Then \(\Delta(s) = \Delta(r_1)\Delta(r_2) \). Put a lexicographic order in the set \(\{ \alpha=\langle \alpha_1, \cdots, \alpha_n \rangle \vert \alpha_i \in \mathbb{Z}^+, (i=1, 2, \cdots, n) \} \) and let \(\alpha_1 \) (or \(\alpha_2 \)) be the maximum of \(\alpha \) such that \(D_{a_1}(r_i) \neq 0 \) (or \(D_{a_2}(r_i) \neq 0 \)). Then \(\alpha_1 + \alpha_2 \) is the maximum of \(\alpha \) such that \(D_{a}(s) \neq 0 \). On the other hand, \(D_{a}(s) = 0 \) for all \(\alpha > 0 \). Then \(D_{a_1+a_2}(s) \neq 0 \) implies \(\alpha_1 = 0 \) and \(\alpha_2 = 0 \). Hence \(r_1, r_2 \in S \). q.e.d.

Lemma 2. Let \(k \) be an algebraically closed field of arbitrary characteristic and let \(A_n^* \) be the \(n \)-dimensional affine space over \(k \). Assume that the \((n-1) \)-product \(G_{a,b}^n \) of the additive group scheme \(G_{a,b} \) acts on \(A_n^* \) so that general orbits of \(G_{a,b}^n \) are of dimension \(n-1 \). Then the ring of invariants in \(k[x_1, \cdots, x_n] (=\text{the affine ring of } A_n^*) \) by \(G_{a,b}^n \) is a one-dimensional polynomial ring over \(k \).

Proof. Let \(R \) be the ring of invariants in \(k[x_1, \cdots, x_n] \) by \(G_{a,b}^n \). Then \(R \) is a unique factorization domain in virtue of Lemma 1. Let \(f \) be a non-zero element of \(R \), which is not a constant and has a minimal total degree in \(x_1, \cdots, x_n \). Then, \(f = \alpha \) is an irreducible element for any \(\alpha \in k \). If \(R = k[f] \), our proof is done. Otherwise, take an element \(g \) in \(R - k[f] \) with minimal total degree. Then, \(g = \beta \) is an irreducible element in \(R \), for any \(\beta \) of \(k \). Take any \(k \)-rational point \(x_0 \) of \(A_n^* \) such that the dimension of the orbit of \(x_0 \) is \(n-1 \). Let \(\alpha = f(x_0) \) and let \(\beta = g(x_0) \). Let \(V(f-\alpha) \) and \(V(g-\beta) \) be the \(G_{a,b}^n \)-stable irreducible subvarieties in \(A_n^* \) defined by \(f-\alpha \) and \(g-\beta \) respectively. \(V(f-\alpha) \) and \(V(g-\beta) \) have non-empty intersection since they contain \(x_0 \). \(V(f-\alpha) \) and \(V(g-\beta) \) have dimension \(n-1 \). Hence, \(V(f-\alpha) = V(g-\beta) = \text{the orbit of } x_0 \). Then \(f-\alpha \) must divide \(g-\beta \). This is absurd since \(g-\beta \) is irreducible. Therefore, \(R = k[f] \).

q.e.d.

Lemma 3. Let \(k \) be a field of characteristic \(p > 0 \), let \(k' \) be a purely inseparable extension of \(k \) with \([k': k] = p \) and let \(R \) be a finitely generated \(k \)-algebra such that \(R' = R \otimes k' = k'[x] \) is a one-dimensional polynomial ring over \(k' \), that \(R \) is a unique factorization domain and that \(R \) has a maximal ideal \(m \) with \(R/m \cong k', \text{i.e.,} \ Spec(R) \text{ has a } k \text{-rational point. Then } R \text{ is a one-dimensional polynomial ring over } k \).

Proof. The proof consists of several steps.

