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1. Introduction

An experiment 8 is a triplet (X, Jl, ,ίP), where S is a non-empty set of
probability measures on a σ -field Jl of subsets of a set X. ca(JL) denotes the
space of all bounded signed measurs on JL. The closed vector sublattice
Lm(6) of ca(JL) generated by S is called the minimal L-space of the experi-
ment 8 (Le Cam [8], p. 41). 8 is said to be majorized if there exists a measure
μ on JL such that each P^3? has a density with respect to μ. In this case,
μ is called a majorizing measure for Q. The class of majorized experiments
includes the weakly dominated experiments, where μ is localizable (see Mussmann
[12]), the Σ-finite experiments (see Le Cam [8], p. 13 and p. 667), where μ is
decomposable, the semi-decomposable experiments (see Luschgy and Mussmann
[10]), and the discrete experiments, where μ is the counting measure on 2X (see
Basu and Ghosh [1]).

For v*Ξca(JL)+, a set S in Jhvhich satisfies v(Sc)=0 and P( Π S)<z> for all
Pξ=3? is called an <?-support of v. 8 is majorized if and only if each PGΞί? has
an (^-support (cf. Diepenbrock [2], Lemma 9.3, Ramamoorthi and Yamada [15],
Proposition 1, or Luschgy and Mussmann [9], Theorem 1). Throughout the
present paper we assume that 8 is majorized. For a set H of measures on
JL, put N(H}= {A^JL: v(A)=Q for all v^H}. If {/*,-, i<=I} is a family of JL-
measurable functions, then cr(hiyi^I)\/N(H) denotes the smallest sub-cr-field
(subfield, for short) of Jl which contains N(H) and for which each λt , ie/, is
measurable. A subfield IB of JL is said to be PSS (pairwise sufficient containing
supports) for 6 if IB is pairwise sufficient for 8 and each Peί? has an <?-support
belonging to S. An equivalent majorizing measure μ is called pivotal measure
for 6 if the following condition is satisfied: a subfield £B of JL is PSS for 8 if
and only if each P^S has a ^-measurable /^-density (cf. Ramamoorthi and
Yamada [15]). Obviously, μ is pivotal if and only if

dμ
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is smallest PSS. If S is majorized by a σ-finite measure then the sufficiency
criterion of Halmos and Savage [6], Theorem 1, implies that each equivalent
finite majorizing measure of the form Σ cnPn with cn^0 and Pn^3? is pivotal.

«
From this theorem the Neyman factorization theorem easily follows. In order
to prove extensions of these results for arbitrary majorized experiments, pivotal
measures have been used by Ghosh et al. [5] and by Ramamoorthi and Yamada
[15]. In [20] pivotal measures have been applied to construct common condi-

tional probabilities in an extended form. We shall show that pivotal measures
are closely related to maximal orthogonal systems in Lm(β).

An orthogonal system IF in a vector lattice V is a subset of F+\{0} such
that u/\v— o for all distinct members u and v of W. If DdLm(β) is a maximal
orthogonal system, we define a measure VD on Jl by vD(A)— sup {Σ w(A): FdD,

we-F

F finite}. Notice that each maximal orthogonal system of Lm(S) is also a
maximal orthogonal system of the L-space of 6 and therefore VΌ is an equivalent
majorizing measure for S (Luschgy and Mussmann [9], Theorem 1, see also
Torgersen [19], p. 10). We shall prove the following results: σ(dP\dvD,P^&}
V N(S>) is a smallest PSS subfield and a pairwise smallest sufficient subfield in
the sense of [5]. This implies that VD is pivotal. Conversely, each pivotal
measure is of the type VD. Lm(β) can be characterized as the set of all measures

on <JL having σ(dP\dvΌ, P€Ξ£P)V N(3?) -measurable densities with respect to VD.
This generalizes a result by Torgersen [18], p. 47.

Furthermore, we discuss the relation between maximal orthogonal systems
in Lm(6) and maximal decompositions of X which have bεen used in the liter-
ature to prove the existence of pivotal measures (cf. Ramamoorthi and Yamada
[15]). We need some more notations. Let μ be a measure on Jl. L\μ) de
notes the space of all μ-integrable functions. If /EΞL^μ), then/ μ, is the bound-
ed signed measure on Jl with μ-density/. Set L(μ)—{f μ:f^L\μ)}. The
map from L\μ) onto L(μ) which carries f^L\μ) into f μ is an isometric
vector lattice isomorphism. This is easily seen by means of the Radon-Nikodym
theorem since {/>0} has σ-finite μ-measure for each/GΞL^μ).

