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We shall consider the differential operator

(0.1) L= Σ ^ * ( 0 ^ ^ i (0<α 0 <l, *«.o(O = l)
j £ J> dPdk

where m is a positive integer and ajk(f) are complex-valued continuous
functions on 0 ^ / ^ T . If the plane £ = 0 is characteristic with respect
to L, then we can suitably choose a0 so that L contains at least one
coefficient α/fjk(0)φ0 for Φm and j + ajt = m. In this case, when the
coefficients of L are constant, L. Hόrmander [7] constructed non-trivial
C~-functions u = u(t, x) which satisfy Lu = 0 in the whole (ί, #)-space and
vanish for ί^O. On the other hand, I. M. Gelfand and G. E. Shilov [3]
proved the uniqueness of the characteristic Cauchy problem for Lu = 0
under some restrictions on the behavior of u as | x | -»oo, and their
results were improved by K. I. Babenko [1], B. L. Gurevich [5], [6] and
A. Friedman [2].

In this note we shall show the existence of non-trivial functions of
G(α0, e~y]x]1/cl~*o)) (see Definition 1 and Lemma 1) and apply this result
to prove a uniqueness theorem (Theorem 2) of the Cauchy problem
without aid of generalized functions. To prove an existence theorem
(Theorem 1) which is important for the proof of Theorem 2, we shall
use the method of E. de Giorgi [4] which was also used by G. Talenti
[9] and Tsutsumi [11]. For the case that t = 0 is characteristic with
respect to L with constant coefficients dj k, we shall show in Theorem 3
that the uniqueness in Theorem 1 and Theorem 2 does not hold for
any £0>0 if we replace the factor (nl)"og(x) in (2.3) by (nl)*o+*g(χ) and
the factor ^*i1 / c l 'V i n (£. H) by eτπ*ι1/cl-V+eo respectively.

The authors wish to thank Professor M. Nagumo for stimulating
discussions.

1. We define the following class of functions for any postive con-
tinuous function g(x) on — OO<JC< + OO and any α such that 0 < α < l .
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Definition 1. We call φ(x) a function of G(a, g(x)) if φ{x) is a
C™-function on — oo < # < + oo satisfying

(1.1) \φ<H\x)\^C*+\nΐrg(x) (n = 0, 1, 2, ... - o o < * < + ^ )

for some constant C.
If φ (x) (Ξ£ 0) is a function of G(a, g(x)) (which is contained in the

Gevray class of a<ϊ), it can be extended to be an entire function of
order 1/(1 —α) υ , so that for any £ > 0 there exists a sequence {xn}n=ι
such that * r t -* + oo and \φ(xn)\ >e-

χ»/Cl~*'+* (« = 1, 2, —) 2 5. Hence we know
that for any γ > 0 G(a> e~ylx]β) contains only one trivial function ( Ξ O )
unless β^l/(l — a). Now we show the following lemma.

Lemma 1. Let a and j be any positive number and 0 < α < l . Then
we can construct a non-trivial entire function Fay(z) of order 1/(1 —or)
which satisfies

(1. 2) \F^{x)! ^Cn+1(nl)«e-yw1/cl-*> (n = 0, 1, 2, - - <χ> < x < + oo)

for some constant C depending only on a and γ.

Proof. For any positive number p > l we consider a function

(1. 3) fμ(x) = [+OO+teiapxw e x p {eiθpwp} dw (w = u + iυ)
J-oo + ί

where wp is defined by ePlogW such as log 1 = 0 by setting the slit on the
nonpositive imaginary axis, and θp is defined by

(1.4) θp = (m-3rl — ρ/2)π for 2m — l<p^2m-\-l (m = l , 2, •••)

( α p > 0 will be defined later).
Then, for the case p = 2w + l we have 5Re (eiθpwp)^ = - $m wp

= —(2m + l)u2mv{l + o(l)) as |«|->oo for any fixed v>0.
For 2m — Kρ<2m + 1 we have

(1.5) < 2 " ' . " 2 "
+ —-7Γ ,

so that if we set

(1.6) βμ = *™~f<fr" + l)-p P-{2m-l)\

1) [8], pp. 262-263. 2) [10], p. 273.

