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We shall consider the differential operator

0.1) L= 3 a,.0-2"

jHagksm 7 0t70x*

0<a, <1, ap(t)=1)

where m is a positive integer and a; 4(¢) are complex-valued continuous
functions on 0<¢{<7. If the plane f=0 is characteristic with respect
to L, then we can suitably choose «, so that L contains at least one
coefficient «; 4(0)+0 for j+m and j+ak=m. In this case, when the
coefficients of L are constant, L. Hormander [7] constructed non-trivial
C~-functions u=u(¢, x) which satisfy Lu=0 in the whole (¢, x)-space and
vanish for #<0. On the other hand, I. M. Gelfand and G. E. Shilov [3]
proved the uniqueness of the characteristic Cauchy problem for Lz=0
under some restrictions on the behavior of # as |x|—>oco, and their
results were improved by K. I. Babenko [1], B. L. Gurevich [5], [6] and
A. Friedman [2].

In this note we shall show the existence of non-trivial functions of
G(ao,e"""'ll(h%)) (see Definition 1 and Lemma 1) and apply this result
to prove a uniqueness theorem (Theorem 2) of the Cauchy problem
without aid of generalized functions. To prove an existence theorem
(Theorem 1) which is important for the proof of Theorem 2, we shall
use the method of E. de Giorgi [4] which was also used by G. Talenti
[9] and Tsutsumi [11]. For the case that #=0 is characteristic with
respect to L with constant coefficients a;,, we shall show in Theorem 3
that the uniqueness in Theorem 1 and Theorem 2 does not hold for
any &,>0 if we replace the factor (z!)*%g(x) in (2.3) by (n!)**g(x) and
the factor ¢"'*V“ ™ in (2.11) by e"#"" * % respectively.

The authors wish to thank Professor M. Nagumo for stimulating
discussions.

1. We define the following class of functions for any postive con-
tinuous function g(x) on —oco<x< -+ oo and any « such that 0<a<1.
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Definition 1. We call ¢(x) a function of Gla, g(x)) if @(x) is a
C=—function on — oo <x< +oo satisfying

(1.1 ™) =C™(nl)*g(x)  (n=0,1,2,+; —co<x<+00)

for some constant C.

If »(x) (*0) is a function of G(«, g(x)) (which is contained in the
Gevray class of a<1), it can be extended to be an entire function of
order 1/(1—a)®, so that for any &>0 there exists a sequence {x,}...
such that x,—+ oo and |@(x,)| >e """ (n=1, 2, ---)». Hence we know
that for any v>0 G(a, ¢”"'*®) contains only one trivial function (=0)
unless 3<1/(1—«a). Now we show the following lemma.

Lemma 1. Let « and v be any positive number and 0<a<<l. Then
we can construct a non-trivial entirve function F,,(2) of order 1/(1—a)
which satisfies

(1.2) |F(x)] <C™(nl)?e-n=1"0"" n=0,1,2,+; —co<x< +0)
for some constant C depending only on o and .

Proof. For any positive number p>1 we consider a function

(1.3) Fix) = S“"“e‘ﬂpxw exp {euwYdw (W = u+iv)
—oot§

where w” is defined by ¢°°¢” such as log 1=0 by setting the slit on the
nonpositive imaginary axis, and 6, is defined by

1.4 0, = (m+1—p/2)r for 2m—1<p=<2m+1 (m=1,2, )

(a,>0 will be defined later).

Then, for the case p=2m+1 we have Re (ei%ew’)” = —Jmw’
=—02m+1w*"v(1+0(1)) as |u| - for any fixed v>0.
For 2m—1<p<2m+1 we have

7r——21—7r<0,,<7r+%7t

(1.5)
(2m+1)7r—%7r<9p+p7r<(2m+1)7r +%n ,

\

so that if we set

_T H
(1. 6) s, _ng{

@m+1)—p p—(2m—1)_}
2 2

1) [8], pp. 262-263. 2) [10], p. 273.
© 3) For a complex number w, Rew means the real part of w and Jmw the imaginary part,
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then, we have for 0<0<p,
1+,89<0p+p6<%”—39

a7 <2m+—;~>7z+ﬁ’p<0,,+,0(7r—9)<<2m+%>ﬂ_ﬁp

and consequently we have for »>0
(1.8 Re (eew”)< — |w|*sin B, for |u|=vcoth.