2. Auxiliary Results

Put β*=(X, Jl, 5>*) where 3?* is the set of all probability measures in
Lm(β). In the following we shall see that in some situations β can be replaced
without loss of generality by <?*.

Proposition 2.1. Suppose ^dJί is a subfield. Let W denote the set of all
w(Ξca(Jί) of the form w=f»(Σ 2~nPn) where f is ^-measurable and Pne£P. The
following assertions hold :

a) If each P^S* has an 6 -support belonging to IB, then each w^W has an β-
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support which belongs to IB.
b) // 3$ is pairwise sufficient for 5?, then W is a closed vector sublattίce of ca(Jΐ)

and <B is pairwise sufficient for the set of all probability measures from W.

Proof.

a) If / is ^-measurable, ^=/ (Σ2"nPΛ), w^ca(Jΐ), and Tn<=:& is an €-

support for Pn for each positive integer n, then

{/>0}n(U T.)e£
is an (S-support for w.

b) If 3ί is pairwise sufficient for 5>, it is also sufficient for each dominated
subset of 5*. Therefore, by a theorem of Halmos and Savage [6], Theorem
1, we can assume that dP/d(Σ2~nPn) is ^-measurable whenever P^3> is

absolutely continuous with respect to Σ 2~nPn. From this we obtain that
»

for each sequence (wm) in W there is a sequence (fm) of ^-measurable
functions and a sequence (Pn) in & such that Wm= /m (Σj2~*Pw) for all m.

By means of these representations it is easily shown that W7 is a closed vector
sublattice. Furthermore, we see that it only remains to prove that £B is suff-
cient for subsets of probability measures w^ W of the form W= f (Σ 2"nPn)

where/ is ^-measurable and the sequence (Pn) is fixed. For such a w^. W
we get

\Λda=\
B JB

= E.(lA\$)dw for all AtΞjl and
JB

where EΦ(1A\1B) is a common conditional expectation for the sequence (Pn)

E.(lA\&)=EPn(lA\3)Pn-a.e. for all n. Π

Corollary 2.2. Suppose 3JC.JI is a sub field. Then the following assertions

hold:
a) If each Pe.ίP has an 6 -support belonging to J3, then each Q^S?* has an

6-support belonging to J$.
b) If IB is pairwise sufficient for Qy then £B is pairwise sufficient for G*.

An inspection of the proof of Proposition 2.1 shows that Corollary 2.2.b holds if
"pairwise sufficient" is replaced by "sufficient". Notice that here and in Prop-
osition 2.1.b and Corollary 2.2.b we do not use the assumption that 6 is ma-
jorized, From [9], Lemma 1, we see that £* is majorized by a measure μ
whenever 8 is majorized by μ.

Lemma 2.3. Suppose Q is majorized by μ. Then we have
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Proof. The set of all f&L\μ) such that / is <r(dP/dμ,

measurable is a closed vector sublattice of L\μ). Because of the vector lat-
tice isomorphism between L\μ) and L(μ) (see Section 1), the proposition easily
follows. Π

Now we need a lemma which we shall use for the calculation of the den-
sities if the majorizing measure is of the form VD (see Section 1). If V is an

L-space, we define πx(y)= sup(y/\nx) for all x, yG V*\ πx(y) is the projection

of y onto the band generated by x ([16], Proposition II.2.11 and Corollary 2).

Note that for every L-space there exist maximal orthogonal systems by Zorn's
lemma.

Lemma 2.4. Suppose V is an L-space. Then the following assertions hold:
a) If (xiy ι € Ξ l ) is an increasing net in V+ with supH^H^oo, then lim#, exists

and lim #f = sup xf.
i i

b) If D is a maximal orthogonal system in V andy^ V+, then

y = sup Σ τcu(y) = lim Σ ιt*(y)
A «eA Λ «eΛ

where Λ ranges through finite nonempty subsets of D. The set {u^D: πu(y) =t= 0}
is countable.

Proof.
a) See [3], proof of Theorem 26 B.
b) By [7], Lemma 3.5, we get

Then a) implies

sup Σ πu(y) = lim Σ πu(y) .
Λ weΛ A «eA

By the Riesz decomposition theorem ([16], Theorem II.2.10), the band in V
generated by D is equal to V. From [16], Proposition II.2.11, we get

&wpππu(y)=y. If τru(y)ΦQ for all u from an uncountable subset of Z>,
Δ «eA

then there is an £>o such that {u^D: \\τtu(y)\\*£6} is infinite. Because

l^ Σ llTΓuί^)!! f°r all Λ) we get a contradiction. Π

If u,v^Lm(£)+, then πυ(u)^Lm(8) by Lemma 2.4.a. Using the vector
lattice isomorphism between L\μ) and L(μ) with ^t=«+£;, we get
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/ \ (dU Λ \

μv(u) = \—- itiv/dμxύrμ -

Proposition 2.5. Suppose DdLm(6] is a maximal orthogonal system. Then

for each v^LJG}* there is a countable subset D'dD such that Σ ls " - M «
7 /- . , weU' W dW

density of v with respect to VΌ.