3) For a complex number w, ΪRtw means the real part of w and ί$mw the imaginary part.
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then, we have for 0^θ^βp

1\
— )τr-h/5p< θp + ρ(π-θ)

and consequently we have for v>0

(1.8) $Re(^p^ p )^-N| p s in/3p for \u\^vcotθ.

These facts mean that, for any p > l , we can extend fp(x) to an entire
function fP{z)=fp{x + iy) and we have

(1. 9) f™(χ) = [+O°+t {iapw)neiapxw exp {eientf} dw .
J-OO + ,'

Now we estimate the values of fP

n\x). First we do this for p =
which is fairly complicated. If we set

(1.10) θ0 = τr/(2p) and ap = 5 cosec θ0

we have, for w=\w\eiθ and w= \w\eiC*~θ> (O^θ^θo),

(1.11) 3ΐe (eiθ(>wp) = - ^ m wp = - \w\p s in (j>θ) (0^pθ^pθo = π/2).

In the case x>0, we deform the path of the integral (1.9) to Γ =
Ci U G2 U C3 where G1, C2 and C3 are the segments (of straight lines) from
- f o o ^ - V to x8eiC*~θo\ from jt:8^C7C"V to x8eiθo, and from Λrδ^xβo to +oo^θo
respectively by setting S = l/(p — 1). Let the values of the above integral
on Cj be denoted by /,•(#) 0" = 1, 2, 3). Then, by (1.10) and (1.11) we have

/ ^ ) 1 ^ e-**1+B ( 7 {(aPr)ne-rP/2}e-rP/2dr.

Now for positive δ and p we use the inequality

(1.12) rV β r P ^Cj i P («!) 1 / p (r^O , Λ = 0, 1, 2, •••)

which will be often used in later discussions. Then, remarking
where l/p + l/p/ = l, we have

(1.13) \I1(x)\^Cr1(n\)1/9e-5*p/.Ό

For I2(x)y remarking δρ = p' we have

4) In what follows in this section, C, are constants depending only on p.
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J -x co

= e-**p'αn

p{(x*)ne-cxhP} {2x* cos θo e-*p'} ,

so that by (1.12) we have

(1.14) \h(x)\^Cr\nφpe-**'.

Since I3(χ) can be estimated in the same way as I^x), we get by (1.13)
and (1.14)

(1.15) \f?\x)I ̂ Cr\nφ?e-**' for x>0 .

In the case x <0, we deform the path of the integral (1.9) to
Γ' = Cί \JC'2\jCi\J CiUCί where Cί, CJ, CJ, Ci, OS are the segments
from + 0 0 ^ - ^ to έ | * | Vc*~^ cosec 6^ from * | Jtr | V ^ " ^ cosec (̂  to
b\χ\*eiC*-θo>cosecθQ, from i | # | VC7£~V cosec (90 to b\ x\8eiθo cosec θ0, from
δ|Λ:|Vθocosec(90 to έ | x \ V θ l cosec (9X, from b \ x \ *eiθί cosec θx to -\-ooeiβl

respectively. (0<b and 0 < 5 1 < ί 0 will be determined later.) Let the
values of the integral on G'5 be denoted by Γ3(x) (7 = 1, 2, 3, 4, 5). For
Γ*(x) we have by (1.12)

|/ίWI ^ 2 6 | * | cot ^ p δ | ^ l δ cosec

for Γ2(χ), remarking s Jϊe(^p^ p )<0 by (1.11),

IΓ2(x) I ^2b I x iδ cot 0, (ap&I xIδ cosec

and for I{(x) we have by (1.11)

\Iί(x)\ ̂

If we determine 0X such as αp^b9"1 cosecp ^ sin (pθJ/2 for fixed 6 > 0 which
is possible because of cosecp θλ sin (pθ1) = p(9rCP~υ(l + ̂ (l)) as (9^0, then
we have tfp|#|r s i n ^ - ^ sin {pθλ)^-rp sin (p^)/2 for r ̂  δ|Λ:|δ cosec ̂ .
Hence we have by (1.12)

