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Chapter 1  

 

General introduction 

 

Metabolic engineering is generally referred to as the targeted and purposeful 

alteration of cellular metabolic pathways in order to achieve a desired goal. For an 

engineering strategy to be successful, a better understanding of the cellular state is 

necessary to determine the types of genetic modifications needed to achieve the desired 

goal. As a glutamate-producing bacterium, Corynebacterium glutamicum is one of the 

world’s most important microorganisms for use in biotechnology; the discovery of C. 

glutamicum gave birth to the fermentation industry. Due to its industrial importance, 

with an annual amino acid production by C. glutamicum of more than two million tons, 

it has been studied extensively for improvement of glutamate production. Recently, 

application of molecular biology techniques has made C. glutamicum one of the best 

investigated and understood model industrial microorganisms. Recent achievements in 

metabolic engineering of C. glutamicum by modification of the cell to achieve the 

desired goal mark the beginning of development toward sustainable biotechnological 

production. Knowledge of the genomic DNA sequences of C. glutamicum and recently 

accumulated achievements have made it possible to improve glutamate production by 

metabolic engineering approaches, using recombinant DNA technologies. Therefore, 

the comprehensive analysis and integrated metabolic engineering approaches were 

applied in order to understand the mechanism of glutamate overproduction in C. 

glutamicum. 
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1.1 Metabolic engineering  

Metabolic engineering is an approach to understanding and use of metabolic 

processes. As the name implies, metabolic engineering is generally referred to as the 

targeted and purposeful alteration of metabolic pathways in an organism in order to 

better understand and utilize cellular pathways for chemical transformation, energy 

transduction, and supramolecular assembly (Lessard 1996). Essentially, it is the 

application of engineering principles of design and analysis in order to achieve a 

particular desired goal. This goal may be to increase process productivity, such as that 

for antibodies, biosynthetic precursors, or polymers, or to extend metabolic capability 

by addition of extrinsic activities for production of biological and chemical materials 

(Yang et al. 1998).  

For an engineering strategy to be successful, a better understanding of the host 

cell is necessary to determine the types of genetic modifications needed to achieve the 

final goal (Yang et al. 1998). Moreover, rational modification by metabolic engineering 

for improvement of cellular properties is crucial to successful processes, and is based on 

efficient genetic tools and detailed knowledge of metabolic pathways and their 

regulation (Wendisch et al. 2006). Wendisch et al. (2006) summarized recent advances 

in metabolic engineering of the industrial model bacteria Escherichia coli and C. 

glutamicum, which led to efficient recombinant biocatalysts for production of acetate, 

pyruvate, ethanol, D- and L-lactate, succinate, L-lysine, and L-serine. Moreover, they 

also suggested that new tools for genetic manipulation of E. coli and C. glutamicum, 

such as modulation of expression of chromosomal genes (Meynial-Salles et al. 2005) or 

creation of multiple chromosomal deletions (Vertès et al. 2005), will certainly improve 

the efficiency and fine-tuning of metabolic engineering. Furthermore, it is expected that 
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an increasing number of targets for strain development will be identified as the result of 

genome, transcriptome, proteome, metabolome, flux, and other systems biology 

analyses (Hermann 2004; Wendisch et al. 2006). The examples, as well as the principles 

and methodologies of metabolic engineering, have been extensively reviewed (Bailey 

1991; Stephanopoulos and Vallino 1991; Eggeling and Sahm 1999; Stephanopoulos 

1999; Sahm et al. 2000; Nielsen 2001; Shimizu 2002). 

 

1.2 Monosodium glutamate and Glutamate  

Monosodium glutamate (MSG; Figure 1.1), the major ingredient of seaweeds, 

is a unique flavor enhancer commonly added to food, which exhibits the special 

attentive taste of “Umami” (well-tasting) in Japanese (Shimizu and Hirasawa 2007). It 

was discovered by Dr. Kikunae Ikeda and isolated from hydrolyzates of “Kombu,” a 

kind of seaweed, which has been used traditionally in Japanese cuisine.  

 

 
 

Figure 1.1 Chemical structures of glutamate (left) and monosodium glutamate (right) 

 

Glutamate is one of the most abundant free amino acids in bacterial cytoplasm 

(Figure 1.1). It is synthesized from 2-oxoglutarate by a one-step reaction catalyzed by 

glutamate dehydrogenase (GDH). 2-Oxoglutarate is the substrate of both the 

2-oxoglutarate dehydrogenase complex (ODHC) and GDH, and is located at an 



 4

important branching point of metabolism because it can either be oxidized in the 

tricarboxylic acid (TCA) cycle or be converted to glutamate either by GDH under 

abundant nitrogen conditions or by the combined reactions of glutamine synthetase and 

glutamate synthase under nitrogen limitation conditions. 

Among amino acids produced by microbial fermentation, glutamate is one of 

the prominent amino acids. L-Glutamate is used mainly as not only a flavor enhancer 

but also as a drug and as the precursor of drugs, cosmetics, and further pharmaceutical 

compounds, and is in demand as a commercially useful chemical. The amount of 

glutamate produced worldwide by fermentation using microorganisms has increased to 

more than 1.5 million tons per year, with an annual growth rate of 5-7% 

(Leuchtenberger et al. 2005; Shimizu and Hirasawa 2007).   

 

 

Figure 1.2 Corynebacterium glutamicum 

 

1.3 Corynebacterium glutamicum 

As shown in Figure 1.2, a coryneform bacterium, C. glutamicum, was 

originally isolated as a glutamate-producing bacterium in a screening program from 

nature (a soil sample contaminated with avian feces), collected at the Ueno Zoo in 

1μm
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Tokyo, Japan (Kinoshita et al. 1957; Udaka 1960) by Dr. Kinoshita and his colleagues 

in 1956. As a member of the Actinobacteria in the genus Corynebacterium (originally 

named Micrococcus glutamicus), C. glutamicum has been regarded as one of the most 

effective producers. Even though various glutamate-producing bacteria have been 

isolated and classified as Arthrobacter, Brevibacterium, or as members of other genera 

(Kinoshita 1999), a recent study has shown that most of these strains belong to the 

genus Corynebacterium (Liebl et al. 1991). 

C. glutamicum is a non-pathogenic, Gram-positive, and facultatively anaerobic 

bacterium with a high G+C content, inhabiting diverse ecological niches, such as soil, 

vegetables, sewage, etc. It has been used as one of the most biotechnologically 

important bacterial species for prosperous industrial fermentation of various amino 

acids, such as glutamate, lysine, and threonine (Nakayama et al. 1961; Shiio and 

Nakamori 1970) and serves as a model organism for the suborder Corynebacterineae 

within the order Actinomycetales. Because of the great importance of more efficient 

production of amino acids, C. glutamicum has been enthusiastically studied in the last 

decade by many companies and academic associations in order to cope with the fast 

growing market for amino acids. Genomic DNA sequences of C. glutamicum were 

determined by three independent research groups in Japan and Europe (Ikeda and 

Nakagawa 2003; Kalinowski et al. 2003; Yukawa et al. 2007). Moreover, several 

molecular biology tools for genetic manipulation of C. glutamicum are well established 

(Vertès et al. 2005).  

