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Abstract
Let A7, Cc Z" denote the set of positive roots of the root syst&m; and In+
its toric ideal. The purpose of the present paper is to stummhinatorics and al-

+

gebra onA; , and I+ . First, it will be proved thatla+ , induces an initial ideal

in_ (IA;A) which is generated by quadratic squarefree monomials liegetith cu-
bic squarefree monomials. Second, we will associate eactinmbfaceo of the
unimodular triangulatiomA  arising frorim_ IA,Ll) with a certain subgrapk;, on

[n] = {1,...,n}. Third, noting that the number of maximal faces &f is equal to
that of anti-standard treeg  dn] with 7 # {(1,2), (1 3)..., (1nr}, an explicit
bijection between the s€iG,: o is a maximal face ofA} and that of anti-standard
treesT on[n] with T # {(1,2), (1 3)..., (1n} will be constructed. In particular,
a new combinatorial expression of Catalan numbers arises.

Introduction

In their study of hypergeometric functions associated witbt systems, Gel'fand,
Graev and Postnikov [5] studied combinatorics on the coriuek conv(A*_,) of the
configurationA;_, = A*_, U {0} C Z", whereA;_, is the set of positive roots of the
root systemA,_; and 0 is the origin of R”. It turned out that confA’_,) possesses
a unimodular triangulation, i.e., a triangulation suchttii@e normalized volume of
each of its maximal faces is equal to 1, and that there is aficéxpijection between
the set of maximal faces of the unimodular triangulation #mat of so-called “anti-
standard trees” on the vertex set [ ]{=,.1.,n} . Since the number tfstandard

trees on £ ] is the famous Catalan numbeyr(l(zf)’:ll)), it follows that the normal-

ized volume of conyA*_,) is equal to (In (221:11))_

On the other hand, from the viewpoint of toric ideals, muchrenonportant re-
sults essentially appear in Gel'fand, Graev and PostnikjvHor example, it is proved
that the toric ideal arising from the configura\tiaﬁj_l induces a squarefree quadratic
initial ideal. (A monomial ideal is said to be squarefreesfrequadratic) if it is gener-
ated by squarefree (resp. quadratic) monomials.) In génieia known in [11] that if
the toric ideal arising from a configuration induces a sqneeeinitial ideal, then the
convex hull of the configuration possesses a unimodulandtikation. Moreover, if the
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toric ideal arising from a configuration induces a quadratital ideal, then the toric
ring of the configuration is a Koszul algebra (e.g., [1] an}).[2

In the recent paper [9], the existence of a squarefree qtiadratial ideal for
each of the configuration8* = B U{0}, C* = C*U{0} and D! = D} U {0} was proved,
whereB; (resp.C;, D;) is the set of positive roots of the root systép (resp.C,,
D,). Moreover, in [8], the problem on the existence of a squaestnitial ideal of the
toric ideal of the configurationd U {0}, where A is a subset oBC' = B® UC}, was
mainly discussed.

Stanley [10, Exercise 6.31 (b)] computed the Ehrhart patyiab of the convex
hull of K,f,l- In her dissertation [4], Fong constructed an explicitrigialation of the
convex hull of each of the configuratio, C! and D, and computed the normal-
ized volume together with the Ehrhart polynomial of eachledse convex hulls.

In the papers [4], [5], [8] and [9], the play of the origin issestial. For example,
if n > 6, then the toric ideal of each of the configuratioA$ ;, B;, C; and D, can
induce no quadratic initial ideal. However, it is reasonable to aslthé toric ideal of
each of the configurationd; ,, B}, C; andD; induces a squarefree initial ideal.

