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1. In [5], Lam has shown that the Whitehead group Wh(53) of the symmet-
ric group S3 on three letters is zero. His method is the interesting one which
combines the induction theorem with some concrete computations.

The object of this paper is to show the following results.

Theorem. If G is the dihedral group of order 2p, p an odd prime, then the

Whitehead group Wh(G) of G is torsion free.

Hence, from the generalized unit theorem by Bass ([1]), we can easily see
that Wh(G) is a free abelian group of rank (p — 3)/2. In case^>=3, G is isomor-
phic to S3y so our result includes Lam's as a special case.

Our method is essentially based on his idea. However, using some techni-
ques in algebraic K-theorγ we have been able to simplify the computations, for
example, of the reduced norm.

Let K^ZG) be the Whitehead group of the integral group ring ZG of a finite
group G. We shall denote by Wh(G) the cokernel of the natural homomorphism

± G -Ξ+ GLIZG) - ^ * GL(ZG) > K X ( Z G ) ,

and call it the "Whitehead group of the group G". For any Z-order A ins. finite
semi-simple 0-algebra, we shall denote by SK^A) the kernel of the reduced norm
of K^A), and for any two-sided ideal a of A, SKx(-4, α) will denote the inverse
image of SKj(̂ 4) with the natural homomorphism Kx(-4, a)—>

2. The following notations will be fixed throughout this paper.

p=any odd prime

G=the dihedral group generated by the elements s and t under the defining
relations sp=t2 = l and ts=s~1t
ζ=a primitive^ th root of unity
L=Q(ζ) the cyclotomic field over the rational number field Q
LQ=Q{ϋ), #=ζ+ζ~\ the maximal real subfield of L
R=Z[ζ] the integral closure in L over the ring Z of rational integers
R0=Z[ΰ] the integral closure in Lo over Z
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Let T be the automorphism of order 2 of L such that ζτ=ζ~1 the complex
conjugate of ζ, and consider the twisted group ring

2 = L-\-Lτf τl = /ττ for any l^L .

Then 2 is a simple g-algebra with the center Lo, and is identified with the
full matrix algebra M2(L0) over Lo, where the identification can be set up by the
following ' 'choice of coordinates''

Now, we have the decomposition of the group ring QG into the simple
components

QG =

with the projections

;,(*) = ! ΛW = i

Let

be a maximal order in QG, where o is the maximal order in 2 which is identi-
fied with M2(R0) under the identification (1), i.e.,

φ(o) = M2(R0). ( 2 )

If we set

Λ - R+Rτ

a Z-order in Σ contained in o, then we see clearly that the integral group ring
ZG is projected onto

j\(ZG) = Z, J2(ZG) = Z, and J3(ZG) = A ,

respectively.
Recall, from [1] that the reduced norm Nrd is the map defined on K^ZG),

with values in the unit group of the maximal order in the center of QG. In the
present case, this is concretely described as follows:

Nrd = lim NM , where
n

NΛ GLn(ZG)/[GLn(ZG), GLn(ZG)] -> U(Z) x U(Z) x U(R0), ( 3 )

N B = (deto Ί , detoy2, detoφoj3).
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For any abelian group K, we shall denote by Tor K the "torsion subgroup"
of K. Since Tor Wh(G) = Tor K1(ZG)/±G and SK^ZG) is contained in
Tor Kt(ZG) (in general, SK^ ) is finite (c.f. [1])), then our theorem is obtained
if we show that Nrd(Tor K 1(ZG))-Nrd(±G) and SK1(ZG)=0.

Before start the computations, we shall provide the following lemmas.

Lemma 1. Let c=(ζ— l)2o be the two-sided ideal of o generated by the
element (ζ— I)2 in R. Then c is contained in A, and is identified with the ideal
M2((2—$)R0) ofM2(R0), under the identification (2) of o with M2(R0).

Proof. Let actually calculate the image φ((ζ— I)2) by the rule (1). Then

Since L _ Δ is a unit in M2(R0)> we get the equality φ(c)=(2 — ϋ)M2{R0) =

M2{(2—ϋ)R0). This shows the second assertion of the lemma. To see that
ccΛ, it therefore sufiicies to show that M2((2—z?)#0)cφ(Λ). Let

x = (a+βζ)+(Ύ+8ζ)τ, a, β, γ, δeL0

be any element of 2 . Then by an easy computation, it is seen that the four
entries a', β', Y, δ' of the matrix φ(x) are given by the equation

χ =

(ί

0

1

0

1

0

0

- 1

1

ϋ
1

( 4 )

Here, det X=— (#+2)(2—z?) and the element (z?+2) is a unit in Ro. Then, for

any ί , t , j eM2((2~z9)JR0), we can find (uniquely) in R0

4 a vector (a, β, γ, δ)

which satisfies the equation (4). This shows that any element of M2((2—z?)i?0)
is contained in the image of Λ by φ. This is the first assertion. Hence the

lemma has been proved.

