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1. In[5], Lam has shown that the Whitehead group Wh(.S,) of the symmet-
ric group S, on three letters is zero. His method is the interesting one which
combines the induction theorem with some concrete computations.

The object of this paper is to show the following results.

Theorem. If G is the dihedral group of order 2p, p an odd prime, then the
Whitehead group Wh(G) of G is torsion free.

Hence, from the generalized unit theorem by Bass ([1]), we can easily see
that Wh(G) is a free abelian group of rank (p—3)/2. In case p=3, G is isomor-
phic to S;, so our result includes Lam’s as a special case.

Our method is essentially based on his idea. However, using some techni-
ques in algebraic K-theory we have been able to simplify the computations, for
example, of the reduced norm.

Let K,(ZG) be the Whitehead group of the integral group ring ZG of a finite
group G. We shall denote by Wh(G) the cokernel of the natural homomorphism

+G6 -5 6L(26) -S> GL(ZG) —> K(Z6)

and call it the “Whitehead group of the group G”’. For any Z-order 4 in a finite
semi-simple Q-algebra, we shall denote by SK,(A4) the kernel of the reduced norm
of K,(4), and for any two-sided ideal a of 4, SK,(4, a) will denote the inverse
image of SK,(4) with the natural homomorphism K,(4, a) — K,(4).

2. The following notations will be fixed throughout this paper.

p=any odd prime

G=the dihedral group generated by the elements s and # under the defining
relations s?=#*=1 and ts=s""¢

{=a primitive p th root of unity

L=0Q(¢) the cyclotomic field over the rational number field Q

L,=0(9), #=¢+¢*, the maximal real subfield of L

R=Z[{] the integral closure in L over the ring Z of rational integers
R,=Z[¥] the integral closure in L, over Z



292 T. OBAYASHI

Let 7 be the automorphism of order 2 of L such that {"={ ™' the complex
conjugate of £, and consider the twisted group ring

SV\=L+Lr, 7l=1IT for any leL.

Then 3] is a simple Q-algebra with the center L,, and is identified with the
full matrix algebra M,(L,) over L,, where the identification can be set up by the
following ‘“‘choice of coordinates”

so=(_\ ,) so=(, ). (1)

Now, we have the decomposition of the group ring QG into the simple
components

0G = Q0P
with the projections
=1 =1 =t
. . an .
M) =1, j(t)=-1 Jt)=r7.
Let
O=ZPZPo

be a maximal order in QG, where o is the maximal order in 3 which is identi-
fied with M,(R,) under the identification (1), i.e.,

¢(D) = Mz(Ro) . ( 2 )
If we set
' A = R+Rt

a Z-order in ) contained in o, then we see clearly that the integral group ring
ZG is projected onto

J(ZG) = Z, j(ZG)=Z, and j(ZG)= A,

respectively.

Recall, from [1] that the reduced norm Nrd is the map defined on K,(ZG),
with values in the unit group of the maximal order in the center of QG. In the
present case, this is concretely described as follows:

Nrd = lim N,,, where

N,; GL(ZG)[[GL(ZG), GL(ZG)] - UZ)x UZ)x URy,  (3)
N, = (detoj,, detoj,, detogpoj,) .
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For any abelian group K, we shall denote by Tor K the “torsion subgroup”
of K. Since Tor Wh(G)="Tor K,(ZG)/+G and SK,(ZG) is contained in
Tor K,(ZG) (in general, SK,( ) is finite (c.f. [1])), then our theorem is obtained
if we show that Nrd(Tor K,(ZG))=Nrd(+G) and SK,(ZG)=0.

Before start the computations, we shall provide the following lemmas.

Lemma 1. Let c=({—1)’0 be the two-sided ideal of o generated by the
element ({—1)* in R. Then c is contained in A, and is identified with the ideal
M ((2—)R,) of M(R,), under the identification (2) of o with M,R,).

Proof. Let actually calculate the image ¢((¢—1)?) by the rule (1). Then

P((E—1)) = (2,19)(‘13 :;) .

Since ((1’ :é) is a unit in My(R;), we get the equality ¢(c)—(2— I)M(Ry)=

M, ((2—)R,). This shows the second assertion of the lemma. To see that
cC A, it therefore sufficies to show that M, ((2—F)R,) S PH(A). Let

x = (a+BL)+(v+88)r, «a, B, v, 8L,

be any element of >. Then by an easy computation, it is seen that the four
entries a’, B/, v/, & of the matrix ¢(x) are given by the equation

(a, B, 7, )X = (o, B, 7', &)

1 0 0 1

0 1-1 @& (4)
1 0 9 -1

9 —1 -1 -9

Here, det X=—(9+2)(2—%) and the element (J-+2) is a unit in R,. Then, for

any ( g: g) e M,((2—9)R,), we can find (uniquely) in R,* a vector («t, 3, v, d)
which satisfies the equation (4). This shows that any element of M,((2—7)R,)
is contained in the image of A by ¢. This is the first assertion. Hence the

lemma has been proved.