 

1.4 Glutamate production by C. glutamicum 

Glutamate production by C. glutamicum is induced by depletion of biotin, 
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which is an essential element for growth (Shiio et al. 1962); by addition of fatty acid 

ester surfactants, such as Tween 40 (polyoxyethylene sorbitan monopalmitate; 

Takinami et al. 1965); by addition of β-lactam antibiotics, such as penicillin, which 

inhibits peptidoglycan biosynthesis (Nara et al. 1964; Nunheimer et al. 1970); or by 

addition of ethambutol, an antimycobacterial drug, which inhibits biosynthesis of 

mycolic acid arabinogalactan (a cell wall component of C. glutamicum) in Mycobacteria 

(Radmacher et al. 2005). Since biotin is a cofactor for acetyl-CoA carboxylase, one of 

the enzymes necessary for synthesis of fatty acid, it was thought that cell membrane 

permeability is increased when biotin was depleted in the culture medium. Similarly, 

addition of Tween 40, penicillin, or ethambutol affects the composition of the cell 

membrane and cell wall of this microorganism. During the 1960s-70s, because these 

triggers affect the cell surface structure of C. glutamicum, it was believed that glutamate 

overproduction was achieved by passive leakage of glutamate through the cell 

membrane and cell wall due to increased permeability of the cell membrane and cell 

wall caused by these triggering agents (Shibukawa et al. 1970; Shibukawa and Ohsawa 

1966; Shiio et al. 1963).  

However, in the late 1980s and 1990s, many researchers wondered about the 

“leak model” as an explanation for glutamate secretion in C. glutamicum in terms of the 

material balance of extracellular and intracellular glutamate. The leak model itself could 

not explain the high accumulation of extracellular glutamate. Consequently, it was 

thought that permeability of the cell membrane or cell wall should be changed. 

Therefore, many researchers (Hoischen and Krämer 1989; Gutmann et al. 1992) 

proposed the presence of a specific glutamate export system in the membrane, which 

differs from the earlier-mentioned leak model. 
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Figure 1.3 A possible molecular regulatory mechanism of glutamate overproduction in 

C. glutamicum 

 

1.5 Regulatory mechanism of glutamate overproduction by C. glutamicum  

 A current possible molecular mechanism for regulation of glutamate 

production in C. glutamicum is shown in Figure 1.3. In this Figure, the relationship 

among important factors, including OdhA, OdhI, DtsR1, PknG, Ppp, and NCgl1221 for 

glutamate overproduction in C. glutamicum is schematically shown. These proteins can 

be considered as the target of metabolic engineering for glutamate production in C. 

glutamicum. 
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Figure 1.4 The 2-oxoglutarate branching point between the TCA cycle and the 

glutamate biosynthesis pathway 

 

1.5.1 Effect of 2-oxoglutarate dehydrogenase complex activity on glutamate 

production 

The 2-oxoglutarate dehydrogenase complex (ODHC), which is located at the 

branching point between the TCA cycle and the glutamate biosynthesis pathway, is 

thought to be one of the key enzymes in glutamate production (Figure 1.4). ODHC 

consists of three subunits: 2-oxoglutarate dehydrogenase (E1o; EC 1.2.4.2), coded by 

odhA (Usuda et al. 1996); dihydrolipoamide S-succinyltransferase (E2; EC 2.3.1.61), 

coded by sucB (found from the genome sequencing); and dihydrolipoamide 

dehydrogenase (E3; EC 1.8.1.4), coded by lpd (Schwinde et al. 2001). Shingu and Terui 

(1971) found that ODHC activity is reduced during glutamate overproduction, resulting 

from metabolic change at the branching point of 2-oxoglutarate in the TCA cycle for 

production of glutamate synthesis. To further understand the relationship between 

Succinyl-CoA

Glutamate

Lpd
SucB

OdhA
ODHC

2-Oxoglutarate

Isocitrate

GDH

ICDH
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changes of enzyme activities and glutamate overproduction by C. glutamicum, 

Kawahara et al. (1997) measured the enzyme activities of ODHC as well as isocitrate 

dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) of C. glutamicum, both of 

which are also located at the 2-oxoglutarate branching point, during glutamate 

production conditions under biotin limitation, Tween 40 addition, and penicillin 

addition. Activities of ICDH and GDH did not change; however, that of ODHC 

significantly decreased during glutamate production under these conditions. These 

results indicate that glutamate overproduction by C. glutamicum is highly correlated 

with change in metabolic flows from the TCA cycle to glutamate production due to the 

decrease in ODHC activity and that the change in ODHC activity is one of the key 

factors in glutamate overproduction by C. glutamicum.  

 

1.5.2 Metabolic flux distribution at the 2-oxoglutarate branching point 

 Metabolic flux distribution at the 2-oxoglutarate branching point was analyzed 

in C. glutamicum by Shimizu et al. (2003). It was shown that enhancement of ICDH and 

GDH activities by overexpression of icd and gdh genes, respectively, did not 

significantly affect flux distribution at the 2-oxoglutarate branching point. Even though 

ICDH and GDH activities were enhanced 3.0- and 3.2-fold, respectively, more than 70% 

carbon flux still flowed into the TCA cycle. On the other hand, when ODHC activity 

was decreased to about 52% after biotin limitation, marked changes in fluxes of GDH 

and ODHC were observed. More than 75% carbon was used for glutamate production, 

showing quantitatively that ODHC activity has the most significant responsibility for 

glutamate production (Shimizu et al. 2003; Heijnen et al. 2004). 

  Furthermore, to clarify the enzyme-to-substrate affinity, the Michaelis Menten 
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constants (Km) of the enzymes around the 2-oxoglutarate branching point, including 

ICDH, GDH, and ODHC were also determined (Shirai et al. 2005), as shown in Table 

1.1. The Km value of GDH was 50- to 100-fold higher than the Km values of ICDH and 

ODHC. Therefore, the affinity of 2-oxoglutarate for GDH was much lower than that for 

ODHC. For this reason, glutamate biosynthesis flux was not observed prior to the 

decrease in ODHC activity, even though the Km value of GDH was determined to be 

sufficient. After the decrease in ODHC activity, the flux to glutamate biosynthesis 

occurred due to the increased 2-oxoglutarate pool. 

 Almost all 2-oxoglutarate is converted to succinyl-CoA catalyzed by ODHC 

without any triggers; glutamate was not overproduced in C. glutamicum. Although 

sufficient GDH activity was observed, the flux catalyzed by GDH was very small 

because the Km of GDH was much higher than that of ODHC. Therefore, once ODHC 

activity is decreased after any triggers, 2-oxoglutarate is accumulated; glutamate is then 

overproduced as catalyzed by GDH (Shimizu and Hirasawa 2007). 