Let S be the normal subgroup of G generated by the element s and denote
by I(S) the augmentation ideal of the group ring ZS. Then the natural epimor-
phism G -> G/S induces the exact sequence

0 >I(S)ZG-^ZG -L+ Z(G/S) >0. ( 5 )

Lemma 2, Set I=I(S)ZG, then KX(ZG//2, IjP) has exponent p.
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Proof. Since in the ring ZG\P the ideal IjP has square zero, it is contained
in the radical of ZG/P. Then K^ZG//2,1/P) is a quotient of GL^ZG/P, I/P) =
1-i-I/P ([2], Chapter IX, (1.3)), and the later is isomorphic to the additive group
IIP.

On the other hand, the additive group I(S)/P(S) is isomorphic to the
multiplicative group S. But S is of order p, so pI(S)^P(S). Hence IjP has
exponent p. Therefore, K^ZG//2, IjP) has also exponent p, which proves the
lemma.

Lemma 3 (Lam [6]). G has the Arttn exponent 2.

Proof. G is of order 2p, and the />-Sylow subgroup S is cyclic. Then the
lemma is immediate from [6].

3. Now, we shall compute the reduced norm of Tor Kj(ZG).

Proposition 4. Nrd (Tor K1(ZG))=Nrd (±G).

Proof. Set I=I(S)ZG, and consider the exact sequence

Kl(ZG, /) - X KX(ZG) J±+ K,(Z(G/5))

induced from the exact sequence (5). Since the quotient group GjS is cyclic
of order 2, it is known that K1(Z(G/S))=±(G/5) (Higman [4], c.f. [2]). Then
for any # e T o r Kj(ZG), there exist an element y of K^ZG, /) and an element
ύzg of ±G such that

* = i*(y)+(±g) (6)

Since x is a torsion element, then so i*(y) is. Hence by Lemma 3 and the
induction theorem ([5]), we can see that Nrd(z*(j;)) has exponent 4. Set
Nrd(t*(y))=(jΊ, y2, y3)^ U(Z) X U(Z) X U(R0). Then we get the equality yί= 1
in Ro. But i?0 is included in the real numbers, so y3 must be equal to ± 1 . Thus
each component y. is of the form ± 1 , which implies the equality (p is odd !)

( 7 )

On the other hand, we have the exact sequence (c.f. [2], Chapter IX, (1.2))

Ki(ZG, P) i . Kα(ZG, /) * K^ZG/P, I/P).

Since by Lemma 2 K^ZG//2, I/P) has exponent p, then there exists an element
z of Kα(ZG, P) such that h*(z)=py. Then by the eqeality (7), to determine
Nrd {ί*{y))> it suffices to do Nrά{i*oh*(z)).

Any element z of KX(ZG, P) is represented by a matrix Zrt of GLn(ZG, P)
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for some n. Since S is generated by the element s, P=I(S)2ZG coincides with
the ideal (s— l)2ZG, which is projected by (]\,j2,j3) into the ideal O0O0(£— l)2o
of the maximal order O = Z 0 Z 0 o . Here, φ((ζ— ί)2o)=M2((2—#)R0) by Lemma
1. Therefore, by the formula (3) of the reduced norm, the first and the second
components of Nn(Zn) are both equal to 1, and the third component is congruent
to 1 modulo (2—tJ)JR0. Thus, Nrd(ί*(jO)=(l, 1, J3), and yz = \ mod(2-#)i?0.
But the ideal (2—ϋ)RQ does not divide 2, and yz is of the form ± 1 , so that
y3 must be equal to 1. Hence, Nrd (t*(y)) = (l, 1, 1). Consequently, by the
equality (6) we get the equalities Nrd(#) = Nrd(z*(3;)) Nrd (±£) = Nrd (±#).
This shows the proposition.

4. Finally, we shall study the kernel of the reduced norm.
Let c=(f— l)2o be the ideal of o as in Lemma 1. Then, by the lemma,

c may be regarded as a two-sided ideal of Λ, so that we can consider the group
SKX(A, c2).

Lemma 5 (c.f. [5]). SK^Λ, c2) is a p-group.