The purpose of the present paper is to study combinatoridsadgebra on the
configurationA; _, and its toric idealla+ . First, it will be proved that/a+  induces
an initial idealin. (Za: ) which is generated by quadratic squarefree monomials to-
gether with cubic squarefree monomials (Theorem 1.1). &kcwe will associate each
maximal faceo of the unimodular triangulation  arising fram (IA,*H) with a cer-
tain subgraphG, onn ] (Theorem 2.3). On the other hand, it isy dassee that
the normalized volume of corfA* ;) is one less than that of cofik’_,). For the
sake of the completeness, two proofs of this simple fact i@l given in Proposi-
tion 3.3. Third, an explicit bijection between the 4€t, o : is aximal face ofA}
and that of anti-standard treds on [ Jwith/ {=,(1, 2), (1L.3), ,AL} ) vl con-
structed (Theorem 3.5). In particular, a new combinatogigdression of Catalan num-
bers arises. Note that a list of 66 expressions of Catalarbatsris presented in [10,
Exercise 6.19].

1. Squarefree initial ideals

In the present paper, we consider the configuration
A =le—g:l<i<j<n}cZ,

where e denotes thei -th unit coordinate vector Bf'. The configurationA; , is
the set of positive roots of the root systefp_; (see [7]). LetK ] = K[fi;: 1 <
i < j < n] denote the polynomial ring over a fiel& , ankl t,t['1,s] = K[n,
tfl, ..., ., t71, 5] the Laurent polynomial ring ovek . Theeric ideal In:  Of A},
is the kernel of the homomorphism K f][ — K[t,t71, 5] defined by setting

7(fi)) = ;itjfls forall1<i<j<n.
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We recall fundamental materials on Grobner bases from, By Let M denote
the set of monomials oK f[. In particular, the element 1 belongs 8 .rmAonomial
order on M is a linear (total) ordex oW such that ()du  for any/k= M
and (i) if u,v € M andu < v, thenuw < vw for anyw € M . Fix a monomial
order < onM . For 0/% € K f], the initial monomial in.(g) is the biggest monomial
appearing ing with respect te . Thaitial ideal of /a: ~with respect to< is the
ideal

in. (Iar ) =(in.(8): 0 #g € Ia+ ) C K[f].

For a finite subset{ C K[f], let in_(H) = (in_(h): h € H) C K[f]. A finite setH C
Ip+ , is said to be aGrobner basisof I:  with respect to< ifin_(H) = in_ (Ia+ ).
A Grobner basigi of Ia+  with respect to< is callededucedif it has the additional
properties that, for each € H, the coefficient ofin_(z) is 1 and, for any two distinct
elementsh, i’ € H, no term ofh’ is divisible byin_(k). A reduced Grobner basis
uniquely exists.

Let <ex be the lexicographic order induced by the ordering of vadesb

fn—l,n >lex fn,—2,n—l>|exf;1— 2n > lex" t > |(-:‘Xf12> Iexf,13> lex ** > Iexf iy

and let <, be the reverse lexicographic order induced by the orderfnganables

.ﬁ1fl,n >rev .ﬁ172n >revfn—2i— 1> rev - > revf 23 redf A > rev > ref, 13 e, 12

First, we explicitly provide the Grobner basis di- with respect to both<e
and <.y, Whose initial monomials are squarefree monomials of degrée

Theorem 1.1. The setG of the binomials

Jiifix — Jix it i<j<k<lI,
Jiij fise = fiivafisik. i+tl<j <k,
fiifersifiors — frisafierjfras i+l<j<k<Il—1

is the reduced Gibner basis of the toric idealla: , with respect to both<e
and <ey, Where the initial monomial of each binomial is the first morm

Proof. Sincefi; <iex fix <iex fj.l <lex fj,k and fix <rev fi1 <rev fj,k <rev fj,l
fori < j < k < I, the initial monomial of f;, fj« — fixfj: iSfiifjx Wwith re-
spect to both<iex and <. Similarly, it follows that the initial monomial of each
binomial belonging toG is the first monomial with respect to bothiex and <iey.
Hence it is enough to show th&t is a Grobner basis ofa+ | with respect to<jex.
(Once we know thatj is a Grobner basis, it immediately follows th@tis reduced.)
The effective technique discussed in [9] can be also apptiethe present situation.
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Suppose that

u= ﬁl-jl T ﬁq’jq’

w'= fig S
are monomials oK f] with « ¢ in__(G) andu’ ¢ in__(G), where

Sinjn Stex -+ Zlex fiq,jq,

fi’l,j’1 <lex * -+ Zlex fi(’,,,j(;,'

