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1. Introduction

A set 3 of ¢? (2,2)-matrices over K=GF(q) is said to be a 1-spread set if it
contains the zero matrix 0 and X-Y is nonsingular for any distinct X, YE3.

! n arbitrary 1-spread se . "= x y )
Let 5’ be an arbitrary 1-spread set over K. Then = {( 2%, ) (%, ) | %, y
€K} for suitable mappings g and 4 from KX K to K. Let F=GF(¢)DK. If
Char K, the characteristic of K, is odd, we can take an element t=F-K with #2
€K and define a mapping f from F to itself in such a way that f(x-+yt)=g(x, y)
—h(x, y)t for x,ye K. Then f satisfies the condition

(*) f(0)=0 and (x—y) (f(*)—f(»)) €K for any distinct x, ye F.
Furthermore the set of (2,2)-matrices

(**) 3,= {(f(;)iq)lx,yeF}

is a 1-spread set over F and the resulting translation plane of order ¢* with the
kernel F, say =, has the following properties:

(Al) The linear translation complement LC(z) has a shears group P of
order at least ¢°.

(A2) LC(z) has a Baer subgroup Q of order ¢g+1 with [P, Q]#1.

In this paper we study a class of translation planes of order ¢* with the pro-
perties (Al) and (A2) as above. Let Q(F) be the set of mappings from F to
itself satisfying (¥). 'Then the set of (2,2)-matrices =, defined by (**) is a 1-
spread set for any fE€Q(F) and if Char K is odd, a 1-spread set 3} over K cor-
responding to f is naturally defined (Proposition 2.1). Denote by II(F) the set
of planes 7, corresponding to X, with f€Q(F). Then II(F) is characterized as
the set of translation planes with the kernel F having the properties (Al) and
(A2).

The translation complements of these planes are solvable when p>2. To
show this we need a result on shears groups (Theorem 3.1). Any of these
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planes of order ¢* is derivable and the derived plane has the kernel isomorphic
to K.

Throughout the paper all sets, planes and groups are assumed to be finite.
Definitions and notations are standard and taken from [7], [8] and [13].

2. Extension of l-spread sets
Let g=p" be a power of a prime p and set K=GF(g) and F=GF(¢*)DK.
Denote by Sym(X) the symmetric group on a set X. Let f&Sym(F) and set
3= {( JZ )i ) |x, yeF, where 2&=x?. If p>>2, then there exists an element tE
Yy

F—K with #€K. Then f induces mappings g and 4 from K X K into K in such

a way that f(x-+yt)=g(x, y)—h(x, y)t for any x, ye K. SetZ'= {( x y )
&(%, y) h(x, y)
|x,yEK}. From now on 1l-spread sets are called simply spread sets.

Proposition 2.1. Let feSym(F) with f(0)=0. Then the conditions (z)
and (i1) are equivalent. Furthermore, if p>>2, then (i), (i) and (iii) are equivalent.

1) (x—y) (f(x)—f(y))EK for any distinct x, yEF.
(i) =, is a spread set over F=GF(g).
(iii) X% s a spread set over K=GUF(qg).

Proof. The condition (ii) is equivalent to
(i) (x—2)™—(y—2") (f(»)—F(¥"))*0
for any distinct (x, y), (x', y')EFXF.
Hence, as {(x—=x")"*'|x, x’€K}=K, (i) and (ii) are equivalent.

Assume p>2 and set x=a-+bt and y=c--dt, where a,b,c and deK. Then
(i) is equivalent to

@) ((@a—e)+(b—d)?) ((g(a, b)—g(c, d)—(M(a, b)—h(c, d))t) &K
for any distinct (4, d), (cd)EKXK.
As t& K and #€XK, (i)’ is equivalent to
(@) —(a—c) (K(a, b)—h(c, d))+(b—d) (g(a, b)—g(c, d))*0 .
Therefore (i) and (iii) are equivalent when p>2.

Denote by Q(F) the set of all f&Sym(F) which satisfy f(0)=0 and the
condition (i) above. Then, by the result above, =, is a spread set for fEQ(F)
and moreover 3% is also a spread set when p>2. Denote by 7 (==(Z,)) the
translation plane of order ¢* which corresponds to =,. Similarly, we set z}=
n(Z%). Let V(4, F) be the underlying F-vector space of 7, and set V, ;= {(v, v
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f‘(‘b) z>)|veF><F}(a, beF), V.—OxOxFxF and S={V,,|a, beF}U
{V.}. LetgeGL(4,F). Then g&LC(z) if and only if g leaves S invariant.
The planes constructed above have the following property.

