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1. Introduction

In this paper conditions are obtained under which all solutions of certain real
non-autonomous nonlinear differential equations tend to zero as t—oo.
Theorem 1 is concerned with the system of differential equations;

(L.1) & = A(t)x+f(tx)

where x, fare n-dimensional vectors, A(¢)is a bounded continuously differen-
tiable z X » matrix for £=0, and f(¢, x) is continuous in (2, x) for =0, ||x[|<oo,
here || [|denotes the Euclidean norm.

Theorem 2 is concerned with the differential equation of the third order;

(1.2) ¥+a(t)f(x,2, ¥)%2+b(2)g(x,2)+c(t) h(x)= p(t, %, %, X)

where a(z), b(t), c(t) are positive continuously differentiable and /, g, &, p are
continuous real-valued functions depending only on the arguments shown, and
the dots indicate the differentiation with respect to .

The asymptotic property of solutions of third order differential equations
has received a considerable amount of attention during the past two decades,
particularly when (1.2) is autonomous. Many of these results are summarized in
[11].

A few authors have studied non-autonomous third order differential equa-
tions. K. E. Swick [13] considered the following equations

(1.3)  &F+p(t)%4q@)8(E)+r(@) b= 0,

(L4)  ¥4fx, £, 1)3+q(t)8(£)+r()h(x- 0 ,

with the assumption that ¢(z), #(¢) are positive, bounded and monotone
decreasing.

In [6], the author studied the asymptotic behavior of the solutions of the
equation
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(L5)  Fa(d)fwn) 5+bHgls £)F-+H(t)hx)= e

under the assumptions that |a’(t), |&'(¢), |¢/(¢)\ and |e) \ are integrable and
suitable conditions on f, g, A. Here we assume the condition

limsup — " {| @)+, @)} ds<y

)»(2,%2) | It

where v is a sufficiently small positive constant.

Conditions on p(¢, x, ¥, x) are also relaxed, for example p(¢, x, ¥, &) may be
unbounded for &*+y*+2°.

Recently H. O. Tejumola [15] established conditions under which all solu-
tions of equations of the form

(L)  Ff(xx, x)Egx 2)Hh()=p(t, %, %, F)

tend to zero as t—oco. Theorem 2 develops Tejumola’s result [15; Theorem 1]
to the non-autonomous equations of the form (1.2).

The main tools used in this work are Theorem A and Liapunov functions.
Theorem A would be especially convenient to study the non-autonomous
differential equations.

2. Auxiliary theorem

Consider a system of differential equations
2.1 x = F(t,x)
where x and F are ra-dimensional vectors.

Theorem A.  Suppose that F(t,x) of (2.1) is continuous in I X R*(I=[0, co))
and that there exists a Liapunov function V(t, x), continuously diffeentiable in
Ix R", satisfying the following conditions;

(1) a(llx[)=V(t,x)<b(||x|l), where a(r)eCIP (the family of continuous and
increasing positive definite functions), a(r)—co as r—oco and b(r)e CIP,

(i) Veult, ») = lim sup —,1‘—{V(t+h,fx+hF(t, )~ V(t,x)}
< eV, ) MO VD)1 + TV, ¥),
where ¢>0 is a constant and N ()=0 (i=1, 2) are continuous functions

satisfying

v
2.2) limsup — M(s)ds<e,

I e
\
(113, p J¢t
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t+1
2.3) 5 N(s)ds— 0 as 1 oo .
t

Then, any solution x(1) of (2.1) is uniform-bounded and satisfies x(t)—>0 as

t—>o0,
The following is an immediate consequence of Theorem A.
Corollary.  Under the assumptions in Theorem A, if

(i) Vau(t, ) SLOV(E, )+ 081+ V(E, %)),

where L(t) is a continuous function satisfying

. 1 ti v
@22y  limsup L (" Lirydr<o,

4022, V Jt
then any solution x(1) of (2.1) is uniform bounded and satisfiesx(t)—>0 as t—>co.

