<table>
<thead>
<tr>
<th>Title</th>
<th>Products of torsion theories and applications to coalgebras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lin, I P’êng</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 12(2) P.433-P.439</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1975</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/12732</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/12732</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
PRODUCTS OF TORSION THEORIES
AND APPLICATIONS TO
COALGEBRAS

I.-P. LIN

(Received March 25, 1974)

1. Introduction

Throughout this note \(R \) is a ring with 1. We shall write \(/ \unlhd \leq R \) if \(/ \) is a right ideal of \(R \). A non-empty set of right ideals \(\Gamma \) of \(R \) is called a Gabriel filter if it satisfies

T1. If \(I \in \Gamma \) and \(r \in R \), then \((I:r) \in \Gamma \).

T2. If \(/ \) is a right ideal and there exists \(J \in \Gamma \) such that \((I:r) \in \Gamma \) for every \(r \in I \), then \(I \in \Gamma \).

It is well-known [4] that there is a one to one correspondence between Gabriel filters of \(R \) and hereditary torsion theories for the category of right \(R \)-modules. W. Schelter [3] investigated products of torsion theories or equivalently of Gabriel filters that for a family of pairs \(\{(R_i, \Gamma_i), \Gamma_i: \text{Gabriel filter of } R_i\} \), \(\Gamma_0 = \{D \leq \pi R_i | D \supseteq \sum \sigma D \} \) is a Gabriel filter of the product ring \(\pi R_i \), furthermore the ring of right quotient of \(\pi R_i \) with respect to \(\Gamma_0 \) is isomorphic to the product of rings of right quotient of \(R_i \) with respect to \(\Gamma_i \). This result generalizes one of Y. Utumi theorems [6]. In this paper these two sets \(\Gamma_1 = \{D \leq \pi R_i | D \supseteq \pi D_i, D_i \in \Gamma_i \} \) and \(\Gamma_2 = \{D \leq \pi R_i | D \supseteq \pi D_i, D_i \in \Gamma_i \) and almost all \(D_i = R_i \} \) will be studied. \(\Gamma_1 \) does not always satisfy T2. A necessary and sufficient condition for \(\Gamma_1 \) to be a Gabriel filter is given. It follows that \(\Gamma_1 \) is a better notion of products of perfect torsion theories. However \(\Gamma_2 \) is a Gabriel filter of \(\pi R_i \), and we use this fact to prove that over an algebraically closed field, cocommutative coalgebra has a torsion rat functor if and only if each space of primitives of its irreducible components is finitedimensional.

For a coalgebra \((C, \Delta, \epsilon) \) over a field \(K \), there exists a natural algebra structure on its dual space \(C^* = \text{Hom}_K (C, K) \) induced by the diagonal map \(\Delta \) and every left comodule \((M, \phi_M) \) over \(C \) can be defined as a right \(C^* \)-module by \(mc^* = (c^* \otimes 1) \phi_M(M), m \in M, c^* \in C^* \). Moreover a right \(C^* \)-module \(M \) is called a rational module if it is a left comodule \((M, \phi_M) \) over \(C \) and its right \(C^* \)-module structure is derived in the way described above. With these observations we can embed the category of left \(C \)-comodules \(\mathcal{C} \) as a full subcategory, into the category of right \(C^* \)-modules \(\mathcal{C}^* \). A subspace \(/ \) of \(C^* \) is called cofinite
closed if $I = V^\perp$ for some finite-dimensional subspace V of C.

We assume the reader is familiar with torsion theories of modules and elementary coalgebra theories. The terminology and notation are those of Stenstrom [4] and Sweedler [5].

2. Some properties

In this section we derive some properties of Γ_1 and Γ_2. For convenience, we write a pair (R_i, Γ_i) as Γ_i is a Gabriel filter of R_i. The following are easily proved.

Lemma 1. If I is a right ideal of R and there exists $J \in \Gamma$ such that $(I: r) \in \Gamma$ for r runs through a family of generators of J, then $I \in \Gamma$.

Lemma 2. Γ_1, Γ_2 satisfy $T1$.