Lemma 2.2. Set II(F)={n,| fEQ(F)}. Let n€II(F) and let L=LC(x)
be the linear translation complement of . Then L contains a shears group of order
q? and a Baer subgroup of order q-+1.

Proof. We can easily verify that LP— {(g §>|E=((1) (1’) T=(‘(’)‘ 2)

x€F} and LgQ:{(((’; 10))|C=((1) 0), D:(g ‘1)) =1, F}. ThenPand
O are desired ones. ¢

Remark 2.3. Let feQ(F). By definition, O, E=(1 O)es,, and 0,
but E is not always contained in . 01

RemMARK 2.4. In Proposition 2.1 we assumed p>3. That result is modified

for any prime p as follows:
We may assume that F=K(¢), where t€F—K and #4t<K. (Note that
#*+x-+k is irreducible over K for suitable k€ K.) Then the following hold.

i) Let ¢ o={ ¥ Y
(i) Le . (@.» {(g (%) (x,y)>
Define a mapping f from F into itself by

f(x+yt) = h(x, y)—g(x, y)+h(x, )t for x,yEK.

|x, y=K} be any spread set over K.

Then % ,= ( fa(cy) z ) |*, yF} is a spread set over F.

(i) Conversely, let =, be any spread set over F. Define mappings g
and /4 from KX K into K by

flx+yt) = h(x, y)—g(x, y)+h(x, y)t  for xyEK.

Then =, ) is a spread set over K.

(iii) fis additive on F if and only if g and % are additive on KX K. There-
fore z(Z,) is a semifield plane if and only if z(Z(,,) is a semifield plane.
(Theorem 5.1.2 of [2].)

ExaMPLE 2.5. Assume p>>2 and let e be an element of F such that e K
and #€K. Then a function f defined by f(x)=ex@+%#~D2 is an element of
Q(F). Moreover 7, is not a semifield plane.

Proof. Clearly f(x)=ex? or —ex? according as x&F or x&F. Here F
is the set of square elements of F.
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If xyeF and x=y, then (x—y) (f(x)—f(¥))=Le(x—y) & K. If xy&F,
then (x—) (f(¥)—f () =£(x+3)" e(v—)/(x+y). Assume fEQ(F). Then
e(x—y)/(x+y)=Fk for some k€K, so (k+e) xy=(e—k) x¥*=—(e-+k)? x* because
¢’=—e. Hence xy=—(e+k)*' ¥*€F, a contradiction. Thus fEQ(F).

As f is not an additive function, z, is not a semifield plane by Theorem
5.1.2 of [2].

3. Collineation groups generated by shears

The purpose of this section is to prove the following theorem, which will
be required in §4 and §5.

Theorem 3.1. Let = be a translation plane of order q(=p") and C(z)
its translation complement. Suppose C(z) contains an elation group P such that
|P|*=q. Then

(1) 7 is a desarguesian plane PG(2, q),

(ii) 7 is @ Ltineburg plane L(q) with q even or

(iii) the group gemerated by all elations in C(r) is a p-group.

In particular, C(r) fixes exactly ome point on the line at infinity unless n=<PG
(2, 9), L(g)

The proof is divided into several steps (Lemmas 3.2-3.6).

Lemma 3.2. Set H=C(x) and let N be a normal subgroup of H generated
by all P* with x&H. Then one of the following holds.
(i) N is an elementary abelian p-group.
(ii) N==<SL(2, p") for some m=n/2.
(i) p=2 and N=xSz(2") for some m=n/2.
(iv) p=3 and N==SL(2,5).

Proof. This is an immediate consequence of [6] and [14].
Lemma 3.3. If (v) occurs, then n=PG(2,9).

Proof. In this case we have ¢<3%. Hence the order of » is 9. By
Theorem 8.4 of [13], z=<PG(2,9) or = is the nearfield plane of order 9. Since,
by Theorem 8.3 of [13], the nearfield plane of order 9 contains no affine elations
of order 3, we have #==PG(2,9). Thus the lemma holds.

Lemma 3.4. If the case (iii) occurs, then m==L(q).

Proof. Let S be a Sylow 2-subgroup of N(==S2(2")). We may assume
S=P. As P contains no elements of order 4, we may also assume P=Z(S).
Let A4 be a unique fixed point of S on l.. Let N, and A" denote the stabilizer
of A in N and the N-orbit containing A, respectively. If IV fixes the point 4,
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then N is a group of perspectivities with axis OA4, a contradiction. Therefore
N,=Ny(S) since Ny(S) is a maximal subgroup of N (cf. [1]). From this,
|A¥|=|N: Ny(S)|=2""+1=|P|*+1=22"41=|l.|, whence n=2m and = is a
Luneburg plane by [12].