What we have to show is that it u( ) = u( ), then & and=1i],....i; =i,
A=t Ja = g

Supposer « ) =r ' ). By comparing the exponentsof niru ( ) with thatria’),
we haveg =¢q’ . Using the induction op , we will show that there tsxi variable
appearing in bothy and’ . Let, denote the set of all indices sheh thothy;
and ;7" appear in the product u( ) ® (fi,.;) -7 (f;,.,)- Sincex ¢ ) =z (') and
q =¢q’, it follows thatm, =@ if and only ifm, =@ .

Case l. m, #0 andm, A0 .

Let p (resp.p’ ) be the smallest elementrin, (resp: ). We may asshate
p < p'. If uis devided by f, ,f,, for someu and with +%X p < v , then
we haveu e in._(G) by the previous argument of this proof. This contradicts th
assumption. Hence botli,_1 , and f,, appear int for some > p . Similarly, both
fp—1p and f, . appear in’ for some > p’

Suppose thatf,_1 , does not appear i’ . Then we haye< p’ . Sincer () =
7(u') and p — 1¢ m, , there exists a variabg_, , appearing int’ withp <s . Since

p<p <s= fpasfpy1p €in,(9),

p=s = Sp—vsfpor €in.,(9),
p’ =5s+1 = fp—l.sfp’f],p’ € in<|ex(g)’
stl<p = forsfp—1pfpr €N (G)

hold, this contradicts:’ ¢ in.(G). Thus f,_, , appears in bothx and’

CASE 2. m, =m, =0.

Sinceiy <ip < --- < iy andij < i, < --- < i, it follows thati, =i . If
Jja < J,» then there existq such thatd h < ¢ witf & . Hence we have
in <iq < Jjq < Jjn- Since fi, ; fi,.j, ¢ in<.(G), we havei, =, . Thusf, ;, appears in
bothu andu’ , as desired. ]

2. Unimodular triangulations

Let <jex denote the lexicographic order discussed in the previousiose Let
A=A, (IALl) denote the regular triangulation ([11, Chapter 8]) of the- i1 d
mensional convex polytope co(W ;) associated within_,, (/a+ ). Thus A consists
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of all subsetss C A}, such that

l_[ flj ¢ in<|ex (IA,JLl) :

€—¢geco

Sincein_, (IA;A) is generated by squarefree monomials by Theorem 1.1, ibvsl|
from [11, Corollary 8.9] that the triangulationn  is unimodul i.e., the normalized
volume ([11, p.36]) ofoc is 1 for every maximal face  of

In this section, we present a graph-theoretical charaetiéon of the maximal
faces of A . Let f] ={1...,n} be the vertex set and lét { ),di < j <n |,
be the arrow fromi toj . Given a subset Af ,, we write G, for the graph on
[n] having the arrowsi(j ) withe; — g € 0.

Lemma 2.1. Let o be a maximal face ofA. Then the graphG, associated
with o is a connected graph which has verticasarrows and a cycle{(qg, g + 1),
(¢./).(g+1 j)} forsome2<g+1<j<n.

Proof. Theorem 1.1 guarantees that a sulset ADf, is a face ofA if and

only if none of the following subgraphs appear @h,

M {GD,(j,k}with i <j <k <],

(n G, nN,(j,H}ywith i+1 < j <k,

(amy i, j),(k, k+2),(k+1, D} withi+1<j <k <[—1.

Let o be a maximal face oA . Thea is of dimensian- 1. Thas is a graph
with n vertices and: arrows. Henadg, has at least one cycle.