These facts mean that, for any p>1, we can extend f,(x) to an entire
function f,(2)=f,(x+:y) and we have

1.9) F(x) = Stij(iapw)”e""p""’ exp {e%uw’} dw .
Now we estimate the values of f{¥(x). First we do this for p=2m+1
which is fairly complicated. If we set
(1. 10) 0, =n/(2p) and a, = 5cosec,
we have, for w=|w|e? and w=|w|e* (0<0=6,),
(1.11) Re(eivw®) = —Jmw® = — |w|’sin (pd) O=Zpbh=pb, = 7/2).

In the case x>0, we deform the path of the integral (1.9) to I'=
C,UC,UC, where C,, C, and C, are the segments (of straight lines) from
+ 00ei™ 0 to x%i %, from x%¢i" % to x%ei%, and from x%ei% to + ocoeit
respectively by setting §=1/(p—1). Let the values of the above integral
on C; be denoted by I,(x) (=1, 2,3). Then, by (1.10) and (1. 11) we have

+oo
L@ e | apye e rar.

xﬁ
Now for positive § and p we use the inequality
(1.12) re " <Cp (n)"" (r=0,n=0,1,2,-)

which will be often used in later discussions. Then, remarking 1+8=p’
where 1/p+1/p’=1, we have

(1. 13) |L,(x)] SCy* (1) oe-s'.

For I,(x), remarking dp=p’ we have

4) In what follows in this section, C; are constants depending only on p.
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- —sxp/ - ;\:3cos(3o
L= e (g |

—x" cos @,

e(xS)Pdu

= e qp {(2%)"e~ """} {24% cos 0,-¢*"}
so that by (1.12) we have
(1.14) |I(x)| < Cp+i(n) o2

Since I,(x) can be estimated in the same way as I,(x), we get by (1.13)
and (1. 14)

(1. 15) LFm(x) | SCE A nl)Pe-  for x>0.

In the case x<0, we deform the path of the integral (1.9) to
IM=ClUCLUC,UC,UC, where Cf,C%, C4, Ci C, are the segments
from + o€’ % to b|x|% i cosecd,, from b|x|%i™*’cosecO, to
b|x|%i ™% cosec §,, from b|x|% % cosech, to b|x|%i% cosecd,, from
bl x| cosecd, to b|x|’ei cosecd,, from b|x|%i® cosecd, to -+ coei®

respectively. (0<b and 0<#@, <, will be determined later.) Let the

values of the integral on C, be denoted by Ij(x) (j=1,2,3,4,5). For
Ii(x) we have by (1.12)

(1. 16) | I5(x) | <2b|x|3 cot O,(a,b| x| cosec ,)"e?e*!™ 511 cosect?
: <Ci*(n !)I/Peb(3ﬂp+bp"1COSecPGODlep/,
for I3(x), remarking Re (e®ow”) <0 by (1.11),

[T4(x)| <2b| x |? cot 6, (a,b|x|? cosec 6,)"e%?'*1"*®
<Cpityremw”,

and for I{(x) we have by (1.11)

(1.17)

oo

1) =a propl*1r sinty=rPsin ey gy
=Wp .
blxlscosecel

If we determine 6, such as a,<b5""" cosec’ 0, sin (p6,)/2 for fixed b6>0 which
is possible because of cosec’ 8, sin (pf,) = p7* (1 +o0(1)) as 6, | 0, then
we have a,|x|7sin@,—7" sin (p0,) < —7° sin (pd,)/2 for r=b|x|®cosecb,.
Hence we have by (1.12)

oo

@) =az | rresnonortnay
(1.18) N
=< {SO e"Si“<""1>"’/4dr}C?,+call(”!)I’P .

For I)(x) and Ii{(x) we can get the same estimates as I5(x) and I{(x)
respectively. Hence if we determine & such as b(3a,+b°"* cosec’ ,)<1
and 6,>0 such as a,<b°"" cosec’ 0, sin (p0,)/2, we have
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(1. 19) | £ (x) | <C"“(n')""e“"" Sfor x<0
by (1.16), (1.17), (1.18). Consequently, if we set
av(z) fl/as('y Z) fl/w( Y Z)

then, using Leibniz’ formula and
3 (2) D= = e 33 (1) = e,

we get (1.2) by (1.15) and (1.19).

For 2m—1<p<2m+1, we set a,=5 cosec’ 8, with B, of (1.6). For
x>0, in order to estimate (1.9), we deform the path of the integral
(1.9) to T”=C{’ UC4 UCY where C{’, C¥, and C4 are the segments from
—oo+ix% to —x®cot B,+1ix%, from —x®cot B,+ix® to x®cot B,+ix?, and
from x®cot B,+ix® to +oco-+ix® respectively. For x<0 we need not
deform the path and we evaluate the integral on the intervals (— oo +1,
—cot B,+1), (—cot B,+1i, cot B,+i), and (cot B,+i, + oo +i). Then, using
(1.8), we get the same result as the case of p=2m-+1.