 

 

 

Table 1.1 Km values of enzymes around 2-oxoglutarate in C. glutamicum (Shirai et al. 

2005) 

Enzyme Km value (mM) 

ICDH 0.03  

ODHC 0.08 

GDH  2  

Km of ICDH for isocitrate and those of ODHC and GDH for 2-oxoglutarate are shown. 
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1.5.3 Involvement of the OdhA protein on glutamate production 

The odhA gene, encoding the E1o subunit (2-oxoglutarate dehydrogenase 

OdhA) of the ODHC in C. glutamicum, has been identified as a homologous counterpart 

of the E. coli sucA and Bacillus subtilis odhA genes (Usuda et al. 1996).  

Mutant strains of C. glutamicum, obtained after treatment with the mutagen, 

N-methyl-N’-nitro-N-nitrosoguanidine, showed lower ODHC activity (10 to 1000 times 

less) than that of the wild-type strain and then produced a high amount of glutamate in 

the presence of excess biotin (Nakazawa et al. 1994). Asakura et al. (2007) constructed 

C. glutamicum strains in which the odhA gene was deleted. The odhA knockout strain 

was able to produce high amounts of glutamate in the presence of excess biotin; 

however, the odhA knockout strain showed a severe growth defect. To solve the 

problem of the growth defect in the odhA knockout strain, other odhA mutants were 

constructed using in vitro mutagenesis (Nakamura et al. 2006). odhA mutants produced 

glutamate in the presence of excess biotin with less than half of the ODHC activity, 

compared to the wild-type; however, a growth defect was also observed, meaning that it 

was not suitable for industrial glutamate production.  

 

1.5.4 Involvement of the DtsR1 protein on glutamate production 

Kimura et al. (1996 and 1997) reported that dtsR1 is a multicopy suppressor 

gene in the C. glutamicum mutant with sensitivity to Tween 40, whose product shows 

high homology to the β subunits of some biotin-containing acyl-CoA carboxylase 

complexes responsible for fatty acid biosynthesis, but does not have any biotin-binding 

motif. DtsR1 is thought to form a complex with AccBC, the biotin-carboxyl-carrier 

protein/biotin carboxylase protein, which is a subunit of acyl-CoA carboxylases (Jäger 
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et al. 1996). The dtsR2 (accD2) gene shows high sequence homology to dtsR1 and is 

located downstream of dtsR1. Recently, further homologs of dtsR1 and dtsR2 (accD2), 

named accD3 and accD4, were identified from the genome sequence of C. glutamicum 

(Gande et al. 2004; Portevin et al. 2005). The dtsR2, accD3, and accD4 genes also 

encode the β subunits of acyl-CoA carboxylase, and their products form complexes with 

AccBC and are involved in biosynthesis of mycolic acids, which are fatty acids found in 

the cell wall of C. glutamicum and its related species, such as Mycobacterium and 

Rhodococcus. 

Disruption of dtsR1 resulted in fatty acid auxotrophy, such as oleic acid, oleate 

ester (Tween 80), or laurate ester (Tween 20), and produced high amounts of glutamate 

in the presence of excess biotin (Kimura et al. 1997). Glutamate overproduction by 

addition of Tween 40 is completely suppressed by dtsR1 overexpression, whereas 

glutamate overproduction by biotin limitation and addition of penicillin is partially 

suppressed in dtsR1 disruption (Kimura et al. 1999). With the reduction in ODHC 

activity, the expression level of the DtsR1 protein was decreased by both addition of 

Tween 40 and biotin limitation, but not by addition of penicillin (Kimura et al. 1999). 

Moreover, the link among the expression levels of dtsR1, levels of ODHC activity, and 

glutamate overproduction induced by biotin limitation and addition of Tween 40 is 

clearly proven. 

 

1.5.5 Involvement of serine/threonine protein kinases and the OdhI protein   

The genome sequence of C. glutamicum (Ikeda and Nakagawa 2003; 

Kalinowski et al. 2003) has revealed the presence of four genes encoding 

serine/threonine protein kinases (STPKs), designated PknA (cg0059), PknB (cg0057), 
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PknG (cg3046), and PknL (cg2388) and a single gene (ppp, cg0062) coding for a 

phospho-serine/threonine protein phosphatase. Moreover, the genomic organization of 

pknA, pknB, pknG, pknL, and ppp in C. glutamicum and the domain architecture of the 

corresponding proteins, PknA, PknB, PknG, PknL, and Ppp were depicted by Schultz et 

al. (2009). Niebisch et al. (2006) reported that the pknG deletion mutant had a strong 

defect in utilization of L-glutamine as a sole carbon and nitrogen source. Moreover, the 

intracellular glutamate content was twice as high in the pknG deletion mutant than in 

the wild-type, indicating that the pknG deletion mutant has a defect in glutamate 

catabolism. 

Niebisch et al. (2006) identified the phosphorylation status of the novel protein 

OdhI, a 15-kDa protein, comprising 143 amino acid residues, of C. glutamicum. OdhI is 

composed of an N-terminal domain of 42 amino acid residues, which is followed by a 

forkhead-associated (FHA) domain (residues 43-143) (Barthe et al. 2009). FHA 

domains are known to bind to phosphothreonine epitopes of proteins (Pallen et al. 2002; 

Liang and Van Doren 2008). The phosphorylation status of OdhI is important for 

inhibition of ODHC specific activity. Unphosphorylated OdhI specifically binds to the 

E1o subunit, OdhA, resulting in inhibition of ODHC activity. Phosphorylation of OdhI 

at the 14th amino acid residue of OdhI (Thr) by PknG relieves the inhibition of ODHC 

activity. Identification of the OdhI protein as a target of PknG was identified by the 

proteome comparison between the wild-type and pknG deletion mutant, followed by in 

vitro phosphorylation studies. In addition, deletion of the odhI gene abolished glutamate 

overproduction induced by biotin limitation or by addition of Tween 40 and penicillin, 

suggesting that the OdhI protein might play a central role in glutamate production by C. 

glutamicum (Schultz et al. 2007). These results suggest that inhibition of ODHC 
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specific activity by the OdhI protein is an important factor in glutamate overproduction 

by C. glutamicum. 

The OdhA protein was copurified with an unphosphorylated OdhI mutant 

protein expressed in the ΔodhI mutant; only a low amount of OdhA was copurified with 

the wild-type OdhI protein, which was predominantly phosphorylated (Niebisch et al. 

2006), suggesting that the OdhA protein may interact with the unphosphorylated OdhI 

protein. Moreover, it was confirmed that the unphosphorylated OdhI protein can 

function as an inhibitor of ODHC by in vitro enzyme assay. Furthermore, the OdhA 

protein was also copurified with SucB (E2o subunit of ODHC), Lpd [(E3o subunit of 

ODHC and pyruvate dehydrogenase complex (PDHC)], and AceE (E1 subunit of 

PDHC), suggesting that the mixed complexes are formed by OdhA, AceE, SucB, and 

Lpd, having ODHC and PDHC activities (Niebisch et al. 2006). Surprisingly, OdhA or 

AceE, copurified with DtsR1, DtsR2, and AccBC are involved in fatty acid biosynthesis, 

indicating that the OdhA, unphosphorylated OdhI, and DtsR1 proteins might be 

included in the same protein complex. Interaction of these proteins might be involved in 

glutamate overproduction in C. glutamicum. 