Proposition 1. If $\{(R_i, \Gamma_i)\}_{i=1}^n$ is a family of pairs and each Γ_i has a cofinal family of n-generated right ideals (for a fixed integer r_i), then $\Gamma_i := \{D \leq \pi R_i | D \supset \pi D_i, D_i \in \Gamma_i, all \ i \in I\}$ is a Gabriel filter of πR_i. Moreover $(\pi R_i)_{\Gamma_i} \simeq \pi (R_i)_{\Gamma_i}$.

Proof. It only has to check $T2$ for Γ_i. Let $T \leq \pi R_i$ and $D \in \Gamma_i$ such that $(T: rf) \in \Gamma$ for every $d \in D$. We can assume $D = \pi D_i, D_i \in \Gamma_i$ and each D_i has n generators; x_1^1, \cdots, x_1^n. Construct n elements of πD_i as $x^1 = (x_1^1), \cdots, x^n = (x_1^n)$, then we have $(T: x_i^i) \in \Gamma_i$. Therefore for each $j = 1, \cdots, n$, there is $\pi D_i^{(j)}$ where $D_i^{(j)} \in \Gamma_i$ such that $x^j \pi D_i^{(j)} \in T$. However for fixed i the finite sum $J_i = \sum_{j=1}^n x^j \pi D_i^{(j)} \in \Gamma_i$, by Lemma 1 and $\pi J_i = x^1 \pi D_i^{(1)} + \cdots + x^n \pi D_i^{(n)}$. This shows that $\pi J_i \in T \in \Gamma_i$.

Next we find an isomorphism from $\pi (R_i)_{\Gamma_i}$ to $(\pi R_i)_{\Gamma_i}$. Let $([f_i]) \in (\pi R_i)_{\Gamma_i}$, where $f_i \in \text{Hom}_{R_i}(D_i, R_i/[t_i(R_i)])$ and $[f_i]$ is its equivalent class in $(R_i)_{\Gamma_i}$, and define a πR_i-homomorphism ψ from πD_i to $\pi R_i/\pi (R_i)$ as $f_i((d_i)) = (f_i(d_i))$. Since $\psi((R_i)) = \psi(R_i)$, $\psi R_i/\pi (R_i) \psi R_i/\pi (R_i) \psi$ have a well-defined map α from $\pi (R_i)_{\Gamma_i}$ to $(\pi R_i)_{\Gamma_i}$, as $\alpha([f_i]) = [f]$, for if f_i and f'_i agree on D_i for each i, then the corresponding f and f' agree on πD_i. It is routine to check that α is a one to one ring-homomorphism. Let $f: \pi D_i \rightarrow \pi R_i/\pi (R_i)$ a πR_i-homomorphism, $D \in \Gamma_i$ and define $f_i = \pi_i f e_i$, where e_i is the ith-inclusion, π_i is the ith-projection. Then $\alpha([f_i]) = [f]$. Thus α is an isomorphism.

Note. (1) we agree that n generators of right ideals are not necessary distinct.

(2) In proposition 1, Γ_1 also has a cofinal family of n-generated right ideals.
Proposition 2. If \(\{(R_i, \Gamma_i), \ i \in I\} \) is a family of pairs, then \(\Gamma_2 = \{I \subseteq \pi R_i | I \supseteq \pi D_i, \ D_i \in \Gamma_i \text{ and almost all } D_i = R_i\} \) is a Gabriel filter of \(\pi R_i \).

Proof. Similarly it only has to check \(T_2 \) for \(\Gamma_2 \). Let \(I \subseteq \pi R_i \) and \(D \subseteq \Gamma_2 \) such that \((/: d) \subseteq \Gamma_2 \) for all \(d \in D \). We can assume \(D = \pi D_i D_i \in \Gamma_i \) and except for \(D_i, k=1, \ldots, n \), all other \(D_i \) are equal to \(R_i \). Let \(e \in \pi D_i \) be an element with \(i_k \)-th component = 0, other component = 1. It follows that there is a right ideal of the form \(\pi J_i \) with \(J_i \in \Gamma_i \) and almost all \(J_i = R_i \) such that \(I \supseteq e \pi J_i \).