\I{(x)\ ^αn

p

S j\

For 7JW and I's(x) we can get the same estimates as Γ2(x) and I[(x)
respectively. Hence if we determine b such as b(3αp

Jrbp~1 cosecp θo)^l
and θx>0 such as α^b9'1 co$ecp ^ s i n (pθ1)/2> we have
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(1.19) |/r(*)I^CΓ1(w!)1 /V* | p / for x<0

by (1.16), (1.17), (1.18). Consequently, if we set

F«,y(z) = A,»(7"z) •/,/.( -y z)

then, using Leibniz' formula and

£(")um(n-j)\y^(nr ±(fι = (»'.)-2-,

we get (1.2) by (1.15) and (1.19).
For 2m-l<p<2m + l, we set ap=5 cosecp/3p with βp of (1.6). For

x>0, in order to estimate (1.9), we deform the path of the integral
(1.9) to Γ'^Cί'UCS'UC" where Cί', C'2', and (%' are the segments from
— oo+ή;δ to — #δ cot βp+ix8, from — #δ cot βp + ix8 to #δ cot βp + ix*, and
from #δcot βp + ix* to + oo+ύ;δ respectively. For Λ:<0 we need not
deform the path and we evaluate the integral on the intervals (—00+/,
— cot βp + /), (— cot βp 4- i, cot βp + f), and (cot /3P +1, + 00 + i). Then, using
(1.8), we get the same result as the case of p=2m + l.

Lemma 2. Let φ(x) be a function of G(α, g(x)) satisfying (1.1).
Then, for any real y, ψ(x) = eixyφ(x) is also of G(a, g{x)) and satisfies

\y\)n+1(n\)«g(x) (n = 0, 1, 2, .-).

Proof. Omitted, as it is so easy.

2. For any function f(t, x) such that (d/dx)im/*o^f(t, #)5) is continuous
on {0^/^T}x{-oo<#< + oo}, W e define (Hf)(t, x) as follows.

(2.1)

where

(2.2) (i/Λ,/)α, )̂ = S{{j%[am-^{r)^f{τ'x)dτ -

Theorem 1. Let g(x) be any positive function on — oo<#< +°o and
f(t, x) be a complex-valued function whose derivatives dnf/dxn (n = 0, 1, •••)
are continuous on {O^t^T} x{ — oo<#<-hoo} and satisfy

(2.3) 3" /(/, (n = 0,

5) For a real number a, \a~] means the maximum of the integers which do not exceed a.
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for some constant C. Then there exists only one function v(t9 x) that
satisfies

v-Hυ = f (O^(2.4)

whose derivatives dnv/dxn (n = 0, 1, 2, •••) are continuous on {O^t<To} X
{ — oo<jt;< + oo} and satisfy for some constant K

(2.5) 9W

dx
-υ(t, x)

where T0>0 depends only on a09 C and

(2.6) A = Max {\ajfk(t)\ j + ajt^m, O^t^T) .

Proof. Without loss of generality we assume C>1 and estimate

\H"f\. By (2.1), (2.2), (2.3), (2.6), we get easily

(2.7) I (#/)(/,*

By Stirling's formula we have

e g ) g < ^ ^ g ^ ^ ( y , , )
/! ~ ° jW2πje~J

for some constants /f0 and 7^. Hence, raplacing ( [ j /αo]!)Λo/y! of (2.7)
by /S^αiΓ', we get

so that

\Hf(t, x) I ^Ci^Cm/αo + l ^ W Σ (&*<*/a0Y

^CAK1m(m/a0 + l)g(x)Cl/aot/a0 for 0^C1/a

IHf(t, x) I ^CKlg(x)t/(2T0) for 0^t<2T0

where

(2.9) 1/(27,) = Max {m(m/a0 + l)(A + l)σ>*o/ao, 1/T) .

Next we estimate \H2f\. Since by (2.2)

Jo (A-l)!

we get, remarking

o (y-1)! dxι+k
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If we replace ([(A+Λ/αolOVί*+./')! hY Kλa^h^ by (2.8), then we get

\H2f(t, x) I £CK1g(x)(t/(2T0)Y for 0^t<2T0.