REMARK. The condition (2.3) can be replaced by

t+-ro
2.3y g M(T)dT 0 as 1> oo
t

where 7,> 0 is an arbitrary constant.

3. Proofof Theorem A

Proof of Theorem A. Let >0 be chosen such that —; >¢& and

3.1 limsup —5 (T)dT=c—3€.

1,5 =1)(=,%)S

Let 7,> 0 such that

L {mdr< lim sup 1—-“ xl(T)d'r-i—G for =T,

s§—1Jt =1, 5 —¢J

and s=T,+t. T, does not depend on ¢ and s.

Using (3.1) and above inequality, we have

(3.2) s MT)dr=c—2¢6 for t=T, and s=T,+t.

Let K >0 be a constant satisfying exp {cTo+S M(T)dT} =K. Then it is easy
to show that for all s=¢=0, we have

(3.3) e—C(S—t)+f::\1('r)d*réKe—%(s—t) .
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Now we consider the function U(¢,x) defined by
(3.4) Ua, x) = V(t,x)e”g‘s:ce” e"’“'”*fj"l‘”‘”ds,
and show that

(5 e a(lll)S U x)=<

o) forall t=0 and xeR".
&

To verify the right-hand side inequality in (3.5), we use the inequality (3.3).
Then we obtain

(3.6) e‘":)m e“e“““’*f,"1”"”ds§ e'“x e Ke #¢"ds
i t
K
&

A short calculation shows the left-hand side inequality in (3.5), i.e.

w o re+1 A
3.7 e'"S 6T TN as = e‘"} I M
t t

fH—l o f‘}\
—e# —crr1—P+
= € \ € c B 1(Md7 g

Jt

-C

=@

Therefore we have

(3.8) e Vitx) < Ul x) < %V(t, %)

and using the hypothesis (i) of Theorem A, we obtain (3.5).
From (3.4) it follows that

Uea(t x)
= V(z.l)(t, x) e‘gtS:oegse_c(-‘—t)+It)\l(r,-)d'rds
- €V(t, x e'S: We“e—°<s—t>+sf'>»,(f>dfds
( ) J;S d
+ {C— Xl(t)} V(t, x) e—st( & e—c(s—t)—kf’)\l(ﬂdr ds— V{1, x)
Jt

< {= eV MOV E) M1+ TV 0} et | eteremnnf ey
-€U(t, %)+ {c—M@} U, x)— V(2 x) .

Using (3.6), we obtain
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. 'S
3.9 Ueo(t,x) = —€U(t,x)+ . n(B(1+ Vi, %)) .
From (3.8) and (3.9), we have

(3.10)  Usn(t,x) < {—8+{§-e‘>~z(t)} utt, x)+—I§Xz(t)-
Set
W)= U, x(2))

where x(2), x(t,)=1x,, is any solution of (2.1). Then the inequality (3.10) implies
d K K
ZoW() < {—&+=e 0N, (2)} W) +—= Ny(2) .
ORI N OT(OEES YO
This immediately gives
ot t t
OE S .F<*>d*+g ef 50aTp(s) ds
to
where g(t)= ——8—1—%— e“ny(t)and h(t)-——-IfT no(2)

Using the hypothesis (2.3), we can choose a constant 7>0 so that

Ke 1 (

t ~
AATVdT< £ for t=1+4+¢ and =T.
§ t—t, )

to
N ( ¢ (F 3
Let >0 be a constant satisfying exp . ;—(H— T)—i—K———; S xz('r)a"r} <K.
0

Then for all £=¢,=0we have
G.11)  Ulta®) < I,(;_I_{_{b(”xo”)e-e(t—to)ﬂﬁ(: e ) (5)ds} .
0

Using the left-hand side of (3.5), we find that all the solutions of (2.1) are
uniform-bounded.
Furthermore the condition (2.3) implies that

Uit,x(t)—0 as t— oo
Therefore by the inequality (3.5) we have

x(t) - 0ast— > o00.
Q.E.D.