Let C be a cycle of lengthr & 3) irG, and leg =min{i: (i, j) € C}. SinceC
is a cycle, there exist two verticég; andiz 1 of G, such that{ {, i1 1), (fo, i21)} C C
with ip < i3 1 < iz 1. Since none of the subgraphs of type (I) appeac€ rthere exists
no vertexj; of G, such that {1, i1 1) € C with ip < j1 <i11. Thus, sinceC is a cycle,
there exists a vertek o ( > i1.1) of G, such that {1,712 € C. Note that, since none
of the subgraphs of type (ll) appear ¢h we haveii ; =ig + 1.

Since none of the subgraphs of type (I) appea€inve haveiz; < i1 Suppose
thatis 1 < i1 2 If (i21,i22) € C with iz 1 < iz then we havey ;1 =ig+1 since none of
the subgraphs of type (II) appear ¢h This contradicts the assumption thag €1 =)
i11 < iz1. SinceC is a cycle, there exists a vertgy of G, such that fp,iz1) € C
with i11 = io+1 < j2 < i21. Then the subgrapliixs, i1 2), (j2, iz1)} of type (I) appears
in C. Thus we have'l,z =is1 andC = {(io, ip+ 1), (io, i]_z), (io +1, l'l,z)}.

Suppose that two cyclelsp(p +1p(i . p( #l} ) ahd.§¢ +B.(. 9 (.¥3 )
appear inG, . Then we have 0 £ p+1fp+1ifq.j — fpifqq+1fq+1j € Iar_ . Since either
fopeafostifaj OF fpifqqriforrj belongs toin., (Ias ), it is impossible that both
{(p.p+t1).(p+1i)g.j) and{ p,i) §.q +1) ¢ +1;) appearit, .Thus,
has exactly one cycle.
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Moreover, sinceG, haa verticeg, arrows and exactly one cycl&gllows
from the following lemma thatG, is connected. Ol

Lemma 2.2. Let G be a finite graph with neither loop nor multiple edde G
has exactly one cycland the number of vertices @@ is equal to that of edge& of
then G is connected.

Proof. Suppose that is not connected. Cet. .., C, be connected components
of G, wheres > 2 and exactly one cycle ¢f appearinand, for 2<i < s ,(;
is a tree. Lety; (respe; ) denote the number of vertices (resge®dofC;. Then we
have} .y e; = >i-; v by assumption.
For any treeT , the number of edges®f is equal to that of vexrtidel” minus
1 (see [6, Theorem 1.3]). Hence, singe=v; ande, =v,— 1 for 2< k < s , it follows
that 3 ’_je; < > iy vi. This contradictsy . e; = > i_;v;. Thus G is connected.
O

We now come to a graph-theoretical characterization of thaimal faces ofA .

Theorem 2.3. A subsets ofA’_, is a maximal face ofA if and only if the
graph G, associated witly is a connected graph with  vertices mradrows satis-
fying the following conditionG, = AU B U C, where

A={(12,(23)....6—1q) ¢.q *1) & j) § +1j)
B =1{(q,i1),---,(q. i)}

withg+1<i; <---<i, < j (B may be an empty getand none of the subgraphs
Q) {x,w), v,z withx <y <z<w,

2) {(x,y), v, z2)}withx <y <z
appear inC , andC is either an empty set or one of the followingpbs

Casel. C={g+Ls1),....(q+21 sm), &ups Yus)s - -+ (Xu,» Yu,,)} With

j<S]_<"'<Sm§n,
q+l<-xukvj<yuk5n (k:l,z,p),
xllk¢{jvila'-'air} (k:l,z,p)

CAsSE 2. C ={(t1, j), . (tes J)s (Kugs Yur)s -+ s (Xu,» Yu,)} With

gtl<ti<---<t, <},
q+l<-xukvj<yuk5n (k:l,z,p),
xllk¢{jvila'-'air} (k:l,z,p)

Proof. [only if] Suppose that is a maximal face of . Then, by Lemma 2.1,
the graphG, associated with is a connected graph whichrhas icegmt arrows
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and acycle{ 4,9 +1)4,j )4 +1}) of length 3. Moreover, note that nohe¢he
subgraphs of type (1), type (ll) and type (Ill) stated in theg of Lemma 2.1 appear
in G, sincec is a face oA .