Lemma 3.5. Suppose N=SL(2, p*) and n>xPG(2,q). Then m<n<2m.

Proof. We may assume P is a Sylow p-subgroup of N. Let A be a unique
fixed point of P on l.. Since P acts semi-regularly on l.— {4}, p"=p". On
the other hand p*”=|P|*=p" by assumption. Thus m=<n=<2m. If n=m or
n=2m, then #=PG(2, q) by [4] and Theorem 38.12 of [13].

Lemma 3.6. If (i) occurs, then z==PG(2, q).

Proof. Suppose false. Then m<n<2m by Lemma 3.5. In particular
m>1. Let P and 4 be as in the proof of Lemma 3.5. Let B&l.—AY(F¢).
Since P contains no planar elements, N is a p’-subgroup of N.

Since |BY|Z|L.—AV|Sp'—pm, |Np| =(p*—1)/(p" ' —1)=p"+'+3.
In particular |Ng| V2(p"+1), Asp )t |Ng| and |Nz| =pm+t'4-3=11, applying
Dickson’s Theorem (Theorem 14.1 of [13]), we have a contradiction.

Proof of Theorem 3.1.

By Lemmas 3.2-3.6, z=<PG(2, q), L(g) or N is a p-group. If »2xPG(2, q),
L(g), then N fixes exactly one point on L.. Therefore, as C(z)>N, C(x) fixes
that point.

4. A characterization of the class of planes II(F)

In this section a characterization of the planes in II(F) defined in §2 is
presented in terms of their collineation groups.

Theorem 4.1. Let z be a translation plane of order ¢* having the Rernel
F. Then = is contained in II(F) if and only if LC(x) has subgroups P and Q
with the properties (A1) and (A2):

(A1) P is a group of elations of order at least ¢.

(A2) Q is a Baer subgroup of order q-+1 with [P, Q]=+1.

The “only if”” part of the theorem has been proved in Lemma 2.2, so it
suffices to show the “if”’ part of the theorem. Throughout this section 7 is
assumed to be a translation plane of order ¢* having the kernel F and the pro-
perties (Al) and (A2). We may assume that P is a maximal elation group of
LC(x).

Lemma 4.2. Set L=LC(z). Then LI>P and L fixes exactly one point A
on .
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Proof. By the properties of the desarguesian plane PG(2, ¢*), together with
Theorem 3.1, we have the lemma.

Lemma 4.3. Let V be the underlying F-vector space of =. By choosing a
suitable basis for V, Q is represented in the following form :

0= <(g o=(; o= (;%)>

where e and e’ are some elements of F*=F— {0} of order q+1.

Proof. Let BEL, be a fixed point of Q with B#A4. Let U be a L-
submodule of ¥ corresponding to the line O4 and W a Q-submodule of V
corresponding to the line OB. Since p tq+1, V is completely reducible as a
O-module by Maschke’s theorem. Hence there exist one dimensional Q-
submodules U,, U,, W, and W, such that V=U,PU,PW, W, U=U,PU,,

=W, W, and UPW,={veEV |vQ=v}. Let 0Fu,€U; and O*w,EW;
with 1=</<2. Then {u, 4, w,, w,} is a basis for V" and Q is represented as a

subgroup of {(g‘ Qz> |Q1=<(1) 2), Q2=<(e)’ > e,¢'F, e't'=(e')™'=1}. Each

element of Q— {1} is a Baer collineation with fixed vectors U;®W,. Hence the
lemma holds.

In the rest of this section we fix the basis for V as stated above and co-
ordinatize 7 in such a way that A=(c0) and B=(0). Let = be the correspond-
ing spread set of z. We may assume that EE3.

Lemma 44. Set Y={T€X|T+SES for any S€3}. Then ¥ is an
abelian group of order at least ¢ and P= {(g g) | Tew}.