By the study of two-dimensional (2D) gel electrophoresis, Niebisch et al. (2006) 

revealed the presence of three OdhI protein spots of similar molecular mass but 

different isoelectric point (pI). The diphosphorylated OdhI form was absent in the pknG 

deletion mutant; however, a small fraction of OdhI still migrated as the 

monophosphorylated OdhI form. Recently, the purified kinase domains of PknA and 

PknB were shown to phosphorylate OdhI in vitro (Fiuza et al. 2008) and threonine at 

the position of the 15th residue was identified as the phosphorylation site of these two 

kinases (Barthe et al. 2009). Relative amounts of three OdhI spots representing 
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unphosphorylated, monophosphorylated, and presumably diphosphorylated forms were 

calculated in vivo by densitometric analysis using the in-frame deletion mutants ΔpknA, 

ΔpknB, ΔpknL, ΔpknAG, ΔpknAL, ΔpknBG, ΔpknBL, ΔpknLG, ΔpknALG, and 

ΔpknBLG, revealing that all four STPKs can contribute to OdhI phosphorylation, with 

PknG being the most important one (Schultz et al. 2009). Moreover, Schultz et al. (2007) 

reported that OdhI is only present in the phosphorylated status in the ppp deletion 

mutant. The phosphatase domain of the phospho-serine/threonine protein phosphatase 

Ppp catalyzed the dephosphorylation of OdhI in vitro, confirming that OdhI is a 

substrate of Ppp (Krawczyk et al. 2010). They revealed that the entire FHA domain of 

OdhI and the C-terminal dehydrogenase domain of OdhA are required for interaction 

using copurification and surface plasmon resonance experiments with different OdhI 

and OdhA length variants. The FHA domain was also sufficient for inhibition of ODHC 

activity; however, phosphorylated OdhI was binding-incompetent, relieving the 

inhibition of ODHC activity. 

 

1.5.6 Involvement of the NCgl1221 protein in glutamate production 

Recently, Nakamura et al. (2007) identified a possible L-glutamic acid exporter 

coded by the NCgl1221 gene in C. glutamicum. They revealed that glutamate 

production is derived from the function of the mutated NCgl1221 protein and concluded 

that the NCgl1221 protein is important for glutamate production in C. glutamicum. It 

was also reported that the NCgl1221 protein, a mechanosensitive channel homolog, has 

an N-terminal region similar to that of YggB in E. coli. Moreover, the NCgl1221 

protein is confined to the cytoplasmic membrane and is a membrane protein with four 

transmembrane segments within its C-terminal region in the cytoplasm (Yao et al. 2009). 
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Nakamura et al. (2007) reported that disruption of the NCgl1221 gene abolished 

glutamate production, and that specific mutations in the NCgl1221 gene induced 

constitutive glutamate secretion in C. glutamicum without any triggers. It has been 

proposed that treatments that induce glutamate overproduction alter membrane tension 

and trigger conformational changes in the NCgl1221 protein, thereby enabling C. 

glutamicum cells to secrete glutamate into the medium.  

 

1.6 Objective of this study 

The objective of this study is to apply metabolic engineering approaches to 

glutamate production in C. glutamicum in order to understand the regulatory mechanism 

of glutamate overproduction in C. glutamicum and to improve glutamate production. 

Moreover, for a better understanding of the cellular condition in C. glutamicum, the 

change in cellular protein production in C. glutamicum was also analyzed during 

glutamate production. First, the effect of chloramphenicol, an inhibitor of de novo 

protein synthesis on penicillin-induced glutamate production was investigated, implying 

that de novo protein synthesis after addition of penicillin is an absolute requirement for 

glutamate overproduction. To identify the proteins responsible for glutamate production 

by C. glutamicum, proteome analysis was performed using two-dimensional gel 

electrophoresis under penicillin addition conditions. Among the 13 proteins that were 

upregulated after addition of penicillin, the most upregulated OdhI protein was 

investigated by glutamate production assay in order to determine whether or not OdhI 

synthesis is necessary for penicillin-induced glutamate overproduction in C. glutamicum. 

In terms of DNA techniques used in metabolic engineering, amplification of the odhI 

gene has been used for modification to improve the synthesis of the odhI gene or its 



 17

products with the odhI overexpressing strain. Moreover, based on the importance of 

decreased ODHC specific activity during glutamate overproduction in C. glutamicum, 

the relationship between changes in ODHC specific activity and glutamate production 

were focused on examination of the effect of modulation of ODHC activity on Tween 

40-triggered glutamate overproduction in C. glutamicum. Therefore, recombinant 

strains of C. glutamicum, in which expression of odhA and its product can be controlled 

by odhA overexpression or odhA antisense RNA expression as metabolic engineering 

approaches for metabolic pathway control, were constructed and glutamate production 

was investigated to elucidate the role of the odhA gene and its product in glutamate 

overproduction by C. glutamicum. Furthermore, protein expression changes, such as 

OdhA and OdhI proteins, were also investigated during glutamate overproduction in C. 

glutamicum. Throughout this study, comprehensive analysis and integrated metabolic 

engineering must be applied in order to understand the cellular mechanism of glutamate 

overproduction by C. glutamicum. 

 

1.7 Overview of the thesis  

This thesis consists of five chapters.  

Chapter 1 deals with the general introduction of this research. It contains the 

background for this research and a review of previous literature regarding the regulatory 

mechanism of glutamate overproduction in C. glutamicum. 

Chapter 2 and Chapter 3 deal with the application of metabolic engineering 

approaches for glutamate production in C. glutamicum based on an understanding of 

cellular conditions of regulatory mechanism during glutamate production.  
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Chapter 2 deals with the requirement of de novo synthesis of the OdhI protein 

in penicillin-induced glutamate overproduction by C. glutamicum. First, using 

proteomic analysis of two-dimensional gel electrophoresis under penicillin addition, 

protein production change was investigated in C. glutamicum during glutamate 

overproduction for identification of the de novo protein(s). Of more than 500 proteins 

detected, 13 proteins, including OdhI (an inhibitory protein for ODHC), were 

significantly increased upon penicillin treatment. To determine whether de novo OdhI 

synthesis is necessary for penicillin-induced glutamate overproduction in C. glutamicum, 

the odhI-overexpressing strain in which amplification of the odhI gene was used as a 

metabolic engineering approache was constructed and examined. Moreover, continuous 

glutamate overproduction was also conducted by the odhI-overexpressing strain without 

any triggers.  