Proof. By Lemma 2.4.b, there is a countable subset D'cD such that v=

Σ κw(v). Using properties of the (^-supports Sw of «?, we see that
we/?7

,__ v Λ dπw(v)
J ^-*f Sw jWGD' (fan

is a density of v with respect to VD. Π

Proposition 2.5 is essentially known. The above form of the density is

given by Torgersen [19], p. 10, for v

EXAMPLE 2.6.

a) Suppose 8 is majorized by a σ-finite measure. Then there is a majorizing

measure of the form v= Σ2~MPM, Pn^3?. The set D={v} is a maximal

orthogonal system in Lm(6) and V=VD.

b) If <_Λ! is the power set of X and if 3> contains all Dirac measures, then the

subset D of all Dirac measures is a maximal orthogonal system in Lm(8)

and VD is the counting measure.

3. Main Results

In the situation of Example 2.6.a it is known that σ(dP\dvD, P^^VN^)
is a smallest sufficient subfield. For an arbitrary majorized experiment we shall
show in Theorem 3.1 that a subfield of this form is not dependent on the special

maximal orthogonal system D and that it is smallest PSS.

We define a subfield JHm^.J[ by

where DaLm(6} is a maximal orthogonal system. We use the terms "pairwise

smallest sufficient" and "smallest pairwise sufficient containing supports'' smal-
lest PSS, for short) in the sense of [5].

Theorem 3.1. The subfield <Λm is pairwise smallest sufficient and smallest

PSS for 6. Especially, VD is a pivotal measure for each maximal orthogonal

system DdLm(β).
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Proof. Without loss of generality we assume 6=6* (see Proposition 2.1).
Obviously, <JLm contains an ^-support for each PeίP. Next we show that <Am

is pairwise sufficient. Suppose P1? P2e5>. Put μ=P1+P2^Lm(6). There are
cJ[w-measurable versions of dP^dμ since

dPt dPn (dμ\l

-j-1 = -j- 1 {dHd-»D>*}\ -f~ ) μ-a e .
aμ avD ^άv^

Thus JLm is sufficient for {P1? P2} because of [6], Theorem 1. It remains to
investigate the minimality of Jlm. Let SdJl be a pairwise sufficient subfield.
For Pe<? there is a countable subset D'cD such that P= Σ ar«(P) (see

«;eι>'

Lemma 2.4.b). Let κ^ca(JL) be of the form /e= Σ V<>> cw^ΰ. Since 6=6*
toez/

and since in the dominated case pairwise sufficiency implies sufficiency, S is
sufficient for

iMl^w: w^D'} U flk^ll-W: ^r^ΦO, eϋ^Z)'} .

By [6], Theorem 1, we may assume that dπw(P)ldκ and dw/d/c are <5-measurable

for all we D'. Furthermore,

dP _ _

Hence dP\dvD is <5 V AΓ(/c)-measurable. For fixed Ply P2^S we may suppose that
P1? P2</c holds in the above calculation. Therefore dP\dvD is <SV N(Pλ+P2)-
measurable for all P:, P2eP, and <Jlm is pairwise smallest sufficient. If S con-
tains an fi-support for each PeίP, then {dv)ldvD>Q}^ScvN(S) for all
and

Hence dP\dvD is cSVΛ^(5>)-measurable. We conclude that cJJw is smallest PSS
and VD is a pivotal measure. Π

The existence of a smallest PSS subfield has been proved by Ghosh et
at. [5], Theorem 5. A detailed discussion of the smallest PSS subfield can be
found in Fujii and Morimoto [4], Theorem 5. Pairwise smallest sufficiency is
treated in Siebert [17] (see also [5], Theorem 5) and using invariance considera-
tions in [11]. In Theorem 3.4 we shall see that any piovtal measure can be
represented by means of a suitable maximal orthogonal system in Lm(6). First
we give a more concrete representation of Lm(6).

Theorem 3.2. Suppose DdLm(6) is a maximal orthogonal system. Then
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Proof. It suffices to prove that the inclusion ID holds. Because of the form
of the densities given in Proposition 2.5, it is enough to show for each fixed

that for each/eL^Mw) there is a u^Lm(6) with

s1B - y - s w . .
avD

This follows from [14], proof of Proposition 1-1-1, since VD( Γ\Sw)=vΰ is a

finite measure. Π

In Theorem 3.2 <Λm can be replaced by any pairwise smallest sufficient sub-
field. This theorem generalizes a result of Torgersen [18], p. 47, for dominated
experiments and of Mussmann [13], Proposition 2.1 and Proposition 2.5, for
weakly dominated experiments. The latter paper also gives a characterization
of the smallest sufficient subfield.