Step 1. If an arrow {,q + 1) withu /~=q appears G, , then the subgraph
{(u,qg+1),(g+1; ) of type (ll) appears irG, sincg +31u +1. Hence no arrow
(u,q +1) with u Zqg appears inGg, .

Step 2. If an arrow ¢ +1s ) withs < j appears i, , then the subgraph
{(q, ), (g +1,s)} of type (I) appears irG, . Hence ifj( 3 ) appearsGy , then
we havej <5 .

Step 3. If an arrow (,t) appears irG, , then the subgraph, j(, j)t(¢ ) of
type (ll) appears inG, . Hence no arrow, ¢ ) appearsGin

STEP 4. If an arrow €, j) withs < ¢ appears irG, , then the subgraph
{(¢, j), (g, q + 1)} of type (I) appears itG, . Hence no arrow [ ) with< ¢ appears
in Gg.

STep 5. Suppose that both an arroyy ( #s1 ) with/ /= and an arrow ( )
with t #¢q,q +1 appear inG, . Note that> j and>¢q +1 byr® 2 and SEP 4.
Then the subgrapti g( + 21, ¥,(j }) of type (I) appearsdy . Hence no rsyibg
{(g+1,5), @ j) withs #j andt ~q,q +1 appears G,

STEP 6. |If an arrow g,i) withi > j appears irG, , then the subgraph
{(q,0),(qg +1, )} of type (I) appears irG, . Hence if{i ) appears@ty , then we
havei < j .

Step 7. If an arrow &, ) withk £q andg +1<i < j appears i, , then
eitherk < q orq +1< k < i < j, and either the subgraptt, {, ¢, § +1) with
k < q of type () or the subgrapli g( +3 ,)k(i}) with +&k<i<j of type ()
appears inG, . Hence no arrow,{ )with/ &= apd <1 < appears;in

STep 8. Since none of the subgraphs of type (Il) appearGin , ho sudbgr
{(g,1), (G, D} withg+1<i < j andi <[ appears i,

STEP 9. Suppose that an arrow:(z2) with z1 < ¢ appears inG, . Ifza > g+1,
then the subgrapl z{, z2), (¢, g + 1)} of type (I) appears irG, . This contradicts the
assumption that € A . It = ¢ + 1, then the subgraphz( g +1), (¢ +1 j)} of type
(I) appears inG, . This contradicts the assumption thatg A 22lf= ¢, then we
havez; = ¢ — 1 since none of the subgraphs of type (ll) appeaGin z2lk ¢, then
we havez; =z — 1 since none of the subgraphs of type (Ill) appeaiGin . Thus if
an arrow {3, zo) with z; < g appears inG, , then we haw = z; +1 < ¢. It follows
from the connectedness ¢f, that, (1, 2), (2.3), g ,913 ) is a subgraptyof

Thus, from the above nine steps, we havg ASBUC , Where

A= {(172)7 (2 3)7 @_ lq) @7q +1) év.])é +1.] Bv
B = {(qvll)vv(qvlr)}

with g+1<i; <--- <i, < j (B may be an empty set), and is either an empty set
or one of the following graphs:
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CASE 1' C :{(q + 1; Sl), LR (q + 17 Sm)7 (xl,tla yul)a AR | (xu],v yl,t,,)} Wlth

j<s1<---<8§, <n,
q+1<xukaj<yuk§n (k:l,z,p),
Xu, € (o0, i) (k=1,2...,p)