(I) There exists an element \(a \) of \(k' \) such that \(k' = k(a) \) and \(a \in k \). Then \(k' \) has a \(k \)-trivial derivation \(D \) such that \(D(a) = 1 \) and \(D^p = 0 \). \(k \) is then the ring of \(D \)-invariants in \(k' \) (we denote it by \(k'^D \)). Extend \(D \) onto \(R' = R \otimes k' \) by \(D(r \otimes \lambda) = r \otimes D(\lambda) \) for \(r \in R \) and \(\lambda \in k' \). Then \(D \) is an \(R \)-trivial derivation of \(R' \) such that \(R'^D = R \) and \(D^p = 0 \).
(II) Let \(C(R) \) and \(C(R') \) be the divisor class groups of \(R \) and \(R' \) respectively. Let \(L \) be the abelian group in \(R' \) consisting of logarithmic derivatives \(D(z)/z^{R} \) for elements \(z \) in the quotient field of \(R' \) and let \(L_0 \) be the sub-abelian group of \(L \) consisting of logarithmic derivatives \(\Theta(u)u \) for units \(u \) in \(R' \). Then, by virtue of P. Samuel [5], we have an exact sequence of abelian groups,

\[0 \rightarrow L/L_0 \rightarrow C(R) \rightarrow C(R') \]

where \(j \) is the canonical homomorphism defined by \(\cdot \otimes R' \). Since \(R \) and \(R' \) are unique factorization domains, \(C(R)=C(R')=0 \). Therefore \(L=L_0 \).

(III) Since \(R' \) is a free \(R \)-module of rank \(p \), \(R' \) is a faithfully flat \(R \)-module. Hence \(mR' \cap R=m \). Then \(R/mR' \cong k ' \rightarrow R/mR' \) and \(k ' \rightarrow R/mR' \). Since \([R'/mR': R/m]=p \), we have \(R'/mR'=k ' \). Thus \(n=mR' \) is a maximal ideal in \(R' \) such that \(R'/n \cong k ' \) and \(n \cap R=m \).

(IV) Since \([R': R]=p \) and \([R': k[x^p]]=p', \) we have \(R \cong k[x^p] \). Let \(f \) be an element of \(R-k[x^p] \) which is minimal in the degree with respect to \(x \). Write \(f=\alpha + \alpha_1 x + \cdots + \alpha_n x^n \) with \(\alpha_1 \in k ' \). We may assume that \(x \equiv 0 \) (modulo \(n \)) for the maximal ideal \(n \) of \(R' \) fixed in (III). For otherwise, \(x \equiv \alpha ' \) (modulo \(n \)) for some element \(\alpha ' \) of \(k ' \). Then we have only to replace \(x \) by \(x-\alpha ' \). Then \(f \) (modulo \(m \)) \(= \alpha_1 \in k \). Replacing \(f \) by \(f-\alpha_1 \) we may assume that \(f \equiv 0 \) (modulo \(m \)).

Write \(f=x^r g \) where \(g=\alpha_1' + \cdots + \alpha_n' x^{n-r} \) with \(\alpha_1 ' \neq 0 \) and \(r \geq 1 \). Then \(x^r | g \). Now applying \(D \) to \(f \), we have \(D(f)=x^rD(g)+rx^{r-1}gD(x)=0 \). Hence \(xD(g)=-rgD(x) \). Therefore we have either \(D(x)/x \) in \(R' \) or \(r \equiv 0 \) (modulo \(p \)). In the first case, there exists a unit \(u \) in \(R' \), i.e., \(u \in k ' \) such that \(D(x)/x=D(u)/u \) (cf. (II)). Then \(D(x)/x=0 \). Hence \(x'=x/u \in R' \). Therefore \(R'=k'[x]=k'[x'] \) and \(R=k[x'] \) because the derivation \(D \) on \(R' \) is just on the coefficient field \(k ' \) with the variable \(x' \) left invariant. In this case, we are done. In the second case, \(D(g)=0 \). Hence \(g \in R \). Taking account of the choice of \(f \) and of the fact that \(\deg(g)<\deg(f) \), we have \(g \in k[x^p] \). Since \(r \equiv pr \), we have \(f=g \cdot x^r=g \cdot (x^p)^r \in k[x^p] \). This is a contradiction. Therefore, only the first case takes place. Thus we have shown that \(R=k[x'] \). q.e.d.

Now we can prove the result 2° mentioned in the introduction.

Lemma 4. Let \(k \) be a field of arbitrary characteristic and let \(R \) be a finitely generated \(k \)-algebra such that with \((n-1) \)-indeterminates \(t_1, \ldots, t_{n-1}, R \otimes k[t_1, \ldots, t_{n-1}]=k[x_1, \ldots, x_n] \) (=an \(n \)-dimensional polynomial ring over \(k \)). Then \(R \) is a one-dimensional polynomial ring over \(k \).

Proof. The proof consists of several steps.