Theorem 3,3. If μ is a pivotal measure for 6, then μ=vG for some maximal

orthogonal system G in Lm(G).

Proof. Let D<Σ.Lm(6) be a maximal orthogonal system. Put Sw =
{dw/dμ>ty for all vΰ&D. Sw is an (^-support for w. By Lemma 2.3, dzti/dμ
is <Jίm -measurable. Hence SwξΞ<Jlm and there is a countable set Kw and a pairwise
disjoint family (Swk, k^Kw) in Jίm with Sw= U Swk and 0<μ(Swk)<oo for all

k^JS^tv

k&Kw. By Theorem 3.2, the measures lSwk w, w^D and k^Kw, also define
a maximal orthogonal system in Lm(<S). Therefore we shall assume without loss
of generality that Q<μ(Sw)<oo holds for all rt^D. Put vx=μ( Γ}Sw) for all

vw^Lm(<S) because of

and Theorem 3.2. Furthermore, vw and w are equivalent for all w^D. There-
fore G=(vw, zo^D) is a maximal orthogonal system in Lm(6). It is easily shown
that μ=vG since μ is semi-finite, that is μ(A) = sup {μ(F) : F(Σ.A, F&A, and
μ(F)<oo}. Π

EXAMPLE 3.4. Suppose X is the unit interval, <JL the corresponding Borel
sets, and 3?= {λ} where X is the Lebesgue measure on X. Then X is also pivotal
for 6 since {0, X} is a smallest sufficient subfield. We have Lm(6)= {v: v=a\

for some real a}. Because λ= Σ λ( Π A ) for anY countable measurable parti-
ίej

tion {Aiy ί^J} of X, we see that the pivotal measure λ can be represented as a
sum of orthogonal measures which are not from Lm(6).

For each P^S let Sp^Jίm be an ̂ -support for P. A subset 3c.JLm is
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called a maximal 6 \ ̂ ^-decomposition if F1Γ\F2^N(3>) for distinct members

F19 F2<=ζFly for each Fe£F there is a PFe5> with PF(F)>Q and F\SPf&N(&),
and each B^Jlm such that B\SQ^N(3?} for some Q <Ξ£P and fin^eiV^) for
all Fe£F is in N(&). Such an £F exists by Zorn's lemma (cf. [15], p. 171). In

[15], Proposition 3, it is shown that Σ fV( Γl-F) defines a pivotal measure.
F<EΞ%

This will also follow from Theorem 3.1 and our next theorem, where the relation

between maximal <?* | (.^-decompositions and maximal orthogonal systems in
Lm(6) is exhibited. It easily follows from the definition that each maximal
£|o?w-decomρosition is a maximal <?* | ̂ ^-decomposition.

Theorem 3.5. The following assertions hold

a) // £? is a maximal 6* | JLm-deconιposition, then {PF( Γ\F):F^3ί} is a
maximal orthogonal system in Lm(β).

b) If D is a maximal orthogonal system in Lm(β) and Sw GΞ <Jlm is an β-support for

each w^D, then {Sw: vΰ^D} is a maximal 6*\<Jlm-decomposition.

Proof.
a) Let D be a maximal orthogonal system in Lm(6). By Theorem 3.2, for

each F ££? there is an <_τ?w-meesurable gF such that

We conclude that {PF( Γ\F}): F^3} is an orthogonal system in Lm(6).
Suppose v &Lm(β)+ and v/\PF( Π F) = 0 for all F e£F. By Theorem 3.2,
v=f vD for some o#w-measurable /. We get

0 = ^({/>0>n{lFfo>0}) = ^({/>0}nF) forall FtΞΪF.

The definition of S£ implies ^z?({/>0})=0. Hence v = Q, and the maxi-
mality of {PF( Π F ) : Peff} follows.

b) Suppose B^Jίm, B\S^N(&) for some £>eS>*, and J8Π ^eΛΓ^Jfor all
w&D. By Theorem 3.2, g( nB)=(l5/) zΊ) for some <^?w-measurable /.
We conclude .Q( Γ(B)<=Lm(β) and Q( Γ}B)/\w=Q for all w^D. Max-
imality of D implies Q( Γ\B)=Q. Hence B^N(ίP). Now it is easily seen

that {Sw: w^D} is a maximal ίP* | ̂ ^-decomposition. Π
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