Chapter 3 deals with the effects of metabolic engineering by odhA 

overexpression and odhA antisense RNA expression during glutamate production in C. 

glutamicum. Because of the binding specificity of the OdhI protein to the E1o subunit 

OdhA of ODHC, resulting in inhibition of ODHC activity and the result obtained from 

Chapter 2, in which de novo synthesis of the OdhI protein is required for glutamate 

overproduction in C. glutamicum, further investigation focused on the role of the odhA 

gene and its product, which is adjacent to the OdhI protein in the regulatory mechanism 

in glutamate overproduction by C. glutamicum. Expression of the odhA gene and its 

product was controlled by metabolic engineering approaches, such as odhA 

overexpression or odhA antisense RNA expression in order to examine the effect of 

modulation of ODHC activity on Tween 40-triggered glutamate overproduction in C. 

glutamicum. 
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Chapter 4 deals with the expression change of OdhA and OdhI proteins during 

glutamate overproduction in C. glutamicum. Because of the importance of OdhA and 

OdhI proteins during glutamate overproduction in C. glutamicum, the correlation 

between protein expression changes and glutamate overproduction under various 

glutamate production conditions was investigated; overexpression of the odhI gene in 

both ATCC 31831 and ATCC 13032, and Tween 40-triggered glutamate production 

conditions. 

Chapter 5 deals with the general conclusion obtained in this research. 
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Chapter 2 

 

Requirement of de novo synthesis of the OdhI protein in 

penicillin-induced glutamate production by Corynebacterium 

glutamicum 

 

2.1 Introduction 

L-Glutamate is used as a flavor enhancer and is in demand as a commercially 

useful chemical. The amount of glutamate produced worldwide by fermentation using 

microorganisms has increased to more than 1.5 million tons per year (Leuchtenberger et 

al. 2005; Shimizu and Hirasawa 2007). C. glutamicum is used for the industrial 

production of glutamate and also used to produce other amino acids such as lysine and 

threonine (Nakayama et al. 1961; Sano and Shiio 1970; Shiio and Nakamori 1970).  

 Glutamate production by C. glutamicum is induced by the limitation of biotin, 

which is an indispensable vitamin for growth (Shiio et al. 1962), and the addition of 

fatty acid ester surfactants such as polyoxyethylene sorbitan monopalmitate (Tween 40)  

(Takinami et al. 1965), β-lactam antibiotics such as penicillin (Nara et al. 1964), and 

inhibitors of biosynthesis of arabinogalactan (a cell wall component of C. glutamicum) 

such as ethambutol (Radmacher et al. 2005). Metabolic change at the branch point of 

2-oxoglutarate in the tricarboxylic acid cycle is important for glutamate production due 

to the reduced activity of the 2-oxoglutarate dehydrogenase complex (ODHC) 

(Kawahara et al. 1997; Shigu and Terui 1971).  
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 Proteomics analysis of C. glutamicum has been performed by many researchers 

(Bendt et al. 2003; Hermann et al. 2001; Li et al. 2007; Schaffer et al. 2001; 

Schleusener et al. 2005). Niebisch et al. (2006) identified the novel protein OdhI, which 

regulates ODHC activity, by proteomics analysis. Unphosphorylated OdhI binds to 

OdhA and inhibits ODHC activity. In addition, Schultz et al. (2007) showed that 

deletion of the odhI gene abolishes glutamate overproduction induced by biotin 

limitation or by the addition of Tween 40 and penicillin, suggesting that the OdhI 

protein might play the central role in glutamate production by C. glutamicum.  

In this chapter, for a better understanding of the cellular state, we analyzed 

protein production change during penicillin-induced glutamate production in C. 

glutamicum. First, we examined the effect of addition of chloramphenicol, an inhibitor 

of de novo protein synthesis, on penicillin-induced glutamate production, and showed 

that de novo protein synthesis after addition of penicillin was required for glutamate 

production. Accordingly, we analyzed protein production change using 

two-dimensional gel electrophoresis and identified proteins that were upregulated after 

addition of penicillin using a peptide mass fingerprinting method. Our results revealed 

that production of several proteins, including OdhI, is induced after addition of 

penicillin. Moreover, we newly found that de novo synthesis of the OdhI protein after 

penicillin addition is necessary for glutamate overproduction. Therefore, in terms of 

recombinant DNA techniques used in metabolic engineering, amplification of the odhI 

gene has been used for metabolic modification to improve the synthesis of the odhI 

gene.  
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2.2 Materials and methods 

2.2.1 Bacterial strains, media, and culture conditions 

C. glutamicum wild-type strain ATCC 31831 was used in this study. For 

recombinant DNA techniques, Escherichia coli JM109 [recA1 endA1 gyrA96 thi 

hsdR17 supE44 relA1 Δ(lac-proAB)/F'(traD36 proAB+ lacIq lacZΔM15)] was used. For 

the transformation of C. glutamicum, plasmids were isolated from the dam dcm mutant 

of E. coli SCS110 [rpsL (Strr) thr leu endA thi-1 lacY galK galT ara tonA tsx dam dcm 

supE44 Δ(lac-proAB)/F' (traD36 proAB+ lacIq lacZΔM15)] (Stratagene, Cedar Creek, 

TX, USA) to escape the restriction system of C. glutamicum (Vertès et al. 1993). 

 For the recombinant DNA experiments, E. coli and C. glutamicum were 

cultured in Lennox medium consisting of 1% polypeptone, 0.5% Bacto yeast extract, 

0.5% NaCl, and 0.1% glucose (pH 7.2). For the glutamate production studies, CM2B 

agar comprising 1% polypeptone, 1% Bacto yeast extract, 0.5% NaCl, 10 µg/l of 

D-biotin and 1.5% agar, pH 7.2 (Miwa et al. 1985) and synthetic medium comprising 

(per liter) 80 g of glucose, 30 g of (NH4)2SO4, 3 g of Na2HPO4, 6 g of KH2PO4, 2 g of 

NaCl, 3.9 mg of FeCl3, 0.9 mg of ZnSO4·7H2O, 0.3 mg of CuCl2·2H2O, 5.56 mg of 

MnSO4·5H2O, 0.1 mg of (NH4)6Mo7O24·4H2O, 0.3 mg of Na2B4O7·10H2O, 0.4 g of 

MgSO4·7H2O, 40 mg of FeSO4·7H2O, 84 mg of CaCl2, 500 μg of vitamin B1·HCl, 0.1 g 

of ethylenediaminetetraacetic acid, 20 μg of biotin, and 25 g of CaCO3, pH 7.2 (Shirai 

et al. 2006) were used. If necessary, ampicillin (50 µg/ml for E. coli) or kanamycin (20 

µg/ml for E. coli and 10 µg/ml for C. glutamicum) was added to the culture medium to 

select the antibiotic-resistant transformants. 