(I) Let \(\bar{k} \) be an algebraic closure of \(k \) and let \(\bar{R}=R \otimes \bar{k} \). Then \(\bar{R}[t_1, \ldots, t_{n-1}]=\bar{k}[x_1, \ldots, x_n] \). Let \(G_{x, \bar{k}}^{n-1} \) be the \((n-1) \)-product of the additive group \(G_{a, \bar{k}} \) over \(\bar{k} \).
POLYNOMIAL RINGS

Define an action of \(G^{n-1} \) on \(\text{Spec}(\tilde{R}[t_1, \ldots, t_{n-1}]) \) defining its coaction by \(\Delta(t_i) = t_i \otimes 1 + 1 \otimes t_i \) for \(i = 1, 2, \ldots, n-1 \) and \(\Delta(r) = r \otimes 1 \) for \(r \in \tilde{R} \), where \(t_1, \ldots, t_{n-1} \) are parameters of \(G^{n-1} \). Thus we get an action of \(G^{n-1} \) on the affine space \(\mathbb{A}^{n-1}_k \) over \(k \). By virtue of Lemma 2, we know that \(\tilde{R} = R \otimes k = k[t] \) is a one-dimensional polynomial ring over \(k \). Once we know that \(\tilde{R} = k[t] \), there exists an algebraic extension \(k' \) of \(k \) such that \(R = k'[t] \). By virtue of Lemma 2, we know that \(R = k[t] \) is a one-dimensional polynomial ring over \(k \).

(II) Let \(k_s \) be the separable closure of \(k \) in \(k' \). Then there exists an extension \(k'' \) of \(k_s \) and an element \(a \) of \(k' \) such that \(k' = k''(a) \). Hence \(a \) is a \(1 \)-cocycle of \(G \) with values in \(k'' \). Since \(H^1(G, k'') = 0 \) (Theorem 90 of Hilbert), there exists an element \(c \) of \(k'' \) such that \(a(\sigma) = \sigma c - c^{-1} \). Then \(b(\sigma) = \sigma c^{-1}b(\sigma)c + c^{-1}b(\sigma)c^{-1} \). Hence \(\langle (\sigma c^{-1}b(\sigma)c) \rangle_{\sigma \in G} \) is a \(1 \)-cocycle of \(G \) with values in \(k_s \). Since \(H^1(G, k_s) = 0 \), there exists a \(1 \)-cocycle \(b(\sigma) \) such that \((\sigma c^{-1}b(\sigma)c) = \sigma - c^{-1}b(\sigma)c - c^{-1}b(\sigma)c \). Then \(\sigma(t) = \sigma c^{-1}b(\sigma)c - c^{-1}b(\sigma)c \). Let \(t' = c^{-1}b(\sigma)c - c^{-1}b(\sigma)c \). Then \(\sigma(t') = t' \). Therefore \(t' \in R \). This implies that \(R = k[t'] \). Consequently, we have proved that \(R \) is a one-dimensional polynomial ring over \(k \).

We are now ready to prove the theorem. But before going to the proof of the theorem, we shall give a result which can be easily derived from Lemma 4.

Corollary 5. Let \(k \) be a field of arbitrary characteristic \(p \) and let \(\mathbb{A}^2_k \) be the affine plane over \(k \). Assume that the additive group scheme \(G_{a,k} \) acts freely on \(\mathbb{A}^2_k \), i.e., \((\sigma, p_\sigma) : G_{a,k} \times \mathbb{A}^2_k \rightarrow \mathbb{A}^2_k \times \mathbb{A}^2_k \) is a closed immersion, where \(\sigma \) is the action of \(G_{a,k} \) on \(\mathbb{A}^2_k \). Then the ring of \(G_{a,k} \)-invariants in the affine ring of \(\mathbb{A}^2_k \) is a one-dimensional polynomial ring over \(k \). Moreover, the action of \(G_{a,k} \) is given as follows: There exists a pair of elements \((x, y) \) in the affine ring of \(\mathbb{A}^2_k \) such that (1) \(k[x, y] \) is the affine ring of \(\mathbb{A}^2_k \), (2) \(x \) is left fixed by \(G_{a,k} \), and (3) \(y = x + ct \) (when the characteristic \(p = 0 \)) or \(y = y + f_0(x)t + f_1(x)t^2 + \cdots + f_n(x)t^n \) (when the characteristic \(p > 0 \)), where \(t \in G_{a,k}, c \in k^*, f_0(x), \ldots, f_n(x) \in k[x] \) and where \(f_0(x), \ldots, f_n(x) \) have no
common roots in an algebraic closure of \(k \).