Proof. For a sufficiently large integer ny set T=SLn(A, c2). Since SK^Λ, c2)
is a quotient of T/[Ty T]y it suffices to see that the latter is a />-grouρ. But
c2 is an o-ideal, then SLn(Ay <?) = SLn(oy c2), and this is identified with
SL2n(R0y (2 — ϋ)2R0) by Lemma 1. Therefore, we may assume that T=SL2n(R0y

(2-d)2R0). Now, we see easily that [Γ, T]^SL2n(R0y (2-ι?)4i?0) and by the for-
mula of ([2], Chapter V, (1.5)) we see that [E2n(R0y (2-z?)2#0), E2n{R0y (2-ΰ)2R0)]

SL2n(R0y (2-

By the ''congruence subgroup theorem" for ROy the integers in the real field Lo

(Bass, Milnor and Serre [3], c.f. [2]), the extreme ends are equal. Thus we get
the equality

T/[Ty T] = SL2n(R0y (2-δyR0)/SL2n(R0y (2-#yR0).

Moreover, this is isomorphic to a subgroup of the group U=GL2n(R0l(2—dyR0y

(2-z?)2i?0/(2-t9)4/?0). Since the ideal c=(2-#)2i?0/(2-z?)4l?0 has square zero,
U is isomorphic to the additive group M2n(c) consisting of matrices with entries
from c. But/)2 is divisible by (2—ΰ)2

y so M2n(c) has exponent p2. Therefore,
Tj[Ty T] has also exponent p2. This shows the lemma.

Corollary. SK^Λ, (f— 1)2Λ) is a p-group.

Proof. Since c = ( f - l ) 2 o c Λ , we see that ( f c f f - l f Λ c c , Set Co =
(ζ— 1)2Λ. Then we have the exact sequence

SKX(Λ, c2) > SK^Λ, Co) — * K^Λ/c2,
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where Co/c2 has square zero, and it has exponent p (p is divisible by (ζ—I)2).

Then, we can repeat the same arguments as in the proof of Lemma 2 to con-

clude that K^Λ/c2, CQ/C2) has exponent/). Therefore, by our lemma SK^Λ, Co) is

a />-group.

Lemma 6. SK^ZG, /) is a p-group, where I=I(S)ZG.

Proof. Look at the exact sequence

SK^ZG, I2) > SK^ZG, /) > K^ZG//2, I/I2),

where K^ZG//2,1/I2) has exponent p by Lemma 2. Then it suffices to see that

SK^ZG, I2) is a ̂ >-group.

Set J=(ί+s-\ [-sf-^ZG. Then / is the kernel of the projection

y3; ZG->A> and I2 Π J=0. Therefore, by the "excision isomorphism theorem"

on Kx ([2], Chapter IX, (1.5)), we can see that the natural homomorphism

KX(ZG, I2) > K^ZG//, F+JIJ) = K^Λ, GΓ-1)2Λ) ( 8 )

is an isomorphism, where the inverse map is obtained by taking the inverse

images modulo / . However, we have seen in the proof of Proposition 4 that

the first and the second components of the image of K^ZG, I2) by the reduced

norm are both equal to 1. Then we have the commutative diagram

K l(ZG,/2) *-2^Kl(Λ,GΓ

JNrd JNrd
l}[/(i?)^-> U(R0).

Hence, the homomorphism SK^ZG, /^-^SK^Λ, (ζ— 1)2Λ) induced from the

isomorphism (8) is also an isomorphism. Since SK^Λ, (ζ— 1)2Λ) is a/>-group

by the above corollary, then SK^ZG, I2) is a/>-group. This proves the lemma.

Proposition 7. SK1(ZG)=0.

Proof. The exact sequence (5) induces the following exact sequence

SK^ZG, /) - X SK^ZG) - ^ SK, (Z(GIS)).

Since SK1(Z(G/5))-0 (recall that K1(Z(GIS))=±(G/S)), i* is surjective. By

the preceding lemma, SK^ZG, /) is a /)-group, so that SK^ZG) is also a

/>-grouρ. On the other hand, we apply the induction theorem to SKj(ZG).

Then by Lemma 3, SK^ZG) has exponent 4. Hence, S K ^ Z G ^ O , which

proves the proposition.

This proposition shows that the reduced norm Nrd Kj(ZG) -> U(Z) X

U(Z)xU(R0) is an injection, and in Proposition 4 it has been seen that



WHITEHEAD GROUP OF THE DIHEDRAL GROUP 297

Nrd (Tor Kx(ZG)) = Nrd (±G). Hence, we obtain that Tor Wh(G) =
Tor K1(ZG)/itG=0, and complete the proof of the theorem.
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