 E. coli was cultivated at 37°C and C. glutamicum was cultivated at 30°C or 

31.5°C, depending on the experiment. Cell growth was monitored by measuring the 
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optical density of the culture at 660 nm (OD660) with a spectrophotometer (U-2000; 

Hitachi High-Technologies Co., Tokyo, Japan). Cultures were diluted with 0.2 N HCl to 

dissolve CaCO3 prior to OD660 measurements. 

 

2.2.2 Construction of the C. glutamicum strain overexpressing the odhI gene  

The odhI gene fragment, including the possible promoter region, was amplified 

by polymerase chain reaction (PCR) from C. glutamicum ATCC 31831 genomic DNA 

using Z-Taq polymerase (Takara Bio Inc., Shiga, Japan) and the set of primers 

5′-GAATTCAACCCACTTGCGGGTAGTGG-3′ and 

5′-GAATTCTTAGGCATTCTATACACAAAACG-3′; the PCR fragment was cloned in 

a pGEM-T Easy Vector (Promega Co., Madison, WI, USA). Since the odhI gene from 

the ATCC 31831 strain could not be directly compared with that from the C. 

glutamicum ATCC 13032 strain (whose genome DNA sequence has been already 

determined), the sequences of five independently cloned PCR fragments were 

determined using the BigDye Terminator Cycle Sequencing Kit ver. 1.1 (Applied 

Biosystems, Foster City, CA, USA) and an ABI Prism genetic analyzer 310NT (Applied 

Biosystems) and compared with each other. The PCR product in the pGEM-T Easy was 

recloned into the EcoRI site of the E. coli-C. glutamicum high-copy-number shuttle 

vector pHT1 (Hirasawa et al. 2003). The resulting plasmid was introduced into C. 

glutamicum ATCC 31831. 

 

2.2.3 Glutamate production by C. glutamicum 

C. glutamicum cells were grown at 30°C for 24 h on a CM2B plate for seed 

culture preparation. For the preculture, cells were collected from the CM2B plate, 
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inoculated into 40 ml of synthetic medium in a Sakaguchi flask, and then incubated at 

31.5°C for 17 h with reciprocal shaking at 120 strokes per minute. Then, 1 ml of the 

preculture was inoculated into 40 ml of the fresh synthetic medium in a Sakaguchi flask, 

and the culture was incubated at 31.5°C with reciprocal shaking. After cell growth 

reached the early exponential phase (OD660 = approximately 15), penicillin G was added 

to the culture to induce glutamate production. Cultivation was continued until glucose in 

the culture medium was depleted. 

 

2.2.4 Measurement of glucose and glutamate concentrations and ODHC specific 

activity 

Glucose and glutamate concentrations in the culture supernatant were measured 

by the Glucose CII-Test Wako (Wako Pure Chemicals Inc., Osaka, Japan) and an F-kit 

glutamate (R-Biopharm AG, Darmstadt, Germany), respectively. 

ODHC specific activity of C. glutamicum was determined according to the 

method described by Kim et al. (2009) and Shiio and Ujigawa-Takeda (1980). C. 

glutamicum cells were harvested, washed twice with 0.2% KCl, and suspended in 3 ml 

of 0.1 M N-tris(hydroxymethyl) methyl-2-aminoethanesulfonic acid (TES)·NaOH 

buffer (pH 7.7) containing 30% (v/v) glycerol. Cells were disrupted by sonication and 

then centrifuged to remove the cell debris. One milliliter of the supernatant, applied to 

the gel filtration column (PD-10 Desalting Column; GE Healthcare UK, 

Buckinghamshire, UK) to remove low-molecular-weight compounds, was used for the 

enzyme assay. 

 The reaction mixture was prepared as follows: 100 mM TES·NaOH (pH 7.7), 5 

mM MgCl2, 3 mM cysteine, 0.3 mM thiamine pyrophosphate, 0.2 mM coenzyme A, 1 
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mM 3-acetylpyridine adenine dinucleotide (APAD+) instead of oxidized form of 

nicotinamide adenine dinucleotide (NAD+), and 150 µl of the cell extract. After addition 

of 1 mM 2-oxoglutarate to the reaction mixture, the initial increase in the absorbance of 

APADH at 365 nm was measured at 31.5°C for 3 min with 15-s intervals. ODHC 

specific activity was defined as the amount of enzyme required for the conversion of an 

equivalent of 1 µmol of NAD+ into reduced form of nicotinamide adenine dinucleotide 

(NADH) in 1 min. The concentration of total protein in the crude extract was 

determined by Bradford’s method (Bradford 1976) using a Bio-Rad protein assay kit 

(Bio-Rad Laboratories, Hercules, CA, USA).  

 

2.2.5 Two-dimensional gel electrophoresis 

C. glutamicum cells harvested by centrifugation at 9,500 × g for 5 min at 4°C 

were suspended in 50 mM sodium phosphate buffer (pH 7.0) containing 12.5% (v/v) 

protease inhibitor cocktail for use with bacterial cell extracts (Sigma, Saint Louis, MO, 

USA) and disrupted by ultrasonic homogenizer (UH-50, SMT Co. Ltd., Tokyo, Japan) 

at 50 W for 15 s with 15 s intervals for six times on ice. Cell debris was removed by 

centrifugation at 9,500 × g for 10 min at 4°C, and the supernatant was used for 

two-dimensional gel electrophoresis. 

 Isoelectric focusing was performed using a Multiphor II electrophoresis unit 

(GE Healthcare UK) and a commercially available immobilized pH gradient (IPG) gel 

strip (Immobiline Drystrip, pI range of 4–7, 13 cm, linear gradient; GE Healthcare UK). 

The protein sample (30 µg) in 250 µl of rehydration buffer consisting of 6.4 M urea, 2% 

3-[(3-cholamidopropyl) dimethylammonio] propanesulfonate, 2% protease inhibitor 

cocktail, 2% IPG buffer (GE Healthcare UK), 0.96% destreak reagent (GE Healthcare 
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UK), and 0.01% bromophenol blue was loaded onto a IPG strip, which was then 

rehydrated for 15 h. Isoelectric focusing and two-dimensional electrophoresis and 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were carried 

out according to the protocols reported by Hirasawa et al. (2009).   

The gel was stained with SYPRO red protein gel stain (Invitrogen Co., 

Carlsbad, CA, USA) according to the manufacturer’s protocol and scanned using a 

Typhoon 9210 (GE Healthcare UK) to detect the protein spots on the gel. The Image 

Master 2D Elite (GE Healthcare UK) was used to quantify the volume of each spot. To 

allow comparison of the two gel images, each spot volume on the gels was normalized 

to the summation of the volume of all the detected spots on the two gels. 

 As reported previously (Hirasawa et al. 2009), to evaluate the significant 

changes in protein abundance in two samples, the same samples were independently 

examined by two-dimensional gel electrophoresis. This analysis revealed that if the 

ratio of the amounts of protein obtained from one sample compared to another is more 

than 3 or less than 0.33, then the ratio is significant (data not shown). 