Proof of Corollary. Let ¢>0 be an arbitrary positive constant. By as-
sumption (ii)’, we have
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Von(t, x) < —cV(t,x)+ {c+ LWVt %)+ 1, O)(1+TV(, %)) .

It now follows from (2.2) that

1 t+v
lim sup — g {e+L(mYdr<c,

£,0)>(2, =) |V Jt

which establishes the assumption of Theorem A, and thus the proof is completed.
Q.E.D.

4. Theorems

Let A(?) satisfy the hypothesis (i) of the following Theorem 1 and P(?)
be a solution of the matrix equation

@1  AT@)P(t)+PO)A(t) = —1I.

Notice that P(?) is bounded for bounded A(%).
The following propositions are due to J. R. Dickerson [2].

Proposition A. x7P(t)x= Cl|x|[?, where C is a positive constant.

Proposition B. |xTP(t)x| = 2\d)\\ 1I1P()l| xTP(t)x, where 15(t) and A(t)
denote the time derivative of matrices P(t) and A(t) respectively.

Theorem 1.  Suppose that the following conditions are satisfied;
(1) there exists a positive constant T, such that
the real parts of all the eigenvalues of A(t) < — 7,<0for all t=0,

1

t+v
(ii) limsupist I|A(s)|lds<2P§

C£,0)>(2,2) ¥
where P,=limsup |[|P(2)|],
tpoo

(i) Wi, 2 =v(&)(1+-lxl])

where «y(t) is a non-negative continuous function on [0, oo),

(1
(iv) v(s)ds >0 as t— oo =1, 2).
Then, all solutions x(t) of (1.1) are uniform-bounded and satisfy x(¢t)—0 as

t—oc0,

REMARK. It may be shown by examples [16] that the smallness of HA(t)H
is essential, even if the condition (i) is satisfied.

Next, we consider the equation (1.2) and assume that g(x, y), g.(x,),
f(x,y, ), fo(xy, 2)and f,(xy, z) are continuous for all (x, y, 2)R®and h(x)
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is continuously differentiable for all x& R".

Theorem 2. Suppose that a(t), b(t), c(t) are continuously differentiable on
[0, o) and g(x, 0)=h(0)=0and the following conditions are satisfied;
(i) A= a(®) = a,>0, B= b(t) = b,>0, C= c(t) = ¢,>0
Jor tel =]0, ),
(i)  A(x)/x 26>0  (x=0),
(iii) fF= f(x, y, 2) = >0 forall (x,y,2) and g = &%, y) =g,>0

y
forall y%+0 and x,

(V) 323, 00 =< 0. 3fi(%,9,2) =0, gx,3) =0
for all (x,y, )R,

(v) el 2w,

. . B,
i) o> Lo {aF—f+ 2 (@—e)

where u, and u, are arbitrarly fixed constants satisfying

Ch agbofogo— Ch
1< < R O< < 0”0/ 050 1
bogo 1<, fo 1225 —‘“_——Afo

i limsup (" @)1 B0+ 100 1 ds<r,

#0)»(%,2) O Jt

where v 1s a small positive constant whose magnitude depends only on the
constants appeared in (i)~ (vi), and b, (t)=max(b'(2), 0),

(viii) [ p(t%, 3, D\ =pO){1+("+y"+2")"} + A" +y*+27)
where A is a positive constant and p(t) is a non-negative continuous function,
t+1
(ix) S p(s)ds =0 as t— o0 .
t
Then there exists a finite constant E=8&(A, a,y B, by, C, Coy O, F fos & & h)>0
such that if A<E then every solution x(t) of (1.2) is uniform-boundedand satisfies
x(t) -0, x(t)—0, %) —0 as t—o00.