Proof. Let \(Q \) be the \((fpqc)\)-quotient sheaf of \(A^*_k \) by the action \(\sigma \) of \(G_{a,k} \). Let \(\overline{k} \) be an algebraic closure of \(k \). Then \(\overline{Q}=Q\otimes_{\overline{k}}k \) is the \((fpqc)\)-quotient sheaf of \(A^*_k \) by the action \(\sigma=\sigma\otimes_{\overline{k}}k \) of \(G_{a,k} \). By virtue of [4], Example 4.24, \(\overline{Q} \) is representable by an affine \(\overline{k}\)-scheme and \((\sigma,p)\): \(G_{a,k}\times A^*_k\rightarrow A^*_k\otimes_{\overline{k}}k \) is an isomorphism. Then the \((fpqc)\)-descent theory for affine schemes shows that \(Q \) is representable by an affine \(k\)-scheme and \((\sigma,p)\): \(G_{a,k}\times A^*_k\rightarrow A^*_k\otimes_{\overline{k}}k \) is an isomorphism. This implies that \(A^*_k \) is a \(G_{a,k} \)-principal homogeneous space over \(k \). Hence \(\overline{A}^*_k=A^*_k\times\overline{Q} \). Let \(R \) be the affine ring of \(Q \) and let \(y \) be a parameter of \(G_{a,k} \). Then \(\overline{R}\left[y^\overline{1}\right] \) is a two-dimensional polynomial ring over \(k \).

Applying Lemma 4, \(\overline{R} \) is a one-dimensional polynomial ring over \(\overline{A} \). A\[#\], and the affine ring of \(A^*_k \) is isomorphic to \(k[z,y] \). The remaining of Corollary 5 is now easy to prove (cf. [3], [4]). q.e.d.

2. The proof of the theorem. First of all, note that \(R \) is a unique factorization domain (cf. lemma 2). Let \(K \) be the quotient field of \(A \) and let \(R_K=R\otimes_{A}K \). Then we have \(R_K/K[t]=K[x_1,\cdots,x_n] \). By virtue of Lemma 4, \(R_K=K[t] \) for some element \(t \) of \(R \) which is algebraically independent over \(K \). Moreover, since \(R[t_1,\cdots,t_{n-1}]=A[x_1,\cdots,x_n] \), Spec\((R) \) has an \(A\)-rational point. Namely \(R \) has a prime ideal \(\mathfrak{p} \) such that \(R/\mathfrak{p}\cong A \). In fact, \(\mathfrak{p}=R\cap(x_1,\cdots,x_n)A[x_1,\cdots,x_n] \). Then \(t\equiv a \) (modulo \(\mathfrak{p} \)) for some element \(a \) of \(A \). Replacing \(t \) by \(t-a \), we may assume that \(t\equiv 0 \) (modulo \(\mathfrak{p} \)). With this situation, we shall prove that \(R=A[t] \). Assume that \(R\supseteq A[t] \). Note here that since \(R_K=K[t] \), for any element \(u \) of \(R \), there exists an element \(v \) of \(A \) such that \(vu\in A[t] \). For any element \(u \) of \(R \), we define: \(\deg vu=\deg(vu) \), where \(v \) is an element of \(A \) such that \(vu\in A[t] \). Among elements \(u \) of \(R-A[t] \) with minimal degree in \(t \), take an element \(u_0 \) satisfying the following property: There exists an element \(v \) of \(A \) such that \(vu_0\in A[t] \) and that in a decomposition \(v=cv^*_1\cdots cv^*_r(\alpha_1,\cdots,\alpha_r>1) \) with a unit \(c \) of \(A \) and with mutually distinct irreducible elements \(v_1,\cdots,v_r \), the number \(r \) is minimal.