Also for each \(d_i k \subseteq D_i \), there exists a right ideal \(J_{i_k} \subseteq \Gamma_i \) such that \(I \supseteq e_{i_k} J_{i_k}^{(p)} \), where \(e_{i_k} \) is the \(i_k \) th inclusion. Now take \(H_{i_k} = \sum d_i J_{i_k}^{(p)} \), the sum runs through all elements of \(D_k \). We have \(H_{i_k} \subseteq \Gamma_i \) and

\[
(\ast) \quad I \supseteq e \pi J_i + e_{i_k}(H_{i_k}) + \cdots + e_{i_k}(H_{i_k}).
\]

However the right side of \((\ast) \) is of the form \(\pi J_i \) with \(J_i \in \Gamma_i \) and almost all \(J_i = R_i \). Thus \(I \subseteq \Gamma_2 \).

3. Products of perfect torsion theories

For a fixed ring \(R \) with a perfect Gabriel filter \(\Gamma \), we will investigate the notion of their products.

The following two theorems (Chapt. 13, [4]) motivate our definition.

Theorem A. The following properties of a pair \((R, \Gamma)\) are equivalent:
1. \(\text{Ker}(M \to M \otimes_R \pi R) = \tau(M) \) for all right \(R \)-module \(M \).
2. \(\psi_R(I) R = R \) for every \(I \in \Gamma \).

Theorem B. If \(\phi: A \to B \) is a ring homomorphism. The following statements are equivalent:
1. \(\phi \) is an epimorphism and makes \(B \) into a flat left \(A \)-module.
2. The family \(\Gamma \) of right ideal \(I \) of \(A \) such that \(\phi(I) B = B \) is a Gabriel filter, and there exists a ring isomorphism \(\sigma: B \to A \) such that \(\sigma \phi = \psi_A \).
3. The following two conditions are satisfied;
 3a) for every \(b \in B \), there exists a finite subset \(T_n = \{(s_1, b_1), \ldots, (s_n, b_n)\} \) of \(A \times B \) such that \(b \phi(s_i) \subseteq \phi(A) \) and \(\sum_i \phi(s_i)b_i = 1 \).
 3b) if \(\phi(a) = 0 \), then there exists a finite subset \(S_n = \{(s_1, b_1), \ldots, (s_n, b_n)\} \) such that \(a_i = 0 \) and \(\sum_i \phi(s_i)b_i = 1 \).

Note. A Gabriel filter \(\Gamma \) of a ring \(R \) is called perfect if it has properties listed in Theorem A. If \(\Gamma \) is perfect, then
1. \(\Gamma \) has a cofinal family of finitely generated right ideals.
2. \(\Gamma = \{I \subseteq \pi R | \psi_R(I) R = R\} \).

DEFINITION. If \(\Gamma \) is a perfect Gabriel filter of \(R \), for each \(b \in R \), define \(\text{Ind} b = \inf |T_n| \), \(T_n \) runs through all subsets of \(R \times R \) that satisfy Theorem B, 3(a).
If \(\psi^r(\tau) = 0 \), define \(\text{Ind } r = \inf |S_n| \in S_n \), runs through all subsets of \(R \times R \), that satisfy Theorem \(B \), (3b). Then let

\[
\text{Ind } R_\Gamma = \max \{ \sup_{r \in R_\Gamma} (\text{Ind } \psi^r), \sup_{r \in R_\Gamma} (\text{Ind } r) \}.
\]

Theorem 3. The following statements are equivalent for a perfect Gabriel filter \(\Gamma \) of \(R \).

1. \(\Gamma \) has a cofinal family of \(n \)-generated right ideals.
2. \(\Gamma = \{ I \subseteq \pi R | I \supseteq \pi D_i, D_i \in \Gamma \} \) is a Gabriel filter of \(\pi R \), for any direct product of \(R \).
3. \(\text{Id } R_\Gamma \) is infinite.

Proof. (1)\(\Rightarrow \) (2). By Proposition 1.