X:

Let S be the normal subgroup of G generated by the element s and denote
by I(S) the augmentation ideal of the group ring ZS. Then the natural epimor-
phism G — G/S induces the exact sequence

0 — I(8)2G —— 26 ~L» 2(G)S) —0 . (5)

Lemma 2, Set I=I1(S)ZG, then K (ZG|I?, I|I?) has exponent p.
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Proof. Since in the ring ZG/I? the ideal I/I* has square zero, it is contained
in the radical of ZG/I*. Then K,(ZG/I?, I/I?) is a quotient of GL,(ZG|I?, I|/I*) =
14-1/I* ([2], Chapter IX, (1.3)), and the later is isomorphic to the additive group
1/1°.

On the other hand, the additive group I(S)/I*(S) is isomorphic to the
multiplicative group S. But S is of order p, so pI(S)=I*(S). Hence I/I? has
exponent p. Therefore, K,(ZG/I?, I/I?) has also exponent p, which proves the
lemma.

Lemma 3 (Lam [6]). G has the Artin exponent 2.
Proof. G is of order 2p, and the p-Sylow subgroup S is cyclic. Then the

lemma is immediate from [6].

3. Now, we shall compute the reduced norm of Tor K,(ZG).
Proposition 4. Nrd (Tor K,(ZG))=Nrd (+G).
Proof. Set I=I(S)ZG, and consider the exact sequence

K26, 1) 25 K,26) L5 k,(2(G19))
induced from the exact sequence (5). Since the quotient group G/S is cyclic
of order 2, it is known that K,(Z(G/S))=4-(G/S) (Higman [4], c.f. [2]). Then
for any x=Tor K,(ZG), there exist an element y of K,(ZG, I) and an element
4+ g of 4G such that

2 = ix(y)+(£g) (6)

Since x is a torsion element, then so ix(y)is. Hence by Lemma 3 and the
induction theorem ([5]), we can see that Nrd(ix(y)) has exponent 4. Set
Nrd (ix(y))=(¥1, Y2 ¥.)E U(Z) X U(Z)x U(R,). Then we get the equality y3=1
in R,. But R, is included in the real numbers, so y, must be equal to 4-1. Thus
each component y; is of the form 4-1, which implies the equality (p is odd !)

Nrd (ix(y)) = Nrd (pix(y)) - (7)
On the other hand, we have the exact sequence (c.f. [2], Chapter IX, (1.2))

h
K(ZG, I*) —> K,(ZG, I) — K,(ZG|I?, 1|I?) .

Since by Lemma 2 K,(ZG/I?, I/I?) has exponent p, then there exists an element
z of K\(ZG, I’) such that hy(z)=py. Then by the eqeality (7), to determine
Nrd (#4(y)), it suffices to do Nrd (ixok«(%)).

Any element z of K,(ZG, I’) is represented by a matrix Z, of GL,(ZG, I?)
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for some n. Since S is generated by the element s, I*=1I(S)’ZG coincides with
the ideal (s—1)°ZG, which is projected by (j,, j,, js) into the ideal 0p0P (L —1)*o
of the maximal order O=Z@ZPo. Here, ¢(({—1)’0)=M,((2—F)R,) by Lemma
1. Therefore, by the formula (3) of the reduced norm, the first and the second
components of N,(Z,) are both equal to 1, and the third component is congruent
to 1 modulo (2—%)R,. Thus, Nrd(ix(y))=(1, 1, y,), and y,=1 mod (2—¥)R,.
But the ideal (2—%)R, does not divide 2, and y, is of the form +1, so that
y, must be equal to 1. Hence, Nrd (¢x(y))=(1, 1, 1). Consequently, by the
equality (6) we get the equalities Nrd (x) = Nrd (¢4(y)) Nrd (4- g) = Nrd (4-g).
This shows the proposition.

4. Finally, we shall study the kernel of the reduced norm.

Let c=(f—1)’0 be the ideal of o as in Lemma 1. Then, by the lemma,
¢ may be regarded as a two-sided ideal of A, so that we can consider the group
SK,(A, &).

Lemma 5 (c.f. [5]). SK,(A, &) is a p-group.