 

2.2.6 Peptide mass fingerprinting for protein identification 

Protein spots were identified by peptide mass fingerprinting analysis using 

matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) and 

liquid chromatography mass spectrometry (LC-MS/MS).  

For the identification of proteins on the two-dimensional electrophoresis gels, 

the gels were stained with Coomassie brilliant blue (CBB) in CBB-staining solution 

(2.5 g/l of CBB R-250 in 50% methanol and 10% acetate). Each CBB-stained protein 

spot was excised and placed in a 1.5-ml centrifuge tube (Treff AG, Degersheim, 
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Switzerland). The excised spot was destained by incubation in 100 µl of destaining 

solution consisting of 50% methanol and 40 mM ammonium bicarbonate for 30 min 

with vigorous shaking and then dried at 60°C with evaporation. In-gel digestion of the 

protein in the excised gel and purification of the digested peptides were performed by 

the method reported by Hirasawa et al. (2009). Purified peptides were mixed with 

matrix solution (α-cyano-4-hydroxycinnamic acid-buffered 33% acetonitrile containing 

0.1% trifluoroacetic acid) and spotted onto a target plate for MALDI-TOF MS. 

MALDI-TOF MS analysis was carried out using an Autoflex (Bruker Daltonics K. K., 

Bremen, Germany) in the measurement range m/z of 800–4600. Calibration was 

achieved using a peptide calibration standard (Bruker Daltonics). The m/z data from the 

detected peptides were used to search the C. glutamicum ATCC 13032 genome in the 

NCBInr database with Mascot 2.0 (Matrix Science Inc., Boston, MA, USA). The 

proteins identified by peptide mass fingerprinting were evaluated and compared with 

each molecular mass, and the pI was calculated from the amino acid sequence. 

 Peptide mass fingerprinting was also conducted by LC-MS/MS analysis. After 

extracting the trypsin-digested peptides from the gel as described above, the peptide 

solutions were purified through a membrane filter (GV4, Millipore, Billerica, MA, USA) 

and analyzed by LC-MS/MS. High-performance liquid chromatography (HPLC) was 

performed using a Pepmap C18 (3 µm, 100 Å, 150 × 0.3 mm) HPLC column (LC 

Packings, Amsterdam, The Netherlands). The elution was carried out with 0.1% formic 

acid in 95% acetonitrile (buffer A) and 0.1% formate in 5% acetonitrile (buffer B) at a 

flow rate of 3 µl/min. The elution conditions were as follows: A/B = 100:0 (0 min), 

98:2 (5 min), 70:30 (45 min), 2:98 (50 min), 2:98 (65 min), 98:2 (67 min), and 98:2 (80 

min). For MS/MS analysis, the eluted peptides were diverted to an ion trap mass 
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spectrometer (Esquire, Bruker Daltonics) equipped with positive electrospray mode. 

The measurement was performed in the mass range m/z of 50–3,000. The m/z data from 

the detected peptides were analyzed with Mascot 2.0 in a manner similar to that used in 

the MALDI-TOF MS analysis. 

 

  



 29

2.3 Results and discussion  

2.3.1 Effect of chloramphenicol addition on penicillin-induced glutamate 

production  

For an engineering strategy to be successful, a better understanding of a 

cellular state is necessary. To analyze whether de novo protein synthesis is required for 

glutamate production by C. glutamicum, we examined the effect of chloramphenicol, an 

inhibitor of de novo protein synthesis, on penicillin-induced glutamate production. C. 

glutamicum wild-type strain ATCC 31831 was cultured in synthetic medium, and 10 

µM of penicillin G [100 × minimal inhibitory concentration (MIC)] and/or 77 µM of 

chloramphenicol (20 × MIC) were added to the culture medium after cell growth 

reached the early exponential phase (Figure 2.1). 

 Cell growth of the ATCC 31831 strain stopped or decreased after the addition 

of penicillin G and/or chloramphenicol (Figure 2.1A). When penicillin G alone was 

added, approximately 20 g/l of glutamate was produced in 48 h (Figure 2.1C). 

Simultaneous addition of chloramphenicol with penicillin G almost completely 

abolished glutamate overproduction (about 2 g/l). On the other hand, when 

chloramphenicol was added to the culture 2 h after the addition of penicillin G, 

approximately 13 g/l of glutamate production was achieved in 48 h. When 

chloramphenicol was added 4 h after the addition of penicillin G, approximately 20 g/l 

of glutamate was produced, which was comparable to that obtained upon addition of 

penicillin G alone. These results suggested that de novo protein synthesis during the 

first 4 h after the addition of penicillin might be required for glutamate overproduction 

by C. glutamicum. 
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Figure 2.1 Effect of chloramphenicol addition on penicillin-induced glutamate production by C. glutamicum. Arrows indicate the additions of 

penicillin G or chloramphenicol, respectively. Averages with standard deviations in three independent experiments are shown. Cell growth (A), glucose 

consumption (B), and glutamate production (C) are shown. Circles Addition of 10 µM penicillin G alone; triangles simultaneous addition of 10 µM 

penicillin G and 77 µM chloramphenicol; squares 77 µM chloramphenicol addition at 2 h after 10 µM penicillin G addition; diamonds 77 µM 

chloramphenicol addition at 4 h after 10 µM penicillin G addition 
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2.3.2 Proteome analysis of C. glutamicum during penicillin-induced glutamate 

production  

On the basis of the above results, we expected that the pattern of protein 

production for C. glutamicum would be changed after penicillin addition. We speculated 

that the proteins whose amount increased followed by penicillin addition could be 

responsible for glutamate production because glutamate production was abolished by 

the simultaneous addition of chloramphenicol with penicillin G. Thus, proteomics 

analysis was carried out to analyze the global protein production pattern and to identify 

proteins required for penicillin-induced glutamate production.  

 Proteins obtained from the ATCC 31831 strain at 1, 2, 3, and 4 h after the 

addition of 10 µM of penicillin G were separated by two-dimensional gel 

electrophoresis, and the protein production patterns in each sample were compared with 

that in the sample obtained from cells before penicillin G addition. Culture experiments 

were independently performed five times, and the obtained protein samples were 

applied to two-dimensional gel electrophoresis. 

 Approximately 500 proteins in C. glutamicum ATCC 31831 were detected by 

two-dimensional gel electrophoresis with SYPRO red staining (Figure 2.2). Of these 

~500 detected proteins, the amounts of 13 proteins increased after the addition of 

penicillin G (Figure 2.2 and Table 2.1). Surprisingly, one protein (no. 572) was 

remarkably overproduced: a tenfold increase in its amount upon penicillin addition was 

observed. 
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Figure 2.2 Gel image of C. glutamicum ATCC 31831 proteins separated by two-dimensional gel electrophoresis. The gel images of proteins 

obtained from C. glutamicum cells before (A) and 4 h after addition (B) of 10 µM penicillin G are shown. Each spot indicated by arrows corresponds to 

a protein whose amount was increased by penicillin G addition. Numbers represent the spot numbers shown in Table 2.1.  