CAse 2. C ={(t1, j)s > (tes J)s Cugs Yur)s o> (X, » Yu,)} With

gtl<n<---<t, <},
q+1<xuk,j<yuk5n (k:l,z,p),
xllk¢{jvila~-~air} (k:l,z,p)

Finally, we prove that none of the subgraphs,« , y) 4} ) withk y <z <w
and{(,y) (v,z)} withx <y < z appear irC . First, since none of the subgraphs of
type (1) and type (Il) appear iG, , none of the subgraghs u(, y)z(} )thwi <
y<z<wand{{,y) (,z)} withx +1<y <z appear ilC . Now, suppose that the
subgraph{ £,x +1)X +1z}) withx +Xk z appears @ . Note that, in boths€
1 and Q:SE 2, if (z1, z2) appears inC , then we havye +lz; # j. Henceg +1<x
andx £j— 1j.Ifx > j, then the subgraphg,(j . X.c +1x ( #} ) of type (lll)
appears inG, . This contradicts the assumption that A glf =k < j— 2,
then the subgrapht ¢(j , x(x +11) of type (I) appearsan . This comttacthe
assumption thab € A . Hence no subgraph, x +#1) (,£t1 ) with <1z
appears inC .

[if] Let o be a subset oA’ ; and suppose that the gragh, associated with
satisfies the condition stated as above. In order to prove d¢h&s a maximal face
of A, it suffices to show thatr is a face @&  sinc¢g, is a connecteggraith n
vertices andn arrows and the dimension of maximal faces\of n is . Inlother
words, we need only prove that none of the subgraphs of typdyfe (II) and type
(1) stated in the proof of Lemma 2.1 appear @,

First, we show that none of the subgraphs of type (I) appea, inlf a subgraph
G’ of type (I) appears irG, , thel’” must be one of the following sapps:

(@) {(1,1a), (2, 13)} with I3 <y <3< l4and {1,14), (I2,13) € AU B,

(b) {(ll, l4), (lz, 13)} with lh<ly<lz<ly and ¢1, l4) € AUB, (lz, l3) e C,

(C) {(ll, l4), (lz, 13)} with lh<ly<lz<ly and ¢1, l4) e C, (12, l3) € AUB,

(d) {(ll, l4), (lz, 13)} with lh<ly<lz<ly and ¢1, l4), (lz, 13) e C.

However, since none of the subgraphs of type (l) appear in neraf the subgraphs
of type (d) appear irG, . Moreover, since

AUB:{(].,Z), (2 3)’ @_ lq) @’q +l) Q’J)Q +1JB
Ullg.i1).....(q.ir)}

with g +1<i; < --- < i, < j, none of the subgraphs of type (a) appeaiGin . Note
that, if (y1, y2) appears inAUB andz{, z2) appears inC , then we havwg < g+1 < z3
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1 2 4 3 1 2
Gy, = G,, =

3

1 2 2
GU3 = G0’4 =
4
e
4 3 1
Fig. 1.

and y, < j < zo. Hence none of the subgraphs of type (b) and type (c) appeér, in
Thus none of the subgraphs of type (I) appeaiGin

Second, we show that none of the subgraphs of type (ll) apipeét,. Suppose
that the subgraph I1 %), (I2, [3)} with [ + 1 < [, < I3 appears inG, . If [g,[5) €
AU B, thenly € {j,i1,...,i,} sincely +1 < [,. This implies that &, /3) ¢ G,. Hence
(l1,12) € C. Moreover, sincey +Xk j <[, < I3, it follows that (»,13) ¢ AU B, i.e.,
(I2,13) € C. However, none of the subgraphs of type (Il) appeaCin . ldemane of
the subgraphs of type (ll) appear @&,