Proof. For a sufficiently large integer n, set T=SL,(A, ¢?). Since SK,(A, &%)
is a quotient of T[T, T1], it suffices to see that the latter is a p-group. But
¢ is an o-ideal, then SL,(A, ¢)=SL,(o, ¢), and this is identified with
SL,,(R,, (2—9)’R,) by Lemma 1. Therefore, we may assume that T'=SL,,(R,,
(2—9)YR,). Now, we see easily that [T, T']CSL,,(R,, (2—?)'R,) and by the for-
mula of ([2], Chapter V, (1.5)) we see that [E,,(R,, (2—9)’R,), E,a(R,, (2—F)R,)]
2E,. (R, (2—7)'R,), so

SL,u(Ro, (2—9)'R)2[T, T]2E,s(R, (2—39)'R,) .
By the “congruence subgroup theorem” for R,, the integers in the real field L,

(Bass, Milnor and Serre [3], c.f. [2]), the extreme ends are equal. Thus we get
the equality

T|[T, T] = SL,s(Ry, (2—5)R,)[SL,u(R,, (2—5)'R,) .
Moreover, this is isomorphic to a subgroup of the group U=GL,,(R,/(2—¥)'R,,
(2—9)°R,/(2—F)'R,). Since the ideal t=(2—9)’R,/(2—F)'R, has square zero,
U is isomorphic to the additive group M,,(t) consisting of matrices with entries

from ¢. But p? is divisible by (2—&)?, so M,,(C) has exponent p*. Therefore,
T/[T, T] has also exponent p*>. 'This shows the lemma.

Corollary. SK,(A, (§—1)°A) is a p-group.

Proof. Since ¢=({—1) oA, we see that ¢ C(§—1)AcC¢c. Set ¢=
(6—1)*A. Then we have the exact sequence

SK,(A, &) —> SK,(A, &) —> K(A/E, 6fc?)
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where ¢,/¢* has square zero, and it has exponent p (p is divisible by (&—1)7).
Then, we can repeat the same arguments as in the proof of Lemma 2 to con-
clude that K,(A/¢% ¢/c?) has exponent p. Therefore, by our lemma SK,(A, ¢) is

a p-group.
Lemma 6. SK,(ZG, I) is a p-group, where I=1(S)ZG.
Proof. Look at the exact sequence
SK\(ZG, I*) — SK,(ZG, 1) — K,(ZG|I?, 1|I?),

where K,(ZG/I? I/I?) has exponent p by Lemma 2. Then it suffices to see that
SK,(ZG, I?) is a p-group.

Set J=(1+s+ - +s*"*)ZG. Then J is the kernel of the projection
js3 ZG— A, and I*N J=0. Therefore, by the ‘“‘excision isomorphism theorem”
on K, ([2], Chapter IX, (1.5)), we can see that the natural homomorphism

Ki(ZG, I') —> K\(ZG]], I'+][]) = K(A, (E—1)A) (8)

is an isomorphism, where the inverse map is obtained by taking the inverse
images modulo /. However, we have seen in the proof of Proposition 4 that
the first and the second components of the image of K,(ZG, I?) by the reduced
norm are both equal to 1. 'Then we have the commutative diagram

K(ZG, I)) <« KA, ((—1)A)
lNrd lNrd
(Ix{1Ix UR)«—>  UR,).
Hence, the homomorphism SK,(ZG, I?)— SK,(A, ((—1)*A) induced from the
isomorphism (8) is also an isomorphism. Since SK, (A, ({—1)’A) is a p-group
by the above corollary, then SK,(ZG, I?) is a p-group. This proves the lemma.

Proposition 7. SK,(ZG)=0.

Proof. The exact sequence (5) induces the following exact sequence

SK,(ZG, I) N SK,(ZG) J*, sk, (Z(G)S)) .

Since SK,(Z(G/S))=0 (recall that K,(Z(G/S))=+(G/[S)), ix is surjective. By
the preceding lemma, SK,(ZG, I) is a p-group, so that SK,(ZG) is also a
p-group. On the other hand, we apply the induction theorem to SK,(ZG).
Then by Lemma 3, SK,(ZG) has exponent 4. Hence, SK,(ZG)=0, which
proves the proposition.

This proposition shows that the reduced norm Nrd; K,(ZG)— U(Z) X
U(Z)x U(R,) is an injection, and in Proposition 4 it has been seen that
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Nrd (Tor K,(ZG))=Nrd (4-G). Hence, we obtain that Tor Wh(G)=
Tor K,(ZG)/4+G=0, and complete the proof of the theorem.
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