Proof. By Theorem 3.13 of [13], the lemma holds.
Lemma 4 5. (i) Let e be an element of F* of order g+1. Then

1000
0e00
Q=<l00eo0
0001
G) If (0 y)ez~{0}, then v=0.

m. (i) If ( )E‘I’ then (e';x e_{q))’ <(6;)—1)x (e_l_(i)i)e\ll for any integer

Proof. Since <Ql 0 ) is a collineation for any integer m, (x y )EE implies
(0N0) u v

2
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0
(e7'e")"u
Y ), (O y)EE. As 3 is a spread set, (¢7%¢')"u=u=+0 and e""v=v. There-
e"v/ \u v
fore e=e’ and =0 and so (i) and (ii) hold.
Let (x y) €W¥. Then, by Lemmas 4.2 and 4.4, Q“’”(x y) Ore¥. Hence

QI'"(: 'Z) Qé"z( (fl):”)xu ey W)EZ. Hence, if x=0 and y=0, then (

(= ¥ )ew By definition of ¥, (e ¥ 2 )—(*?)ew. Thus (i) holds.
u e u e v u v

Lemma 4.6. S— {( |, yEF} for some g Sym(F) with §(0)=0

and ke P 4(y) k= >

Proof. Set W1=\Pn{<g O)Ix,vEF}. Since [P, O]=1, ¥,+{0} and
v
q+1]|®,|—10 by Lemma 4.5 (iii). As |¥,||¢? we have |¥,|=¢’. Hence
. % O x Y
there exists A&Sym(F) such that ¥,= {(0 H ))IxEF}. Let( >bc any

element of =. Then (u -Z ) (g k(2)>_<2 o h(x))ez and so v—A(x)=0,

(O % )EZ by Lemma 4.5 (ii). This implies that u=g(y) for some g Sym(F).
Since ¥, is abelian, % is an additive mapping. Set A(x)= 2210; x*'. More-

over h(ex)=e™" h(x) by Lemma 4.5 (iii). 'Therefore ¢; ¢’ ‘=e!¢; for each i, 0=
i<2n—1. Assume ¢;%0. Then ¢’~?=1 and therefore g-+1=p"+1|p'—p".
Clearly n<i<2n—1 and so set i=n-+tr, 0<r<n—1. As p""—p"=(p"+1)(p"
—1)—(p"—1), we have =0 and k(x)=Ekx*" for some k= F*.
. 10 x 15
Proof of Theorem 4.1. Since <o k_1> —{ e )y>|x yEF}, g(y)=k"
(), by Lemma 4.6, z is contained in II(F).

REMARK 4.7. Clearly W= {( ’(”)z)pceF 2€ U}, where U={z&F|g(y)
+g(2)=g(y+=) for any yeF} (See Lemma 4.4). As g(0)=0, ¥= {<O x)lxe

F}.
ReMARK 4.8. Set P,={(E Tz)|:r,=(x 0), xEF}, E=((1) 2) and E,—

OEFE 0=
(g (1)>, where a?*'=1. Then (g‘ g)-l(g 2") (g‘ EO,2)=<g %’) Hence, by

the maximality of P, P, <P and P,Q is a Frobenius group with kernel P,.

5. Solvability of C(7) when p>2
In this section we prove the solvability of C(z) with z&II(F). When
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p>2. Except in Lemma 5.1 we assume that p>>2 and C(r) is not solvable.
Let notations %, P, O, L and ¥ be as in §4.
A AC)

Lemma 5.1. L[>P and any element of L is represented in the form (O 4D

where A, C and D satisfy the following conditions.
(i) AeGL(2,¢), Ce=, Dev—{0} and
(i) 47'wAD=v, C+A'3AD=>%.

Proof. Let gL. Applying Theorems 3.1 and 4.1, g:(‘g ‘f/) for some

A, YEGL(2, ¢) and XeM(2, ¢) and g normalizes P. Hence M(2, ¢°) denotes

the set of all (2, 2)-matrices over GF(¢?). Since g'l<g g) g:(ﬁ A-1§Y) for

any Te¥, A7'¢Y=V. SetD=A'YeW. Then Y=AD and so A7'¥AD=
¥. On the other hand A™(X+MY)=A"'X+ A" MYES for each MEXZ.
Set C=A7'X. Then X=AC, C€Z and C+A*ZAD=3. Thus the lemma
holds.

Let X be a normal subgroup of L and denote by X the last term of the
derived series of X. By assumption, L(?=%1. Let r and s be homomorphisms

from L to GL(2, ¢*) defined by r <g (;):A and s (g %) =B, respectively. For
a subgroup X of GL(2 ,¢%), set X=XZ|Z, where Z is the center of GL(2, ¢*).
Lemma 5.2. If LI>X and X =1, then r(X®)=1.

