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0. Introduction

Convergences of closed forms, energy forms or energy functions have been
studied by many authors (see e.g. [1]-[3], [5]-[8]). It is important to know, given
an energy form, if it can be approximated by “nice” ones, or, given a sequence
of energy forms, what their “limit” is.

In this paper we consider a sequence of forms &"(u,v)=[gdA,(X)Vu(x),
Vu(x)),02(x)dx with certain domains on L%*(R%$2dx), where ¢, are locally bounded
functions on RY, A, are (dxd) symmetric matrix valued functions on R?, (-,-),
means the inner product on R? and Vu=(V,u,V,u,---,V,u) is the distributional
(weak) derivative of u. Take strictly positive, bounded functions f, with
[rafup2dx=1 and denote by {X,PixeR’} the diffusion processes associated with
the forms &". We study the weak convergence of the probability measures
{Pp n=12,--} with dm,=f,¢2dx, when the date A4,, ¢,, and f, converge a.e. on
R%, as n - .

Although our main result (see section 1) is similar to that of T.J. Lyons and
T.S. Zhang [5], we assume only a certain local boundedness of ¢,, while a uniform
boundedness on the whole space is assumed in [5]. In order to obtain the result
in [5], they generalized the theorem of Kato and Simon on monotone sequence
of closed forms (see M. Reed and B. Simon [7]) used by S. Albeverio, R. Heegh-Krohn
and L. Streit [1]. We will instead adopt the Mosco-convergence of closed forms(see
U. Mosco [6]) to prove our theorem.

S. Albeverio, S. Kusuoka and L. Streit [2] obtained a semigroup convergence
by imposing the regularity conditions that there exist R>0 and C>0 such
that, the restrictions of ¢, to R’—By is of class C? and the growth order of
x-Vé,/ ¢, is not greater than Clx|> on R’—Bg. No smoothness on 4,, ¢, is
required in the present approach.

1. Statement of Theorem

Let ¢,(x), $(x) be measurable functions on R? and 4,(x), A(x) be (d x d) symmetric
matrix valued functions on R% Consider the following conditions:
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(A.1) (i) there exists a constant 6>0 such that

0< %Ié |2 <(A4,(x)E,E),<6|E|?,  for dx-aexeR*EcR'neN.

(i) for any relatively compact open set G of R?, there exist constants A(G), A(G)>0
such that,

0<UG)<d,(x)<AG), for dx-aexeGneN,

(iil) @, (x) = P(x), dx-a.e. on R,
(iv) A4,(x) = A(x) in matrix norm, dx-a.e. on R°.

We consider the forms

&"(u,0)= J (A, (x)Vu(x),Vo(x))gpr(x)dx,

(1.1)
F"={ue LX(R%¢p2dx):Vue LA(R%¢p2dx),i=1,2,---,d},
for n=1,23,-,
Slu)= J (ACVUlx).Vo(x)) 2 (x)dx,
" (1.2)

F ={ue LX(R%¢*dx): Viue LA(R,¢*dx),i=1.2,---,d},

Our assumption (A.1) implies that the forms (1.1) and (1.2) are regular local
Dirichlet forms on L*R%¢2dx) and L*R%¢>dx) (called “energy forms”)
respectively. It follows from M. Fukushima, Y. Oshima and M. Takeda [4] that
there exist diffusion processes M"={X,,P%x € R*} and M"={X,P,,x € R*} associated
with 8" and & respectively. Further, we consider the following condition:

(A.2) there exists a constant ¢>0 such that sup,[p ¢2dx<e™’, for all r>0.

Then by condition (A.2) and Theorem 2.2 in M. Takeda [8], these processes
are conservative. For every relatively compact open set G of R?, we consider the
Dirichlet forms of part on G associated with (1.1) and (1.2):

é””’“(u,v)=f (4,()Vu(x),Vo(x)) 47 (x)dx,
¢ (1.3)
Fi=HyG) on LXG;prdx),
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for n=1,23,-,

&)= J (A(x)Vulx),Vo(x)) 49 *(x)dx,
¢ (1.4)
Fs=Hy(G) on LX(G;¢*dx),

Now take strictly positive functions f, of L'(R%¢2dx) and f of L'(R%¢?dx) and
assume the conditions below:

(A.3) (i) J dm,,=4[ dm=1, where dm,=f,p2dx and dm=fp2dx,
Rd R

(i) for any compact set K, sup|l f,ll Locx;s2dx) < 005
(iii) f,(x) = f(x), dx-a.e. on R".
It follows from conditions (A.2), (A.3) and Theorem 3.1 in M. Takeda [8] that

the sequence of probability measures {P}, n=1.2,--} is tight on C([0,00) - R?).
Moreover we can assert as follows:

Theorem. Assume the conditions (A.1)(A.3). Then {P, n=12,--} converges
weakly to P,, on C([0,00) = RY).

2. Proof of Theorem

In order to carry out the proof of Theorem, we need some lemmas and notations.