Lemma 2. Let @(x) be a function of G(a, g(x)) satisfying (1.1).
Then, for any real y, ¥(x)=e'p(x) is also of G(a, g(x)) and satisfies

[P P@) [ =(C+ [y (n)°g(x)  (n=0,1,2,-).

Proof. Omitted, as it is so easy.

2. For any function f(¢, x) such that (8/0x)™/*’f(¢, x)” is continuous
on {0<I<T}X{—c0<x< —|-<>o} we define (Hf)(¢, x) as follows.

(2.1) =z =< 1Y+ H, o f

where

2.2) Hyph )t 0 = [ o) 2 fa, ayar
7, ( 1)| 7,

Theorem 1. Let g(x) be any positive function on — oo <x< + oo and
f(t, x) be a complex-valued function whose derivatives 8"f/0x" (n=0, 1, --+)
are continuous on {0<t<T} X{—oco<x<+ oo} and satisfy

=C" () g(x) (n = 0,1, ;0=t=T, —co<x<+00)

5) For a real number @, [¢] means the maximum of the integers which do not exceed 4.
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for some constant C. Then there exists only one function v(t, x) that
satisfies

2.4) v—Ho = f (0=t<T,, —oc<x<+ ),

whose derivatives 8"v[0x" (n=0, 1, 2, -+-) are continuous on {0=t<T,} X
{— o <x< + oo} and satisfy for some constant K

2.5) ’aa;”v(t, ) | S KM )oog(x) (1m0, 1, w0 SE< Ty, — o0 <5< +00)

where T,>0 depends only on «, C and
(2.6) A = Max {|a; (t)| ; j+ak=m, 0<t=T}.

Proof. Without loss of generality we assume C>1 and estimate
|H"f|. By (2.1), (2.2), (2. 3), (2.6), we get easily

2.7 |(HF)E, x)| <CA(m /o, +1)g(x) g Ci™o(Lj [t 1)t 5! .

By Stirling’s formula we have

il _ g WG ey B 0% < s (j=1,2, )

2.8) <K, N

for some constants K, and K,. Hence, raplacing ([j/a,]!)%/j! of (2.7)
by K.,ay7, we get
|HFf (¢, x)| SCAK,(m/a, +1)g(x) 33 (C"*t [’
<CAKm(m|a,+1)g(x)C"*t/a, for 0=C"t/a,<1,

so that

|Hf(t, x)| <CK,g(x)t/2T,) Sor 0=t<2T,
where
(2.9) 1/(2T,) = Max {m(m/a, +1)(A+1)C"%/c,, 1/T} .

Next we estimate |HZ?*f|. Since by (2.2)
(Hh,l‘Hj,kf)(t, x)

O N (s
=1 Gty amnr @) T a1

we get, remarking /+E<[(h+7)/a,],

t(f—TYtior| pith
o(h+j—1)! |0k
SCACHPPA([(h+7) [, ]) g ()87 [(h+))! .

6I+k

Py f(z, x)drdo

f(r, x) |dr

\H, -H; o f (¢, x)| < A® S
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If we replace ([(2+7)/a,])%/(h+7)! by Kas**” by (2.8), then we get
|H*f (¢, x)| =CK, g(x)(t/(2T,)*  for 0=t<2T,.

Similarly we get for =3, 4, ---
|H"f(t, x)| <CK,g(x)(t/@2T))"  for 0=t<2T,.

Hence we can set

o(t, x) = g(H"f)(t, x)  for 0<t<2T,,

so that o(¢, x) is the unique solution of (2.4).
Next we estimate the value of (8/dx)"H f=H(0/dx)"f (n=0, 1, 2, --).
Remarking 2"**=n+1)!/(n!l!), we get in the same way as (2.7)

‘ O Hrt, x)

P <CAm/a,+1Dg(®) 2 C ™ {(n+ L /w]) 1}t !

<CA(m/a,+1)g(x) i&l @2C)y 2t ) o([ 7 /cts ] D)ot /5!
<O () K.gx)t| T, for 0<t<T,.

Similarly we get for /=1, 2, -
o

a1 %)

@O () K, g(x)(¢/ Ty (0=t<T,).