REMARK. It should be pointed out that in the special case f= 1 (so that the
assumption (iv) is automatically satisfied) Theorem 2 reduces to the author's
earlier result [7; Theorem 2]. Also in another special case in which
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a(t)f(x, y2) =11, b(t)g(x,y)=by and c(®)h(x) =cx in (1.2) (so that all the con-
ditions (ii)~(iv) and (vi) are trivially fulfilled) the hypothesis (i) and (v) reduce

to
a>0, b>0, ¢>0, ab—c>0

which is the Routh-Hurwitz criterion for the asymptotic stability in the large
of the zero solution of the equation

X¥+ax+bx+cx=0
5. Proof of theorems
Proof of Theorem 1. We consider the Liapunov function
(5.1)  V(tx) =xTP(t)x.

By virtue of Proposition A and the boundedness of P(z), there exist positive

constants C and P, such that
(52 Cllxll* = V(t,x) = Plx||*.
A simple calculation shows that

Vao(t, ¥) = ZTP({)x+xTP()2+xTP(t)x
= xTxf7(t, x) P(t) 5+ a7 P(2) f(t,x)+ 2T P(t)x .

Applying Proposition B to the function xTP()x, we obtain

Vao(t, %) < —llxl*+211 £, %)]]-|P@)I|- 1]
+201A@®)lI- 1P| - 57 P(t)

Using (5.1), (5.2) and (iii) of Theorem 1, we have

Van(t, %) = t—[[P(t)|[+2|IP(t)Il IIA(t)H}V(t x)

LI (AR ERACEA

We'll show that

. t4v
lim su

traimo 1} Jt l{ ||1P(™ )||c+2HP( )il ”A(T)) dr<Q

Let p, be a positive number such that

1 v
po —yperlimsup_ [ ld(lar.
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Given €>0, there exists a positive number T such that [|P(7)||<P,+¢€ for all
7= T. This implies also

—1 —1 &
—_— --——|——,, for a1 7=T.
\P(rjif “P+e P, PE a

Using these inequalities, we have

. 1 t+v
lim sup —S { P )H“—f-ZHP( YA J}

A P)>(2,=) @

< limsupqi ‘Hv{

limsup-| "~ P2+2(P1+e)nA(f>n}

= —2Ppote{f+ limsup 2§ 1d(rylar) .

@,2)>(*2,2) ¢

If € is chosen so that

2 (t+r
et limsup 2 ("™ 14 ar) <Pip,,
l

1,2)5(%,%)

then we have

lim gt+v
(tlv)—>( ‘EJ'Z) It } “P(T)H

Hence, the assumptions of Corollary hold and the proof of Theorem 1 is
completed. Q.E.D.

-2/l P(r)| IIA(T)II} dr< —P,p,<0.

Proof of Theorem 2. The equation (1.2) is equivalent to the system
=y
(5.3) y==z
2 = —at)f(xy, 2)z—b(t)g(x,y)—c(t)h(x)+p(tx, y, 2).
We consider the Liapunov function
(5.4 V(it,x, v, 7) = Vi(t,x, v, 2)+V,(t,x, v, 2)+V,(tx, ¥, 2)
where V,, V,and V,are defined by

5.5 2V, = 2ut) | h@)de+ 26t hx) v+ 264 g, m)dn
+2ma(®)] s, 2, O)ndn+2pmy5+2°,
66 2= wht)g 20t WEdcta Oy

— ey +26(0)| 8, m) 3+ 2usa(®)f sy
+2ux242a(t) foyz—+2c(t) h(x)y ,
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67 2V, = zwamj}m 7, 0)ndn—a )2y,

and u,>0, u,>0 are twoarbitrarily fixed constants such that

g Sty 0<pu<OBICR, 5> e OO (2]
050 -

We shall prove the following two properties of V:
(5.8) D, (x*+y+2*) < V(2, %, 9, 2) < D,+(x*+ y*+2°)
for all (x, y, 2)€ R®and

(5.9) Vo < =D, (8 +y*+2)+D,- (| d @) | +V,(D)+ | (2) ) (°+ y*+27)
+D, (" +y°+2°)2 | p(t, %, ¥, 2)|

along any solution (x(#),y(?), 2(¢)) of (5.3), where D,~D, are certain positive

constants.