Proof. Set M=X® and assume r(M)=1 but s(M)=1. Let B&s(M) be

an element of order p. Then gz(g (;)EM for some CeM(2, #). Hence g

fixes each element of {(x, y)|x, yeV(2, ¢#), y=xC(E—B)™'} and some nontrivial

element of {(0,y)|yEV(2, ¢#)}. This is a contradiction by Bruck’s Theorem (cf.
Theorem 3.7 of [8]). Therefore s(M) is a p’-group. Applying Dickson’s
Theorem, s(QM)=<A; or Ss and s(M)==A;. Since p ¥ |s(M)|=223+5, we have
g+1=8. However, s(QM) g;(—Q)szZqﬂ, a contradiction.

Lemma 5.3. If LI>X and X ==1, then s(X)=1.

Proof. Set M=X®) and assume s(M)=1 but r(M)=+1. Let g:(’g g)
be a p-element of M. Then g is a perspectivity with axis x=0. Hence A=E
and so 7(M) is a p’-group. By Dickson’s Theorem, 7(QM)=<A4; or S5 and r(M)
=A;. By a similar argument as in the proof of Lemma 5.2, we have a con-
tradiction.

Lemma 54. Set N=L®). Then r(N)=s(N)=As;, PSL(2,q) or PSL
2 ¢)
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Proof. By Dickson’s Theorem, 7(N), s(N) € {45, PSL(2, p™)} and it follows
from Lemmas 5.2 and 5.3 that r(/V)=<s(N). Moreover one of the follogwing
occurs.

() A=rN)<HON)SS,,

(i) PSL(2, p")=r(N)<ir((ON)<PGL(2, p"), m|2n, g=p".

(i) PSL(2, p")=r(N), [(ON): r(\N)]|4, 2m|2n, g=p".

We not note that 7(Q)=<Z a1

If (ii) occurs, then p"+1|p"+1 or p"+1|p"—1, where 2n=mt for some
integer £. Since m=n, =1 or 2. Therefore 7(N)=<PSL(2, q) or PSL(2, ).

If (iii) occurs, then p"+1|2(p"+1) or p"+1|2(p™—1), where n=mt for
some integer £. Assume £>1. Then p"—1<p"+1=<2(p"+1). Hence 3"—1
<p"—1<2, a contradiction. Thus 7(N)=<PSL(2, q).

Lemma 5.5. Set T'=I.— (o), where (o) denotes a unique fixed point of
Ponl.. Then any nontrivial p-element of N has no fixed points on T'.

Proof. The lemma follows immediately from Theorem of [3].

Lemma 5.6. 7(N)=+A4;.

Proof. Assume r7(N)=A;. As we have seen in the proof of Lemma 5.4,
7(QON) (<S;) must contain a cyclic subgroup isomorphic to 7(Q)=<Z,,,. Hence
g=3 and |P|<3® by Lemma 5.5. Therefore any 5-element of N centralizes
P. Since N=N®), [P, N]=1.

Let W be a Sylow 5-subgroup of N and A the set of fixed points of W on
l.. Since [W, P]=1,5|P|||l.—A]|. As |P|=3% or 3% we have either L.=A
or |[P|=3%and |A|=3%4-+1. Since N> W, l.+A. Let W,, W,and W3 be a
Sylow 5-subgroups of N such that 7(W;) are distinct. Since |A|—1>33,
|[F(W)NF(W;)N1l.|>1 for some distinct 7 and j. Since r({W;, W;>)=A4s,
{W;, W;> contains a Baer 3-element. This is a contradiction by Lemma 5.5.

Lemma 5.7. »(N)=s(N)=SL(2, q). In particular q=3.

Proof. Suppose false. Then »(INP)=s(NP)=SL(2,¢’) by Lemmas 5.4
and 5.6. Therefore, by Lemma 5.5, |NP: H|=¢*, where H is the stabilizer
of a point BET" in NP. Hence ¢!—1||H|. Applying Dickson’s Theorem,
r(H) Z|Z=PSL(2, ¢) and so ¢*| |H|, contrary to Lemma 5.5.

Lemma 5.8. Set X=r"({(—ED)NN and Y=s"((—ED>)NN. Then X is
solvable and X=Y .

Proof. By Lemmas 5.2 and 5.3, X is solvable and so SL(2, ¢)=<s(N)>
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S(X)=<<{—E>. Hence X<Y. Similarly Y<X. Therefore X=1Y.

Lemma 5.9. There exists no element g NQ which satisfies either (1) r(g)=
E, s(g)=—E or (ii) r(g)=—E, s(g)=E.