Similarly we get for n = 3> 4, •••

\Hnf(t9 x)\£CKlg(x)(t/(2T0)r for 0^t<2TQ.
Hence we can set

v{t, x) = g (Hnf)(t, x) for 0^t<2T0,

so that v(t, x) is the unique solution of (2. 4).
Next we estimate the value of (d/dx)nHf = H(β/dx)nf (« = 0, 1, 2, •••)•

Remarking 2n+ί^(w-l-/)!/(w!/!), we get in the same way as (2.7)

;Hf(t9 x)
dx1

<^(2Cy+Xn\yoKlg(x)t/To for 0^t< TQ.

Similarly we get for / = 1, 2, •••

+i(n\yoκlg(χ)(t/τoγBHW x)

SΞ {2CY+\n \roKlg(x) TJ(T0-t)

Hence we get

r v(t x)

for 0^t<T0 so that (2.5) holds.

Theorem 2. Let u(t, x) be a solution of the Cauchy problem

(Lu)(t,X) = 0 (0^/^Γ, -oo<#<+oo)

= 0 U = 0,-,tn-l; -c
(2 10) ^

whose derivatives contained in L are continuous and satisfy

(2.11) u(tyx)

constants C and 7 > 0 . w(/, JC) vanishes identically for

Proof. We write βo = l/(l — ao). By Lemma 1 we can take a non-
trivial function φ(x) of G(a0, e~2yιxιβo) satisfying
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(2.12) Iφ'n\x) I ̂ C Ϊ + 1 ( Λ ! ) V 2 γ | J f | β 0 (n = 0, 1, 2, •••)

for some constant Cx depending only on a0 and γ. We set

(2.13) l/(2Γ0) - Max

where i i = Max{|*Λ*(0l; O r g ^ T , i + αo&:gm} (cf. (2.9)).
If the assertion of the theorem is not true, then, for some u{t, x)

satisfying (2.10) and (2.11), there exists t0 such that * 0 =inf{0^/^T;
u(t, *)φθ for some x} < T. Taking T such as 0 < τ < T = Min(T0, T- t0),
we set (-iybjk{t)=ajk(tQ + τ-t) (j + aQk^m) and w(t9 x) = u(to + τ-t, x)

Let L\ H' and H/th be the operators given by (0.1), (2.1) and (2. 2)
replacing ajk{t) by b5 k{t) respectively. Then w(t, x) is a solution of
the Cauchy problem, L'w = 0 (0^/^τ, - oo < χ < + oo), (d/dty'w(τ, x) = 0
U = 0, ••• , m — 1 — oo <JC< + oo), satisfying the same condition as (2.11).
By Lemma 2, (2.13) and the proof of Theorem 1, we obtain for — 1 ^ J > ^ 1

the solution v(t, x y) of v-H'v = eixy<p(x) on {0^/^τ} x {- oo <χ< + 00}
where τ is independent of y. Furthermore

-At, x y) (n = 0, 1, 2,
dxn

for some constant C2. Integrating by parts, we get easily

-ί.^»lF*Λ - U/'-'. d) (έ) •**•
and hence

S +oo ΛT Λ+oo ΛT Λm^/»

v(L'w)dtdx= (p-H'v)±-£dtdx
-00J0 J-ooJo θ/"*

e'"φ(χ)^B(0, x)dx for \y\^l.
Since Γ ^ V W ^ ( 0 , Λ : ) ^ is an entire function of y by (2.11) and

(2.12), this vanishes identically on —00 <jy< 4-00. Hence the integrable
function φ(x)(dfn~1w/dtm~1)(0, x) also vanishes identically on — 00 < χ< +00.
Since φ(x) is a non-trivial entire function, we get

for

By (d'u/dt*)(t0, x) = 0 (j = 0, - , w - l
we get «(/,*) = 0 for to^t<to+T, -

which is contradiction.
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3. In this section we shall consider a differential operator with
constant coefficients

(3.1) L{—>—) =.+j£U*/.i

containing at least one coefficient ^ OJΛOΦO with joφm and jo+aoko=m.