At first we verify (5.8).

a2
From the inequality — !<pu,<a,fthere exists a positive number §, such
&0

that p,b,g((1—38,) >Ch, and a,f(1—3,)>1,. Thus we have

2V, = 2ulc(z)§: { K (5)} h(&)de+ ,Llc(t){i’/(x_br vV }
oy 2y + 2 [ {ub(O)gw m)—(@) bk
e J
+2p, F {a(®)f(x, n, 0)—p} ndn

= 2, ¢(t) S {1 _K (5)} h(&)de+2o\) o,UqC(t) F2(x)

+”‘l‘(t){\/ 1;8°h(x)+;}j1/ Tfa—y} +8,5°

(VI e y) + 2 [ bttt 71— %
2, fatt) 17, 0)— }ndn
= % v+ 06’0_;:(?_505 o s}y o
ch,

Denoting 2D,=min {\M b.g —2 4 wa,fo— i 8} we have
6 hl sy Yos0 1(1—‘80) 1%0/o —8; o>
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Vi, x, 3, 3)2Dy(x*+y*+2*).
It is easy to see that there exists a positive number D, such that

Vitx, y, 2) = D; (¥*+y"+%7)
Hence we obtain
D, (¥ +y+2) < Viltx, y, 3) =D, (F+y*+#) .
As before we have
2V, = palgeb(t) — po] 8"+ p"x*+ @*(8) f'y +-2°
+ 2p.a(t) foxyt 2panz+ 2a(t)foyz
+2a(0f(t), WE)de+2h() " g(w M)dn—py*+2e(t)h(x)y
= 1o 8ob(t)— pro] &+ [0+ a(t)foy+z]2

+a(t)foc(t){ S h(g)de— hz( )} ZC()t){Vﬁ,cz(lt)h(xM jf }

+2$:{b(t)g,§x’ v)_il(ig?o—-ﬂz} ndn .

We find easily that
[£:b(8)—p]>0,

(o merae— i) = 2wy th—ne dez o.

be)g(, 1) huclt)
gt —ul> 0.

Then we have a positive number D, such that

0= Vit %y, 2) =Dy (x4 +2%).
We can see also that
2V,= 2001 {fix. 7, O—fbnd,
0 = 2Vi(t, %, y, 3) = A°f(f—/0)y" -
Therefore there exist positive numbers D, and D, such that
(5.8)  Dix+yts?) SVt %, 3, 2) S Dy (65" +27).

Next we prove the inequality (5.9). Along any solution (x(z),y(t), 2(2)) of
(5.3), we have
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Viww = | BRI o)) [y (a0, 5, 3)—1u]

1By ) g5, M dr-+male)y) £, 1, 0)ndy
— @y, 2)—fx,y, Oy
+uc(e) [ g de+e Oy (ef gsn)dn

o (2) (’ f(,77, Oyndn+(u.y-+2)p(tx, 9, 2),
Vicaw = —mclt) h(3) — ()] E5D—g, | sy
y
[ a(fb 08D — ()~ matt), |
— @O 3, 3)—flys+b0)y || gl n)dn

—a()[f(%, ¥, 2)—[o] 3°— wa(t)[ (%, ¥, ?) —folxz
2 1 D+ O c(t) () 0] e)de

+a) @ (Of5y+00) | 8w mdntud @z
+d (O fiye+-c O+ -+ mas+afy1p( 5,9, )

Vien = @@y | fuo n, Omdn+@®ffs, v, 01y

+2a0) O, [/, 7, 0)—FIndn .