Let \(vu_0=a_0+a_1t+\cdots+a_tt^t \) with \(a_0,a_1,\cdots,a_t\in A \). Consider this relation modulo \(c\overline{v}^*_1A[x_1,\cdots,x_n]+(x_1,\cdots,x_n)A[x_1,\cdots,x_n] \). Since \(vu_0 \) and \(t \) belong to \(\overline{v}^*_1A[x_1,\cdots,x_n]+(x_1,\cdots,x_n)A[x_1,\cdots,x_n] \), we have \(a_0\in A\cap(\overline{v}^*_1A[x_1,\cdots,x_n]+(x_1,\cdots,x_n)A[x_1,\cdots,x_n])=\overline{v}^*_1A \). Thus \(a_0=\overline{v}^*_1a_0' \) with \(a_0'\in A \). Let \(u'=u-a_1+cv^*_2\cdots cv^*_r\overline{u}_0 \). Then we have \(v^*_1u'=(a_0+a_1t+\cdots+a_tt^t-1) \). Since \(t \) and \(v_1 \) have no common divisors in \(R \) other than units, \(t \) must divide \(u' \). Let \(u'=u't \) with \(u'\in R \). Then we have \(v^*_1u''=a_0+a_1t+\cdots+a_tt^{t-1} \). From the choice of \(u_0,u''\in A[t] \). Hence we have \((cv^*_2\cdots cv^*_r)\overline{u}_0\in A[t] \). Again from the choice of \(v,\overline{u}_0\in A \).
A[t]. This is a contradiction. Therefore we have shown that $R = A[t]$. q.e.d.

3. In this section, we shall show

Proposition. Let k be a field of characteristic zero, let V be an affine variety over k such that $V \times A^n \simeq A^n$ and let $R = k[x_1, \ldots, x_n]$ be an n-dimensional polynomial ring over k which is the affine algebra of A^n. Then V is k-isomorphic to A^{n-m} if one assumes the following two conjectures:

Conjecture of Serre: Let P be a finitely generated protective module over R with rank $n-m$. Then P is R-free.

Jacobian conjecture: Let (f_1, \ldots, f_n) be a set of elements of R such that the Jacobian $J(f_1, \ldots, f_n | x_1, \ldots, x_n)$ is a non-zero constant. Then $R = k[f_1, \ldots, f_n]$.

Proof. Denote by R^∞ a free R-module of rank a. With the affine algebra B of V, we have an exact sequence of R-modules,

$$0 \to \Omega^1_{B/k} \otimes_R R \to R^\infty \to R^\infty \to 0$$

which follows from the well known exact sequence of modules of Kahler 1-differentials applied to the projection $q: V \times A^m \to V$,

$$0 \to q^* \Omega^1_{V/k} \to \Omega^1_{A^m/k} \to \Omega^1_{A^m/k} \to 0.$$

Then $(\Omega^1_{B/k} \otimes_R R) \oplus R^\infty \simeq R^\infty$. Since $\Omega^1_{B/k} \otimes_R R$ is a finitely generated projective R-module of rank $n-m$, the assumed conjecture of Serre implies that $\Omega^1_{B/k} \otimes_R R$ is a free R-module. On the other hand, since R is an m-dimensional polynomial ring $B[t_1, \ldots, t_m]$ over B, we can conclude easily that $\Omega^1_{B/k}$ is a free B-module of rank $n-m$. {In fact, let e_1, \ldots, e_{n-m} be a R-free basis of $\Omega^1_{B/k} \otimes_R R$ and write $e_i = \sum_j a_{ij} f_j$ with $a_{ij} \in B[t_1, \ldots, t_m]$ and $f_j \in \Omega^1_{B/k}$. Let α_{ij} be the constant term of a_{ij}. Then $e' = \sum_j \alpha_{ij} f_j$ $(i = 1, \ldots, n-m)$ form a B-free basis of $\Omega^1_{B/k}$}.

Let db_1, \ldots, db_{n-m} be a B-free basis of $\Omega^1_{B/k}$. Then $db_1, \ldots, db_{n-m}, dt_1, \ldots, dt_m$ form a R-free basis of $R^\infty = \Omega^1_{A^m/k}$. Hence b_1, \ldots, b_{n-m} and t_1, \ldots, t_m are polynomials in x_1, \ldots, x_n with coefficients in k such that the Jacobian $J(b_1, \ldots, b_{n-m}, t_1, \ldots, t_m | x_1, \ldots, x_n)$ is a non-zero constant. Apply here the assumed Jacobian conjecture which asserts $k[b_1, \ldots, b_{n-m}, t_1, \ldots, t_m] = k[x_1, \ldots, x_n]$. On the other hand, $B[t_1, \ldots, t_m] = k[x_1, \ldots, x_n]$. Thence we conclude easily that $B = k[b_1, \ldots, b_{n-m}]$. This shows that $V \simeq A^{n-m}$. q.e.d.

Osaka University
References