(2)\(\Rightarrow \) (3). If \(\Gamma_i \) is a Gabriel filter, then it is perfect. Suppose there is a sequence \(\{ b_1, b_2, \cdots, b_n, \cdots \} \), such that \(\text{Ind } b_n > \text{Ind } b_{n-1} \). Consider the countable product \(\pi R \) of \(R \) and the element \(x = (b_1, b_2, \cdots) \). Then we have \(s_1, s_2, \cdots, s_i, s_{i+1} \in \pi R \times \gamma_1, \cdots, s_{i+1} \in \gamma_i \), such that \(\gamma_i(s_i) \in \pi R \) and \(\sum \psi^r(s_i) = 1 \). Projecting to each component, \(\text{Ind } b_n \leq t \) for each \(n \). This is a contradiction. Similarly, we can prove that \(\sup_{r \in R_\Gamma} (\text{Ind } r) \) is finite.

(3)\(\Rightarrow \) (1). If \(\text{Ind } R_\Gamma \) is finite, then any direct product \(\pi R_\Gamma \) of \(R_\Gamma \) satisfies Theorem \(B \), (3). So the product \(\pi R_\Gamma \) is a ring of right quotient of \(\pi R \) with respect to this perfect Gabriel filter \(\Gamma = \{ D \subseteq \pi R | \phi(D) \pi R_\Gamma = \pi R_\Gamma \} \). Applying the well-ordering theorem to the family \(\Gamma \), the right ideal \(\pi D_i \) is in \(\Gamma \). So \(\pi D_i \) contains a \(n \)-generated right ideal \(J = r \Gamma \). For each \(i, j \), the \(i \)-th projection of \(J_i \) is contained in \(D_i \). Since \(\psi^r(J_i) \pi R_\Gamma = r \Gamma \gamma_i \in \Gamma \), this shows that \(\Gamma \) has a cofinal family of \(n \)-generated right ideals.

EXAMPLE. Let \(Z \) be the ring of integers, \(\Gamma = \{ \text{all non-zero ideals of } Z \} \), take a countable product \(\pi Z \) of \(Z \), then \(\Gamma_\Gamma = \{ I \subseteq \pi Z | I \supseteq \sum D_i, D_i \in \Gamma \} \) is not a perfect Gabriel filter. However \(\Gamma = \{ I \subseteq \pi Z | I \supseteq \pi D_i, D_i \in \Gamma \} \) is perfect.

4. **Applications to coalgebras**

In this section we consider a subfunctor of the identity for the category of right \(C^* \)-module \(\mathcal{M}_{C^*} \) and study when this subfunctor defines a hereditary torsion theory. The main effect is to classify some types of cocommutative coalgebras. If \(C \) is a coalgebra, for a right \(C^* \)-module \(M \) there is a unique maximal rational submodule \(M_{\text{rat}} \) of \(M \). Actually \(M_{\text{rat}} = \{ m \in M | \text{Ann}(m) \) is cofinite \} closed in \(C^* \). There are some properties of \(\mathcal{M}_{C^*} \).

1. If \((M, \phi_M) \) is a left \(C \)-comodule, \(M \) can be considered as a right \(C^* \)-module by \(mc^* = (c^* \otimes 1) \phi_M(m) \). Then \((M_{C^*})_{\text{rat}} = M \).
(2) Direct sum of rational C^*-modules is rational.

(3) $(C^{**})^{rat} = C$.

(4) For a submodule N of a C^*-module M, $N^{rat} = N \cap M^{rat}$.

(5) Homomorphic image of a rational module is rational.

So we have a subfunctor rat of the identity on \mathcal{M}_{C^*} just assigned each C^*-module M the maximal rational submodule M^{rat} and each homomorphism $f: M \to N$ the restriction map $\bar{f}: M^{rat} \to N^{rat}$.

DEFINITION. A coalgebra C is said to have torsion rat functor if rat is a left exact radical of \mathcal{M}_{C^*}.

Note. If C has the torsion rat functor, then

(1) the category of left C-comodules or equivalently of rational right C^*-modules is the torsion class.