Thus we obtain

Viw = —Wit, 5,3, 9+260)3 | 2w, m)n
+a(Ol+a(®f]y | fi(x, m, O)nd
+ O+ O ety O | he)de
+2(Oh)y+26 () | g, mdn+ma'®)| fw, 7, Oyndy

1
T b ()80 + pad (t) foxy -+ (1) foyz

+2a() @@, | fx, 7, O)mdn
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+ {wx+ [ +a()f) y+22} - p(2, %, 3, 2)
where
W= Il'zc(t) xh(x)+ [a(t)f(x, Y z)- I—"l] z2—|—a(t)[f(x, Y, z) —fo] LS
+ {[1.b(2) go— () ' (%)] +-[a(2) b(2) fogo— c(2) B (%) — poa(2) fo]} ¥°

e EED g, |yt 82D g [y

) 82 g, sy maldl s, . %)~ 3, Olys

+a* @) f[f(x, ¥, 2)—f(%, 3, 0)]y=
+wa(t)[ f(x, y, 2)—fo]xz
= p,60x°+[ag fo— p,] 2°
+ {[p1bogo— Chi]+[acbofogo— Chyi— p.Afo]} »*
+a@)[f(x, y, 2)—fo] {z"+ pox2}
86, 9) _, (o te 8®9) 1,
bt 802 g [y oy a0 [ 85—, s

_"a(t) {.U‘x‘f‘a(t)ﬁ)} [f(x’ Vs z)'—f(‘x’ Y 0)]y2’

Hence

W2 pfed—[f(x 9~ 1o [g(i’ Y- ]f:}
+ {[”1 080 Ch1]+[ao ofogo"‘ C’hl———’u,2 Afo]} y

+[nfo—m 2+ alt)Lfs, v, ) —f Y5+ )

+ #1b(t)|:g(x—,y)""go:l(y+—fl.‘ £z x>2+a(t) b(t)fO[M_go]yz
y 22t y
+a@){m+a@)f}[f® 2)—fx y, 0)]yz.

By the assumptions

{eo 17t 3, o) pafge [ 82:2) g, Bt
Bu,

1

AF'z

= cd—[F—fil—=2—[2 &l

— ad—ta{ 4 f—fo)+~(g-—go)} >0,

[110080— Ch1]> 5 hy <bg,—Ch, =0,

S50

[aobof ofo— Chl - .Uszf o]
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>a0b0fogo—Ch1_ﬂ’bLfL&]:%'4fo =0,

Af,
[aofo—ﬂl] >0.

Applying the Mean Value Theorem, we have for 0< | Z| < \z\

[fxy, 5)=f(x 3, O)]ys=fu(x 3, 2)yz* 2 0.

Therefore there exists a positive number D, such that for all (x, y, 2)R'
W =z D,-(x*4y*+2°) .

From (ii), (iii), (iv) and (v) it is easy to show that there exists a positive

number D, such that
View S =Dy +y*+59) 4D, (| &(8)| +-8,.()+ | ¢ (8) | )(%*+5°+5%)
+A{uxt-[m+a(t) f]y+22} p(t, %, 9, 2).
Setting Dy=max {u,, u,+Af,2}, we have

{sz+[M1+a(t)fo]y+22}P(X, Y, Z)
SV 3Dy (53" +2°) 7 p(2, x, y, 2)]

Let D,=+/3 D,. Then we obtain the inequality (5.9).

We are now ready for the principal subsidiary results needed for the com-
pletion of the proof of Theorem 2. Application to (5.9) with the assumption
(viii) leads to

Vip = —Dy(a*+y*+2°)+ D, (| & (#)| +V.(@)+ | (1))t +3°+27)
+D;p()[(x°+y°+2%) "+ (" +y*+27)]

+AD,- (" +y*+2%) .
Let A be fixed, in what follows, to satisfy
D
5.10 A =2
( ) ~ 2D,

Using the inequalities (5.8) and (5.10), we have

y D3 . 24_ ’ / ’
(.11) Vs = ) V+ Dl(fa(t)|+b+(t)+|6(t)l)V

(LN

Assume

limsup— (' {la/(s)\ +84()+\ c(5) | }ds< 2oDo.
<t.v>—><°=.°}3> Ve * 2D,D,’
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Now Theorem A will be used to prove the uniform boundedness of solutions

of (1.2) and that for any solution x()

X*(2)+2(t)+5(t)> 0 as t— oo .

This completes the proof of Theorem 2. Q.E.D.

Acknowledgement: The author is indebted to the editor and referees whose

suggested revisions have improved the exposition of this paper.
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