Hence we get
an

_ =@C)""'(n!)*K,g(x)T,/(T,—?)
ox

v(t, x)

(2

for 0<¢< T, so that (2.5) holds.
Theorem 2. Let u(t, x) be a solution of the Cauchy problem

(Lu)(t, ) =0  (O=t=T, —co<ax< +0)
@10 _
EF(O’x)ZO (]:0,"',m—1; —00<x<+00)

whose derivatives contained in L are continuous and satisfy

@.11) |

itk
ot7ox*
for some constants C and v>0. Then u(t, x) vanishes identically for
0Zt<T, —c0o<x< + 0.

u(t, x) | =Cen=V%  (jtagk=m, 0St=T, —oco<x<+o0)

Proof. We write B8,=1/(1—«,). By Lemma 1 we can take a non-
trivial function ¢(x) of G(a,, e *"'"*'") satisfying
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2.12) lp™(x)| SCrm)y%e =P (n=0,1,2,)
for some constant C, depending only on «, and v. We set
(2.13) 1/(2T,) = Max {m(mo,+1)(A+1)(1+C,)"*/a,, 1/ T}

where A=Max {|aq; ,(t)|; 0=t<T, j+ak<m} (cf. (2.9)).

If the assertion of the theorem is not true, then, for some u(¢, x)
satisfying (2. 10) and (2. 11), there exists ¢, such that #,=inf {0<¢<T;
u(t, x)*+0 for some x}<T. Taking  such as 0<r< T’ =Min(T,, T—t,),
we set (—1); (H)=a; y(t,+7—1t) (j+ak<m) and w(t, x)=u(t,+7—1, x)
O=Zt=sT, —0<x< +00).

Let L, H and H/, be the operators given by (0.1), (2.1) and (2.2)
replacing a; .(f) by b;.(¢) respectively. Then w(t, x) is a solution of
the Cauchy problem, L'w=0 (0<{<7, —oco<x< +0), (0/0)w(r, x)=0
(7=0, - ,m—1; —oo<x<+ o), satisfying the same condition as (2.11).
By Lemma 2, (2. 13) and the proof of Theorem 1, we obtain for —1<y=1
the solution v(#, x;y) of v—Hv=¢""p(x) on {0=<t=<7} X {— c0o <x< + o0}
where = is independent of y. Furthermore
0 . écgn(n !)woe-27|xlﬂo (n — 0, 1’ 2’ )

for some constant C,. Integrating by parts, we get easily

(- 1):+kS °°S (H/ ,,v)a W atdx Stg vb,,. ,,,((;’t) "(;}c) wdtdx,

and hence

0= Si:g:v(L’w)dtdx - S” ST(v - H'v)@"%’dtdx

- Sj o) %0, xydx  for |y|<L1.

tml

(0 x)dx is an entire function of y by (2.11) and

Since S+ e (x)

oo tm 1
(2. 12), this vanishes identically on — oo <y<+oo. Hence the integrable
function @(x)(08™ 'w /0™ *)(0, x) also vanishes identically on — co <2< + co.
Since @(x) is a non-trivial entire function, we get

m_10””
(-1 lat"’ ‘(O’x)_ﬁt'” 1(t‘ +7,%) =0
for 0=S7<T’, —co<x< +o0.
By (07u/ot’)(¢,, x) = O (=0, m—1; —cc<ax<+00)
we get ult,x)=0 for {,<t<t,+ T, —oc<x<+oo,

which is contradiction.
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3. In this section we shall consider a differential operator with
constant coefficients

0 0 07tk
3.1 L(—, -—) = a;p———
3. 1) ot ox jragesm 7k otioxk

0<a,<1, apm, = 1)
containing at least one coefficient a@; , +0 with j,+m and j,+ak,=m.
Lemma 3. Let L(—ix, —in)= 2 a;(—iN)(—in)* be the differ-
jragksm ’

ential polynomial corresponding to (3.1). Then we have an analytic
Sunction n=n(\) defined on Jm A=K for some constant K>0 such that
L(—in, —in(\))=0 and |n(\)| ZA|N|% for some constant A.