Finally, we show that none of the subgraphs of type (Ill) awp@ G,. Suppose
that the subgrapty /1 [2), (I3, I3+ 1), 3+ 1,14)} With 1 +1 <, < I3 <14— 1 appears
in G,. If (I1,12) € AUB, thenl, € {j,i1,...,i,} sincel;+1 < I,. Hence, sincey +%
b < I3 < 14—1, it follows that (3, l3+1), (13+1, l4) ¢ AUB, i.e., Qg, 13+1), (13+1, l4) eC.
Moreover, if (1,12) € C, then (3, 13+1), (lz+1,14) ¢ AUB, i.e., (3,13+1), (l3+1,14) € C
sinceq +1< j <l < I3 < I4—1. However, no subgraph of the forfrwi(vy), (v2, v3)}
with v; < v < vz appears inC . Hence none of the subgraphs of type (lll) appear
in Gg. I

ExampLE 2.4. Letn =4. Then the maximal faces of are

o1 ={(1.2),(13) (23 (24
02={(1,2),(13) (14 (24
03 ={(1.2,(1 4 (24 34
04 ={(1,2),(23) (2 4) (34

and, fori =1 2 3 4, the graply,, associated with s illustratedig E.
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1 2 3 4 1 2 3 4

T]_ T2
1 2 3 4 1 2 3 4
T3 Ty
1 2 3 4

Ts

Fig. 2.

3. Catalan numbers

We now discuss the relation between the set of maximal fates and that of
anti-standard trees.

A treeT on the setf ] ={ 1..,n} (i.e., a connected graph on the set [ ]
without cycle) is calledanti-standardif none of the following subgraphs appear ih
Q) {GD, G,k withi <j <k <,
2) {G ), (G, k) withi < j <k.

ExavpLE 3.1. All anti-standard trees for =4 are illustrated in Fig. 2

Let M = {G,: o is a maximal face ofA} and lef denote the set of anti-
standard trees om|[ ]. Recall the following result on the cality of 7.

Proposition 3.2 ([5, Theorem 2.3, Corollary 6.7]). (aJhe number of anti-
standard trees on the s¢t] is equal to the Catalan number

C1/20-1)
Cnl_;( n—1 )

+

(b) The normalized volume an‘onv(ﬂn_l) is equal toC,_1.
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Even though the following result is easy to prove, we give pwoofs for the sake
of the completeness.

Proposition 3.3. The normalized volume afonv(A}_,) is equal toC,_1 — 1.

First proof. ~ First, we show that the set of vertices of cOhy ;) is A* . Let
Al ={vi,...,V,}, wherev; = e, — g, (1< pi <g¢; <n)forl<i <m.Then
5\,‘1‘71 = {V1,...,Vn} U {0} If O € conv(vy,...,V,}), then we haved = >, a;v;,
where 0< g; e Rforl <i <m and) L, = 1. We setp = mifp;, @ /=P .
Then, thep -th component in the right-hand side is positiveweler, thep -th com-
ponent in the left-hand side is zero. Hence we h@veconv(vs, ..., V,}). Moreover,
if vi € conv(vz, ..., v} U{0}), then we havev; = b0+ 3", b;v;, where 0< b €
R,0<bjeRfor2<j<mandb +377_,b; = 1. Note that the first component of
vjis0or1forl<j<m. If p1>1, then the first component in the right-hand side
iS Y 5 j<m:p,;-1b; and the first component in the left-hand side is 0. Thus we have
bj =0 for everyj withp; =1. Hence we have =00+3 ,_,_,., »1b;v;. Similarly,
if p1 > 2, then we haveb; = 0 for every witlp; = 2. By this argument, we
may assume thap; = 1. Then, since the first component in the right-hand side is
> 2<j<m;p;=1b;j and the first component in the left-hand side is 1, we have =0 fo
every j with p; # 1. Moreover, we have; / @ for every j withj #1 andp; = 1.
Thus thegs-th component in the right-hand side is 0. However, gheh component
in the left-hand side is- 1. Hence we have¢ conv(v,,...,Vv,}U{0}). By the same
argument, it follows that; ¢ conv({vy,...,V;_1,Vi+1, ...,V U{0}) for 1L <i < m.
Thus the set of vertices of coi}_,) is A’ ;.