Henceforth, for a form (£,2(&)) on a Hilbert space #, we let &(u,u)= oo for every
ue # —2(8). Here a form means a non-negative definite symmetric form on J#,
not necessarily densely defined. As was mentioned in the introduction, we use
the notion of the Mosco-convergence of forms, which is defined as follows:

DEFINITION. A sequence of forms &" on a Hilbert space # is said to be
q p

Mosco-convergent to a form & on s if the following conditions are satisfied;
(M.1) for every sequence u, weakly convergent to u in J#,

lim infé&"(u,,u,) > 6" (u,u).

(M.2) for every u in J#, there exists u, converging to u in J#, such that

lim sup&™(u,,u,) = &(u,u).

In [6], U. Mosco showed that a sequence of closed forms " on a Hilbert space
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A is Mosco-convergent to a closed form & on 4 if and only if the resolvents
associated with " converges to the resolvent associated with & strongly on #.
In order to use Mosco’s theorem, we introduce related forms:

A™C é“@l>f@ v y M)fd,
=8 5r8n) = S\ VG 7Y . P I

2.1)
D(A™%)={ue L*G;dx):u/ ¢, Hy(G)}
for n=1,2,3,---,
A6 g%_>f< Wmﬂ@)ld,
(up)= 53)" ). (x) 50 00 19*(x)dx .

DA ={ue LXGdx):u/ pe HY(G)}.
By the unitary map fi— ¢, ! f between L*(G;dx) and L*(G;¢p2dx) and by the
condition (A.1), the forms /™% and /¢ are closed on L%(G;dx).

Lemma. Assume the condition (A.1). Then the forms /™ is Mosco-convergent
to the form /¢ on LYG;dx).

Proof. We have to check the conditions (M.1) and (M.2).
First we note that, from the condition (A.1), there exist (d x d) symmetric matrix

valued functions /A4,(x)=(c}(x)) and ./A(x)=(o;{x)) defined on R? with the
following properties:

(i) A,(0)=(/4x)* Ax)=(/AX),
(i) /A,(x)— /A(x) in matrix norm, dx-a.e. on R’

In particular, |/A4,(x) §|<f|él dx—aexeR (eR'neN. Hence oj{x) is
uniformly bounded on R? and converges to o;(x)dx-a.e. as n— oo for each ij.

Proof of (M.1). Suppose u, - u weakly in L*G;dx). We may assume
lim inf /™ %(u,,u,) < 0.

Then we have

+ 00 > lim inf /™ %(u,,u,)
n- oo

] (3o

ZA(G)Zlimi fJ |V< )I dx,
5 ome e \9,
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and we can take a subsequence {n;} such that V< "") is weakly convergent to
My

an element h; € L%(G;dx) for each i=1,2,---.dand hm 1nf A" (u,u,) = ]1m A™%(u, u

’lk’

On the other hand, for all 1€ CQ(G), f ( ”")ndx—~ I ndx, and u,/ ¢,
G c®

converges to u/¢ weakly in L%(G;dx), because ¢, ! is umformly bounded and
converges to ¢! dx-a.e. on G. This shows that

f hndx = —f BVmdx,  for all neCL(G).
G G¢

Thus we have h,:V,(%), i=1,2,--,d, and in particular ue 2(°).

Furthermore X4_; :’;V,(q5 )q&,,k converges to }:J 104 J<¢>¢ weakly in
Ny

L*(G;dx), since ¢7};¢, is uniformly bounded and converges to o,;¢ dx-a.e. on G as
n— oo for each i, j.
Consequently,

lim inf o™ G(u,,,u,,)— 11m "% (u,, u, )

e
= lim ) | Z oV <¢ )d’nk"u(a dx)

M Pi=y j=1

= Z I Z qu< >¢||L2(G iy = (u,u).

i=1 j=1
Proof of (M.2). Let u be in 2(°), that is, ue L*(G;dx) and u/¢pe H(G).
Accordingly there exists a sequence {#,} in Cg°(G) such that |[u/ ¢ —n,|l 16, converges

to 0 as n— oo. Put u,=¢,n, Then we can see that u, —u in LG;dx). Further,
using again the property of the sequence o7;¢, observed above, we get that

io?,(Vm.,)m Z o,Vi ( )qb in LAGdx), for i=12,--d.
i=1

Therefore we have
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A" (ut1) = f A,,V(ﬁ),V(ﬁ) 2d
(A G( é é )apndx

=J l\/ AnV"nlzd):dx:
G

i

d d
” Z a?](vjrln)d)nulz,z(G;dx)
=1 j=1

d d u
- Zl l .Zlo'ijvj<$>¢ I 12,2(G;dx) =«5Z/G(u,“), h — o0.
=1 j=

q.ed.

This lemma shows that, if we let H™® and H® be the selfadjoint operators
associated with the forms .o/™¢ and ./ respectively, then H™¢ converges to H€ in the
strong resolvent sense, hence, in the semigroup sense on L%(G;dx) by Mosco’s theorem.