Lemma 3. Let L{ — iXy —iη)= Σ aj,k( — iλ) y(—^)Λ 6β /Â  differ-

ential polynomial corresponding to (3.1). 77^w ^^ Λα?;̂  ΛW analytic

function η = v(X) defined on $>mX^K for some constant K>0 such that
L( — i\, —iη(X)) = 0 and \η{\)\ ^A\X\*<> for some constant A

Proof. We write

L(-ιλ, -iη) = (-i)MU(X-
j 1

Then Xj(v) have Puiseux series expansions at infinity63

on \η\^K' for some constant K'>0. Hence Xj(η) = aJljv
ιJ/pj(l-ho(l))

as 77-»oo. If we would assume lj/pj<l/a0 for all / — 1, ••• ,m then on

(3.2) \Qm-Jo(rj)\ = I Σ
Jo()\ I Σ

for some C, £>0. On the other hand

Qm.jo(v) = atf-Wo + . (* = im-j°-koaJo>ko Φ 0),

so that Qm_Jo(ri) = aηQm-JoV«o(l + o(ϊ)) as 77->oo. This contradicts to (3.2).
Consequently we have an analytic function

Έ

on \v\^K' such that L(-iX(v), -iv) = 0. Since λ(i7) = α / ^ ( l + o(l)) as

?7->cx), we have an analytic function v = η(X) defined on $m X^K for some

canstant K^l such that L(-/λ, - ^ ( λ ) ) = 0and |>?(λ) | ^ A | λ K 7 / ^ A | λ Γ o

for some constant A.

— , — J be a differential operator of the form

6) [12], pp. 50-55.
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(3.1) containing at least one coefficient aJQkoΦθ with j^m and jo+a0k0 = m.
Then for any £0>0, we can construct a C°°-solution U(ty x) of

dt dx
0

such

(3.3)

and

(3.4)

tha

j u(t,

Qj+k

dp'dx*

J?) == 0

X)

/or ( -

/or ( -

<Ci+j+k( •

= 1 U
-foo, —

positive constants Cx and C2 depending only on £0.

Proof. Consider the equation L( — ίλ, —117) = 0. Then by Lemma 3,
we have an analytic root η(\) defined on $>m\^>K for some constant
K>0 which satisfies

(3.5) \v(\)\^A\\\

for some constant A. Take p such that 0 < α 0 < ρ < l and consider the
function

(3. 6) U (t, x) = f + O ° + Z T

J -oo+ t τ

where (\/i)p is defined such that (λ//)p>0 on the positive imaginary axis.
Since 9te ( λ / 0 P ^ | λ | p cos (pτr/2), by (3.5) we can see that Up{ty x) e

C°°(-oo</< + oo, - O O < Λ : < + OO), L ( — ,A)ί/p(/, JC) = O, and that ί/p does
\3/ dx/

not depend on τ(^/ iC). For any fixed x, if we set Cp= {2i4cos(pτr/2)}1/CP~^,
= τ^(Cpthen for

' ^ - -

Taking /<0 and x arbitrarily, we have

I ί/p(f, x) I

we have

λ|pcos(p7r/2).

(τ->oo)

7) [7], p. 122.
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for r^Cplx\1 / C P **)-\-K. Hence Up(t, x) = 0 for — oo</<0 and — o o < # <

+ 00. Making x fixed, we can write

ί/p(/, x) = etτ

so that we have Up(t> x)^0 as a function of / on (—00, 00). We get

(3. 3) by these arguments.

Next, for the derivatives of Up(t, x)y we have by (3. 5)

di+h

t, x)(3.8)

where τ = Cp|Λ;|1/CP~α}o) + i;Γ. If we write the integrand of the right hand

side of (3. 8) as

ί \\ I ΐo~ lλl p cos tPir/2)/6\/' j Λ I ί»nfc / ?-(|λ|Λ(0 ί 'α >0cos(P Λ'/2;)/6VΛ- | λ | p c o s ( P */2)/6\

\\ A, 1 v ){ 1 A, 1 0 e )\e )

then by (1.12) we have

Qj+k

Uμ(t, x)

[ °
J — o

where C is a constant depending on A, p and a0. We fix p (ao<p<l)

such as l/p^l-ff0, ao/p^ao + εo, and l/(p — α0) ^1/(1 — αo)4-6o. Hence

we get (3. 4).
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