Proof. Assume 7(g)=E and s(g)=—F and set U=r"(E)NN and V=s"
(E)NN. Since ger(E)YNNQ=(r"(SL(2, #)) N Q) N=N, g is not contained
in V. Hence NJUNV>U/UNV=UV|V=%1. Moreover N/V=SL(2, q) and
UUNV=UV|V=Z, By Satz 25.7 of [9] Chapter V, 2| | N/N’|, a contradic-

tion. Hence (i) does not occur. Similarly (ii) does not occur.
Lemma 5.10. Fet I=(2 0. Then —1€N.
OE

Proof. By Lemmas 5.7-5.9, there is an element g=~—(g(1’;
g=—IeX<N.

eX. Then

Lemma 5.11. Set Q'={A*|x&P}, where A=F(Q)NT. Then Q' is a
partition of T'.

Proof. Assume A*NA’s¢ for some x, yeP. Set z=yx™' and let BE
ANA*. Then the stabilizer (PQ);=<0Q, 0">=0Q. By Lemma 5.5, 0=0* and
hence 2P, and x=y (mod P,), where P,=Cp(Q). Therefore A*=A"’. As P
is abelian, P/P, acts regularly on Q' and Q' is a partition ofA/LéQA’. By Remark

4.8, P,Q is a Frobenius group of order ¢¥(g-+1). Thus |Q'|=|P|=¢.
Therefore Q' is a partition of T" as |A]|=¢".

Lemma 5.12. Set H=NPQ, W=r"E)NH and W,=s"(E)NH. Then
W=W,=P.

Proof. Since W=r"Y(SL(2, #)) NH=NP, W<NP. Similarly W,<NP.
By Lemma 5.8, W and W, are solvable. On the other hand, s(W)<lIs(INP)=
s(N)=SL(2,q) by Lemma 5.7. Therefore s(W)<<{—E). Applying Lemma
5.9, s(W)=E. This implies W<P. Clearly P<W and so W=P. Similarly
W,=P.

Lemma 5.13. Let Z be the center of r(H). Then Z=Z,,, ZNr(Q)=1
and r(H)|Z=PGL(2, q).

Proof. By Lemma 5.7, »(N)=SL(2,q). Hence r(H)Z|Z=PSL(2, q) or
PGL(2, g) by Dickson’s Theorem. Clearly 7(H)=r(NQ)=r(N) r(Q), r(Q)=Z .,
and7(N)Nr(Q)=1. Hence Z=r(H)N{RE |k F¥} =Z ., or Zy,y. Sincer(Q)

N Z=1, r(H) contains a cyclic subgroup of order ¢+1. Thus Z=~Z,,, and r(H)
=PGL(2, q).

Lemma 5.14. Let xeH. If C<|F(Q)NF(Q)NT|<|A|. Then r(Q)
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Z=1(Q)Z.

Proof. Assume7(Q)Z#r(Q%)Z. Thenr(Q*)Z|Z#*r(Q)Z|Z=Z,,,. Hence
<r(Q), "(Q")>Z|Z=r(<Q, O*>) Z|Z=PGL(2, q) by Dickson’s Theorem. In
particular p| | <Q, O*>|. However, this contradicts Lemma 5.5.

Lemma 5.15. Let x€H. If ANA*F¢, then A=A".

Proof. Suppose false. Then it follows from Lemma 5.14 that 7(Q) Z=r
(Q*)Z. Let h be a natural homomorphism from H to H/W. Then h(Q) h(Z)=
HQ*) h(Z) and so (< J>P|P)X(<—I>P|P)=(<J*>P|P)x(<—I>P|P) by

Lemma 5.12. Here ]=(?,—CJ; ')eQ with ]':(‘1) '(1)) From this < J, —I>
P=<J*, —I>P. Therefore J*=]' or —]J' for some t€P. As A*=T'NF(Q%)

=T NF/(J*)and T NF(J)=TNF(—J), we have A*=(T'NF(J))’=A"'. There-
fore AN A*=¢ implies A=A" by Lemma 5.11.

Lemma 5.16. H is a transitive permutation group with a regular normal
subgroup P%. Moreover the global stabilizer M of A in H involves PSL (2, q).

Proof. The first part follows immediately from Lemmas 5.11 and 5.15.
In Particular H=MP. Since N<H and N involves PSL(2, q), M also involves
PSL(2, q).

We now prove the following theorem.

Theorem 5.17. Let n<II(F) and assume p>>2. Then C(x) is solvable.

Proof. Suppose false. Then L is nonsolvable. Let R be the pointwise
stabilizer of A in H. Then MI>R. As r(H)=r(MP)=r(M)>r(R), we have
r(M)|Z=PGL(2, q)>r(R) Z|Z =7(Q) Z| Z=r(Q)==Z,,, by Lemma 5.13. There-
fore 7(R) Z|Z=PGL(2, q). In particular p||R], contrary to Lemma 5.5. Thus
C(z) is solvable.