Now, letw = (1, 2...,n)e Z" andog = conv({e — e+1: 1 <i <n— 1} U{0}).
Thenog is a simplex of normalized volume 1 and digh=n — 1. Sincew -0=0 and
w-(6& —g)=i—j < —1, it follows that confA}_,) is separated into corfA}_,)
and og by the hyperplangx € R": w - x = —1}. Hence the normalized volume of
conv(A? ,) is equal to that of confA* ;) minus 1. O

Second proof. Lek be a lexicographic order with the largesiablex , where
x is the variable corresponding to the origin. Then, forakl < j— <& —1, the
binomial xf; ; — fii+1fi+1;, whose initial monomial iscf; ; , belongs . . Suppose

that o is a maximal face of. (IK*,l) with the origin as a vertex. I — g is a
vertex ofo for 1<i < j— 1=<n— 1, then[[, ¢y g fij € IN< (Igtl). This

contradicts the assumption thate A. (15,11)' Thuse — g is not a vertex ofo if
1<i< j—1<n—1. Hence the vertex set of {8 —¢€.+1: 1 <i <n—1U{0}. Hence
conv(ﬂlj_l) is separated into corfA’_;) andoo. Since the normalized volume of
is equal to 1, the normalized volume of cqV,_,) is equal to that of con(A’_,)
minus 1. O
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Since A is a unimodular triangulation, we have the following.
Corollary 3.4. The number of graphs belonging tbt is equal toC,_; — 1.

We set7* =7\ {{(1,2), (14 3)..., (1n}}. Since the cardinality of is equal
to that of 7*, it seems of interest to find an explicit bijection betwegh and 7*.

Theorem 3.5. The mapg: M — T* defined as follows is bijectivdor each
elementG, = AU BUC € M, where

A={12.,23)....6—1q9) ¢.q9 *1) & j) ¢ +1j)
B ={(q,i1),..-,(q, i)}

withg+l<ig<---<i, <j, we definap(Gg):ZUEUC,where

A={(12.(13)..., (1qg) (1)) ¢ +1j)
B={(@,i),...,(Li).

Proof. We take anyG, =AU B U C € M. Since no subgrapli x(w , )y(z })
with x < y < z < w appears inG, and no subgraghc,§, ),¢(} ) with< y <
z appears inC , it follows thap , ) is an anti-standard tree by dénition of ¢ .
Moreover, since the arrow (# + 1) does not appear in the geagh,),(we have
o(G,) #{(1,2), (1, 3)..., (In} . Hence we have G €7*.

We now show thatp is injective, which implies that is bijeetigince| M| =
|7*l = Cy—1 — 1. Suppose thap 4, ) » d, ) foG,, G, € M. We can express
Gy, G, as

G,=AUBUC,
G, =A'UB UC/,

where

A={12,23)....,6—19) .9 +1) &) ¢ +1j)

B ={(q,i1),...,(q, i)}

A={12),23)....4-1d)¢.ad +1)E.j)§ +1;)
B'={(¢, 1), ..., (g i)}

withg+l<ii<---<i, <jandqg +1<i; <--- <i/, < j. Comparing the arrows
in ¢(G,) of the form (1 k) with the arrows ip , ) of the form (' ), it folws

from ¢(G,) = ¢(G,) thatq =¢',j =j ,r =r' and, =, forlk m <r . Hence
we haveA U B =A"U B’ . Moreover, sinc€ ard  are invariant under the map

9(G,) = ¢(G,) implies thatC =C’' . ThusG, =%, . Hence is injective. U
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ExavpLe 3.6. Letn =4. ThenG HG,,, Go,, Goyy Go,} @aNd T = {11, To, T3, Ty,
Ts} are described in Example 2.4 and Example 3.1. We haw,, ( 2 = ifor =
1,2 3 4.
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