Let H;¢ and H{ also denote the selfadjoint operators associated with the forms
&™% and & respectively. Then by the unitary map fi— ¢, !f between L*(G;dx)
and L*(G;p2dx), H"®= ¢, HyC, .

On the other hand, let M™¢={X,P»%xeG} and M®={X,PSxeG} be the
diffusion processes associated with the forms &™¢ and &¢ respectively. Because
&™¢ is the part of " on G as we have already noted, the behaviour of the process
{X,Pi,xeR} is the same as that of {X,P»%xeG} before it leaves G for each n.

Now we can give the proof of Theorem:

Proof of Theorem. By Lemma and the argument following it, we see that
¢,e Mo lconverges to e Hip~! strongly on L}Gidx). Here e 'Hér and
e H$ denotes the semigroups associated with &™¢ and &€ respectively. Therefore,
by virtue of Theorem 7 in [1], PL¢ converges to P§ in the finite dimensional
distribution sense.

On the other hand, one has from condition (A.2) and Lemma 2.1 in [8] that

lim SUPP7BR¢,2,ax( sup (|X,|—|X0|)2r>=0, for all R>0,7>0.
Wro n 0<tT

Then, for any 0<t¢, <t,---<1, A;eB(RY, i=12,---,p and £>0, there exists

an r>0 such that sup,P,, (t,>1,)<¢/2. Moreover, we can see that P,(t,>1,)<e/2.

Here 1, denotes the exit time for the open ball B, with radius r and center O.
Let A={X, €4,,X, €4, X, €4,}. Then we see that

[Py, (A)— P, (M) <|Py, (A)— Py, (A {t,<7,})|
+1P, (A {t,<7,})—Pu(A{t,<7,})
+ |Pm(A ) {tp < Tr})_ Pm(A)I



WEAK CONVERGENCE OF DIFFUSION PROCESSES 867

<P (6,2 1)+ Pyt >1,)

+IPL (A {t,<1.)) = PulA o {t, <)

The first and second term of the right hand side are less than &. Since the
last term is the finite dimensional distribution of M™?- and M®, we conclude that P,
converges to P, in the finite dimensional distribution sense.

We have already noted the tightness of {P}, } on C([0,00) » RY. Thus the
proof of Theorem is completed. g.e.d.

Example. Let fbe a locally bounded measurable function on R? and consider
a mollifier, e.g., j(x)=yexp(—1/1—|x|?) for |x]<1, j(x)=0 for |x|>1, where y is a
constant to make [gaj(x)dx=1. We put j(x)=j(x/e)/&", fux)=[raj(x —y)f(y)dy, for
any ¢>0. Since f, converges to f in L*(G;dx) for each relatively compact open set
G, we can take a sequence ¢, converging to 0 such that f, converges to f, dx-a.e. on
R’. Thus if we set ¢,(x)=expf, (x),p(x)=expf(x), and assume that there exists a
constant ¢>0 with [ e*/®dx<e™, for r>0, then ¢,,¢ satisfies the conditions (A.1)
and (A.2). Therefore we have the weak convergence statement for the processes
associated with ¢,,¢ and 4,=A=identity matrix.

ACKNOWLEDGEMENT. The author would like to express his gratitude to
Professor M. Fukushima for helpful advice. The author thanks Professor
M. Takeda, who encourages him to study this subject and gives him valuable
comments. The author is also grateful to Professors N. Jacob, I. Shigekawa and
K. Kuwae for helpful suggestions.

References

[1] S. Albeverio, R. Heegh-Krohn and L. Streit: Reguralization on Hamiltonians and Processes, J. Math.
Phys., 21 (1980), 1636-1642

[2] S. Albeverio, S. Kusuoka and L. Streit: Convergence of Dirichlet Forms and associated Schridinger
operators, J. Funct. Anal., 68 (1986), 130-148

[3] H. Attouch: Variational Convergence for Functions and Operators, Pitman, Boston-London-
Melbourne, 1984

[4] M. Fukushima, Y. Oshima and M. Takeda: Dirichlet Forms and Symmetric Markov Processes,
Walter de Gruyter & Co., Berlin-New York, 1994

[5] T.J. Lyons and T.S. Zhang: Note on convergence of Dirichlet processes, Bull. London Math. Soc.,
25 (1993), 353-356

[6] U.Mosco: Composite media and asymptotic Dirichlet forms, J. Funct. Anal., 123 (1994), 368421

[71 M. Reed and B. Shimon: Functional Analysis (Methods of modern mathematical physics vol.I,
enlarged edition), Academic Press, New York-San Fransisco-London, 1980

[8] M. Takeda: On a martingale method for symmetric diffusion processes and its application, Osaka
J. Math.,, 26 (1989), 603-623



868 T. UEMURA

Department of Mathematical Science
Faculty of Engineering Science
Osaka University, Toyonaka, Osaka, Japan