6. The linear translation complements when p>2

In this section we determine the structure of LC(z) with z&II(F) and p>
2. Let feQ(F) and set =3, n==n, and L=LC(x). Set M/(a, b,c,d, e)=

a0 ac ad /0100 —1000

0 b bf(d) be _(u#000 d hw)— 0w00 for ueFt. H
00 ae 0 , 2(u) 0001 and h(u) 000 or u . ere
00 0 bde 00u0 00z0

w is an element of F* of order 2(¢+1). The matrix A(u) does exist if p>2.

As we have seen in the proof of Lemma 2.2, we have
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Lemma 6.1. L=L,={M(a,b,c,0,a7'b)|a, bEF*, (a/b)*'=1, cEF}.
Lemma 6.2. Assume q>3 and let r and s be the homomorphisms defined in

§5. Set ]=(‘1) é) Then r(L), s(L)<M—=<J> {(g 2)|u,vEF'}.

Proof. By Theorem 5.17 and Lemma 5.1, Lg{(‘; c )[A,BEGL(Z, D,

CeM(2,¢)} and r(L) and s(L) are solvable. Since r(L)gr(Q)=<<(1) 2>>%

Zyw1, "(L)=M or ¢+1=4 by Dickson’s Theorem. Similarly s(L)<M. Thus
the lemma holds.

Let A(F) be the set of all f&Sym(F) such that f(x)=u&®, where uc F—K
and 4*'=—1. Then it is not difficult to verify that A(F)CQ(F) and =, is a
semifield plane for any fe A(F).

Proposition 6.3. Assume ¢>3. If feA(F) and f(x)=u® for some u with
u''=—1, then L=<g(u), h(u)>H and H=<Ma,b,c,d, €)|a,b,ecF*, c,de
F, (bja)**'=1>. In particular |L|=4¢* (q—1)*(¢+1)® and LI>H.

Proof. Set g=g(u), h~=h(u)and L,=<g, h, H>. Since <a O)_l« ac ad)

d be
3 D25 Dy ) M 9
=1. Hence H<L. Furthermore <2 (1)>-1<u; §> (2 (1) =<u: Z)ezf and so
we have geL. Similarly (_(1) 3—1) (u; .;) (2 Z(‘)’)=(;;:4_Jl’x—iiyf>=(u(—_ugw )
%)EZ and so heL. Thus L,<L.

Conversely, let v&L. By Lemmas 6.1 and 6.2, 'vv’=(g g), where C=

(: j) and D=(g 2) for suitable v'e<g,h, L,>. Then C+(::;V i) D=

(c:'—{—ex_ di—Hy)EE for any x, yeF. Therefore t=j, é=s, i=ud and Su=eu.
i-teuy j-+s»
Hencevo'=M(1,1,¢,d,e)€H. Thus L=<g,h>H. Clearly Ll>H and L/H
e=7,XZ, Therefore |L|=4|H|=4F—1)(q+1)¢*=4¢"(q—1)*(¢+1)? and the
lemma holds.

Proposition 6.4. Assume q>3. If fEQ(F)—A(F), then any element g
in L is expressed in one of the following form :

(i) g=My(a,b,c,d,e), where a,b,ecF* and c, dEF satisfying f(d+a™" bey)
=f(d)+ab~'ef(y) for any yEF.

(ii) g=(£ 3_’) My(a, b, c,d,¢), where a,b,ecF* and c,dF satisfying
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f(@-+a55f(9))=f(d)+ab ey for any yEF.

Proof. By Lemmas 5.1 and 6.2, g=(A AC), where A=]"‘<g (1:)’ C=

0 AD
(f(;l’)‘f)ez and D:(f'zt) )ex—1{0} with a,8,¢,d, ¢, 1€ F and 0=m=1.
C e

Assume m=0. Then gL if and only if Y=C+A"'MADE?Z, for any
- ( x . _(a' b . -1

Me3. Set M—(f(y) ; ) By calculation Y_(c, d’)’ where a'=c-+ex+a'h
f(@®) y, b'=d+tx+a" bey, ¢'=f(d)+ab™' ef (y)+f(¢)® and d’'=C+ab~'t f(y)+ex.
Hence a™'b f(t)y=ab~'t f(y) (*) and f(d+tx+a™* bey)=f(d)+ab e f(y)+f(t)%.
Suppose t==0. In view of the equation (*) we have f(y)=u}, where u=(b/a)?**
(f(®)*/t. Moreover, u&K by Proposition 2.1. Hence #'"?=(b/a)''e{+1}
and so u*"'=—1. This implies fEA(F), a contradiction. Thus =0 and (i)