Proof. We write
L(=ix, —in) = (=i)" 1 (v =2;(n))
= (= )"+ QA"+ o + Qe 5 (N0 + Qp(0)) -
Then 1 ;(7) have Puiseux series expansions at infinity®
Ni(n) = ,,gmai,u('”wf)" (0‘;',1,-:’:0 yJj=1,,m)

on |7|=K’ for some constant K’>0. Hence xj(n)zaj’,jn’j/"i(l—|—o(1))

as n—co. If we would assume /,;/p;<1/a, for all j=1, -, m then on
In| =K’
3.2) |Qm—j0(77)| = I 2 7\:,'1(7))-"7\,-,"_].0(77)] gC]‘r]l(’”“io)/‘”o"“’

Jveesim—jgy

for some C, €>0. On the other hand
Qm—jo(’?) = dﬂ(m—j°)/m°+ o (a = im-jo_koajo,ko:’:()) >

so that Q,_; (n)=an™ (14 0(1)) as n—>co. This contradicts to (3.2).
Consequently we have an analytic function

) = 31 a )" (a%0, /pz1]a)

on |7|=K’ such that L(—ix(n), —in)=0. Since A(n)=am"?(1+0(1)) as
n—>o00, We have an analytic function »=7(\) defined on Jm A=K for some
canstant K=>1 such that L(—ix, —in(A))=0 and |n(\) | S AN A|N ]|
for some constant A.

Theorem 3. Let L<6 —6—) be a differential operator of the form

ot ox

6) [12], pp. 50-55.
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(3.1) containing at least one coefficient a;.,+0 with j,+=m and j,+ ok, =m.
Then for any >0, we can construct a C=-solution U(t, x) of

L(6 —8—>U(t,x)=0 (o0 <t< 400, —o00<x< +00)

ot’ ox
such that
3.3 { Ult,x) £0  for (—oo<t<+o0o, —co<x< +00),
Ut x) =0  for (—oo<t=0, —c0<x< +00),
and
) | DUl ) |SCH el e
o0t’ox*

(—oo<t< +00, —c0o<x< +00)

JSor some positive constants C, and C, depending only on &,.

Proof. Consider the equation L(—ix, —in)=0. Then by Lemma 3,
we have an analytic root 7(\) defined on Sm A=K for some constant
K >0 which satisfies

3.5) 2 =AN[% ((mrzK)

for some constant A. Take p such that 0<a,<p<1 and consider the
function

Hoot g
T e—ictmxn(k))—()\/npdxn (7.2 K)

—ocot-§T

(3.6) Uyt %) = 5

where (A/7)? is defined such that (A/7)’>0 on the positive imaginary axis.

Since Re (A/i)°=|n|"cos (pz/2), by (3.5) we can see that U,(¢, x)

C(— 00 <t< + 00, —00<x< +00), L<—§E,56—>Up(t, %)=0, and that U, does
x

not depend on 7(=K). For any fixed x, if we set C,= {24 cos(pr/2)} "%,

then for Yma=+=(C,| x|Y* *+ K) we have

[xn(A)| — [N |° cos (pr/2) S AN|%|x| — [N |° cos (pm/2) .

3.7 g_%p\r’cos (p[2).

Taking <0 and x arbitrarily, we have

4rootgT
l Up(t, x)' <e' S e_')‘lpws“”/z)/zdlhl

—oot-§T
e S enlylpCOS(M/Z)/zdy—»O (r— c0)

7) [7], p. 122.
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for r=C,|x|V**°+ K. Hence Uyt x)=0 for —co<#f<0 and —oco<x<
+oo. Making x fixed, we can write

Uyt, x) = e ST e tIgimeE iD= iyinRygy,

—o0

so that we have Uy, x)=£0 as a function of £ on (— oo, o). We get
(3.3) by these arguments.
Next, for the derivatives of Uy{, x), we have by (3.5)

6j+k

+ootiT
(3. 8) W Up(t) x) §Ake” g ‘7\‘ |j|7\l“oke"mpws(”/”dlk|
X - iT

ot

where 7=C,| x|V ®’+ K. If we write the integrand of the right hand
side of (3.8) as

(| N |Je= NP eos mioarey( |y | kg CIAI %0/,

0 cos (pﬂ/z)/e)(e— IAIP cos (p—.r/z)/e)

then by (1.12) we have

itk
0170 x*

+ootiT »
e IA[P cos (Pn/z)/sdl 7\' I

Ul(t, x) | AkemCY(j1)°CE, , (k1)* §

—ocot+iT

- oo
gc1+jrke(cp(xll/(p "’o)+1<>t(j!)1/p(k!)mo/p S g™ 171Pcos Pr/2og)y,

where C is a constant depending on A, p and «,. We fix p (a,<p<1)
such as 1/p<1+¢&,, a,/P=a,+&, and 1/(p—a,) <1/(1—a,)+&,. Hence
we get (3.4).

OsakaA UNIVERSITY
UNIVERSITY OF OSAKA PREFECTURE
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