(2) the corresponding Gabriel filter is

$$\Gamma = \{ I \subseteq C^* \mid I \text{ is cofinite closed in } C^* \}.$$

EXAMPLE. Let V be an infinite dimensional vector space and $C = C(V)$ denote the connected coalgebra $K \otimes V$ with

$$\Delta(v) = 1 \otimes v + v \otimes 1 \quad \forall v \in V,$$

$$\delta(1) = 1,$$

$$\epsilon(v) = 0 \quad \forall v \in V.$$

Take a basis $\{v_i \mid i \in \mathbb{I}\}$ of V and let $\{v_i^* \mid i \in \mathbb{I}\}$ be its dual independent set in V^*. Extending this set to a basis $\{v_i^* \mid i \in \mathbb{I}\}$ of V^*. We construct a linear map f from C^* to K as

$$f(v_i^*) = \begin{cases} 1 & \text{if } i \in \mathbb{I} \\ 0 & \text{otherwise} \end{cases} \quad f(1) = 1,$$

this element $f \in C = C^{**}{rat}$, however $f v^* = f(v^*)1 \in C$ for any $v^* \in V^*$. So $(C^{**}/C^{**}{rat})^{rat} \neq 0$.

The following proposition is proved in [2, p. 521].

Proposition. Suppose C is a coalgebra and $0 \to M' \to M \to M'' \to 0$ is an exact sequence of right C^*-modules with M' and M'' rational. If the annihilator of each $m'' \in M''$ is a finitely generated right ideal, then M is rational.

Note. From the proposition, we see that if C^* is a right Noetherian, then C has the torsion rat functor. In particular the universal cocommutative pointed irreducible coalgebra $B(V)$ over a finite dimensional vector space V has the torsion rat functor.
Proposition 4. If D is a subcoalgebra of C, then D has the torsion rat functor provided C has.

Proof. There exists a ring epimorphism $\pi: C^* \to D^*$. Every D^*-module M is a C^*-module by $mc^* = m\pi(c^*)$. Thus $(M_D^*)_\text{rat} = (M_C^*)_\text{rat}$ and $(M_D^*/M_D^*_\text{rat})_{\text{rat}} = (M_C^*/M_C^*_\text{rat})_{\text{rat}} = 0$.

Corollary 5. For any pointed irreducible cocommutative coalgebra C, it has the torsion rat functor if and only if its space of primitive elements $P(C)$ is finite-dimensional.

Proof. If $P(C)$ is infinite-dimensional, the connected sub-coalgebra $D = \mathbb{K}@P(C)$ of C does not have the torsion rat functor. Conversely if $P(C)$ is finite-dimensional there is an inclusion map from C to the universal cocommutative pointed irreducible coalgebra over $P(C)$. So by Proposition 4 C has the torsion rat functor.

Theorem 6. (*) If $\{C_i | i \in I\}$ is a family of coalgebras and C_i has the torsion rat functor for each $i \in I$. Then the direct sum $C = \sum_\oplus C_i$ has the torsion rat functor.

Proof. Let $\Gamma_i = \{D_i \leq C | D_i \text{ is cofinite closed in } C_i^*\}$, and $\Gamma = \{D \leq C^* = \pi C^* | D \text{ is cofinite closed in } C^*\}$. By proposition 2 $\Gamma_2 = \{I \leq \pi C^* | I \geq \pi D_i, D_i \in \Gamma_i \text{ and almost all } D_i = C_i^*\}$ is a Gabriel filter of $C^* = \pi C^*$. Hence it is sufficient to show that $\Gamma = \Gamma_2$. If $D \in \Gamma$, then $D = V^\perp$ for a finite dimensional subspace $V = V_0 \oplus C_i \oplus \cdots \oplus C_i^n$ for some n.

For each i, let V_i be the projection of V to C_i. Then V_i is a finite-dimensional subspace, almost all $V_i = 0$ and $V \subseteq \pi V_i$. Hence we have $\pi V_i \subseteq V \subseteq D \in \Gamma_2$. Conversely suppose $I \in \Gamma_2$, since I contains a cofinite closed subspace πD_i, so I is also cofinite closed. Thus $\Gamma = \Gamma_2$.

Corollary 7. Over an algebraically closed field, a cocommutative coalgebra has the torsion rat functor if and only if each space of primitives of its irreducible components is finite-dimensional.

Proof. Over an algebraically closed field, a cocommutative coalgebra is a direct sum of its pointed irreducible components. So by Theorem 6 and Corollary 5, we have this result.

NATIONAL TAIWAN UNIVERSITY

(*) This theorem also appeared in [1], here we use the notion of products of torsion theories to give a different proof.
References