follows. 'y
Assume m=1. By a similar argument as above Y=(a, d,)EE, where
¢

a'=c+a b f(t) f(y)+eR, b'=d+a* be f(y)+1t&, ¢'=f(d)+f(t)x+ab' ey and d’
=C+ex+ab~' ty for any x, yEF. From this, a™'b f(2) f(y)=ab 'ty (**) and f
(d+a7'be f(y)+t2)=f(d)+f(t) x+ab~'ey. Ift==0, then f(y)=ud by (**), where
u=/(a/b)"*\(t*/f(t))=(a/b)*"*/u. Hence u*=(a/b)**' and so w'e4{l1}. By
Proposition 2.1, u& K and therefore u?~'=—1, which implies f€ A(F). This is
a contradiction. Thus ¢=0 and (ii) follows.

RemaArk 6.5. As we have shown in Lemma 6.1, many collineations of the
form (i) actually exist. However, collineations of the form (ii) do not neces-
sarily exist and the existence depends on the property of the function feQ(F).

7. Derivations

In this section we show that any plane in the class II(F) is derivable. The
content of this section was suggested by V. Jha and N.L. Johnson [11].
We consider an arbitrary fixed element f of Q(F). Set Z=XZ, and z==,.

We denote the elements of 3, by M(x, y):(fa(cy) ?; ) for all x, y&F. LetS con-
sist of the following 2-dimensional F-subspaces of V(=F*).:

Vo=0X0XFXF, V,,={(v,vM(a,b))|lveFxF} (a,beF).
Then, S is the spread of V" concerned with 3. Set R={v., V,olacsF}.

Lemma 7.1. Let g be an element of LC(x) which leaves the set R invariant.
_(JOY (4 AC _(a 0\ ~_(c O\ n_(d0) , (01
Then g <o ]) (o ) where 4 <0 o € (0 2» D (0 J>’ 7= 0)’ “’

b,c,deF* and i€ {0, 1}.
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Proof. By Lemma 5.1, g=<‘; ﬁg) for some A€GL(2, ¢) and C,DESX.
Since 4 (AC+MAD)ES,= <(’5 ,2) |hEF} for each MES,, we have C=(g g)

and D=<g c(l_)) for some ceF and deF*. Hence A7'MAEZS, for any ME3,.

There exists j& {0, 1} such that J jA::(: Z)EGL(Z, ¢’) and a=0. Since

-is pis (@S ‘I<x 0\(as\_ 1 (abx—ts® bs(x—%)\_w c
J 7 Z =5, <t b> 0 x) <t b> - (at(x-—x) abx—tsx) 3, for any x
F. From this at=bs=0. Hence t=s=0 and the lemma follows.

Theorem 7.2. R is a derivable partial spread of S. The kernel of the
derived plane n' of = with respect to R is isomorphic to K.

Proof. Put W.=0XFx0XF and W,={(x, %a, y, ya)|x, yeF} for acF.
It is easy to see that R'={W,|a€FU {oo}} is the derived partial spread of K.

Since the group of kern homologies of z’ contains {& (E O> |k K¥, the kernel
K’ of #' is isomorphic to GF(g), GF(¢) or GF(¢). O F

Assume K'=<GF(q"). Then = is a Hall plane of order ¢* (cf. [13] Chapter
13). But, we obtain a contradiction by Lemma 5.1.

Assume K'==GF(q?) and let K;=<w) be the group of the kern homologies
of z’. Then|K,|=¢—1 and K=< C(z) by Theorem 10.6 of [8]. Setg=p"and
g=w". Since C(z)<TL(4, F) by Theorem 1.10 of [13], g LC(x) and there-
fore g can be expressed in the form described in Lemma 7.1. Let a, g, ¢, d and
7 be as in the lemma.

If /=1, then (W.)g=W, a contradiction. If i=0, then W,=(W,)g=
W,, I=ka™1b for all keF. Thus b=a’. Moreover, as C+AM(s, t) AD=
(c—l—sd a’'td* M 4-1474 B . _ 1 s q

. . )— (c+sd, a®™'td?), Vo =(V,:) 8=V 51,0910 for all s€F an
teFt. Thus ¢=0, d=1 and a®'=1. Therefore g=a (g %) with ac K% It

follows that |g| <p"—1. On the ther hand |g| =(p*—1)/2n. Hence 2n=p"+
1=2"+1, a contradiction. Therefore K'=GF(q).
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