 

A B
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Table 2.1 Changes in the production of proteins significantly upregulated by penicillin G addition 

Spot 

number 
Protein name Locus taga Gene pIb 

Molecular 

mass (kDa)b

Change in protein amount after penicillin additionc 

1 h 2 h 3 h 4 h 

54 Phosphoglucomutase Cgl2514/cg2800 pgm 4.76 59.2 1.3 ± 0.8 1.9 ± 0.5 1.6 ± 0.1 3.1 ± 1.5 

90 ND     1.1 ± 0.9 3.1 ± 4.0 2.0 ± 1.1 2.7 ± 3.6 

157 Putative acetyl-CoA acetyltransferase Cgl2392/cg2625 pcaF 5.20 42.7 2.7 ± 1.0 2.6 ± 2.0 4.9 ± 4.0 1.8 ± 1.3 

190 Acetylornithine aminotransferase Cgl1397/cg1583 argD 5.05 41.4 3.3 ± 2.5 1.3 ± 0.9 5.2 ± 2.0 2.4 ± 2.2 

206 ND     1.7 ± 0.5 1.7 ± 1.1 3.2 ± 1.6 2.4 ± 1.9 

214 Probable oxidoreductase Cgl0936/cg1068 - 4.70 35.4 2.1 ± 1.4 2.2 ± 1.8 3.3 ± 1.5 2.1 ± 1.4 

252 ND     1.6 ± 1.0 2.5 ± 2.3 3.1 ± 1.8 1.5 ± 1.1 

258 Thioredoxin reductase Cgl3090/cg3422 trxB 4.64 34.4 2.2 ± 1.5 2.7 ± 1.9 1.1 ± 0.1 3.0 ± 2.7 

316 ND     1.3 ± 0.3 2.8 ± 2.2 4.0 ± 2.8 3.8 ± 3.8 

361 UMP-kinase Cgl2024/cg2218 pyrH 5.10 26.4 2.2 ± 0.7 2.0 ± 1.3 4.9 ± 3.0 1.9 ± 1.0 

375 Nicotinamidase/Pyrazinamidase Cgl2487/cg2734 pncA 4.60 20.3 1.6 ± 0.7 2.6 ± 1.1 3.7 ± 0.9 2.9 ± 1.5 

378 Dethiobiotin synthetase protein Cgl2605/cg2886 bioD 4.65 23.8 3.2 ± 3.8 2.6 ± 1.7 0.8 ± 0.1 0.7 ± 0.8 

572 FHA-domain-containing proteind Cgl1441/cg1630 odhId 4.76 15.4 2.6 ± 1.7 7.9 ± 2.2 5.5 ± 2.3 12.8 ± 5.4 

ND not determined by peptide mass fingerprinting 
aLocus tag corresponds to the ORF name defined by Ikeda and Nakagawa (2003) and Kalinowski et al. (2003), respectively 
bpI and molecular mass are theoretical values calculated from the amino acid sequence. 
cChange in protein amount was defined as the ratio of the protein amount after penicillin addition to that before penicillin addition. Average values with 

standard deviation in 5 independent culture experiments are shown 
dThe FHA-domain-containing protein Cgl1441 was annotated as OdhI, an inhibitory protein for ODHC (Niebisch et al. 2006) 
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2.3.3 Identification of proteins whose amount was increased by penicillin 

addition 

 We hypothesized that the genome sequence of the C. glutamicum ATCC 31831 

strain is similar to that of the ATCC 13032 strain whose genome sequence was 

determined. Therefore, to identify protein spots in peptide mass fingerprinting analysis, 

we used the protein database for the ATCC 13032 strain. 

 

 

Figure 2.3 Change in the abundance of Cgl1441 (OdhI) protein after penicillin G 

addition in C. glutamicum ATCC 31831. The spots corresponding to the Cgl1441 protein on 

gel images obtained before and 1, 2, and 4 h after 10 µM penicillin G addition are shown. 

Arrows indicate the spots corresponding to the Cgl1441 protein. 

 

Peptide mass fingerprinting was performed using MALDI-TOF MS and 

LC-MS/MS to identify the proteins whose amount was increased by penicillin addition. 

Nine of the 13 proteins could be identified (Table 2.1). The estimated pI and molecular 

mass of each protein on the gel matched well with those calculated from the 

corresponding amino acid sequence (date not shown). The functions of the identified 

proteins are related to energy metabolism, amino acid metabolism, and stress response. 

Interestingly, the protein corresponding to spot no. 572, which showed a tenfold 

Before 
penicillin addition

After penicillin addition
1 h 2 h 4 h
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increase in its amount followed by penicillin addition (Table 2.1 and Figure 2.3), was 

identified as the Cgl1441 protein. Cgl1441 was annotated as OdhI, an inhibitory protein 

for ODHC (Niebisch et al. 2006).  

 

2.3.4 Requirement of de novo synthesis of the OdhI protein in penicillin-induced 

glutamate production by C. glutamicum 

It was revealed that OdhI protein, one of the several identified upregulated 

proteins, is significantly induced after penicillin addition as a 10-fold increase, 

compared to before penicillin addition, suggesting that de novo synthesis of the OdhI 

protein is absolutely necessary for penicillin-induced glutamate overproduction by C. 

glutamicum. Moreover, Schultz et al. (2007) reported that the deletion of the odhI gene 

abolishes penicillin-induced glutamate production. Thus, to determine whether the OdhI 

protein is indeed necessary for penicillin-induced glutamate production, we planned to 

examine glutamate production in a strain overexpressing the odhI gene without any 

triggers. Therefore, we constructed the odhI overexpressing stain by the amplification of 

odhI gene as metabolic modification. The overproduction of the OdhI protein in the 

odhI-overexpressing strain throughout the cultivation was confirmed by SDS-PAGE 

(Figure 2.4).  

 The pHT1-transformed ATCC 31831 strain produced a small amount of 

glutamate in the absence of any triggers (Figure 2.5C). On the other hand, the 

odhI-overexpressing strain, as the purposeful amplification of odhI gene, resulted in 

significantly increased glutamate production without any triggers (Figure 2.5C). It 

should be noted that glutamate production by the odhI-overexpressing strain was 

initiated after cell growth reached the late exponential and early stationary phase. 
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Moreover, the level of ODHC specific activity in the odhI-overexpressing strain was 

significantly lower than that in the pHT1-transformed ATCC 31831 strain throughout 

the cultivation (Figure 2.5D). These phenomena were consistent with the result of 

SDS-PAGE analysis for the odhI-overexpressing strain; i.e., the overproduction of OdhI 

protein in the odhI-overexpressing strain was shown throughout cultivation (Figure 2.4), 

and the significantly high amount of OdhI was detected at the stationary phase (data not 

shown). These results indicate that increasing the amount of the OdhI protein alone 

because of odhI gene overexpression as a metabolic engineering strategy can induce 

glutamate overproduction in C. glutamicum. Taken together with the results reported by 

Schultz et al. (2007), these results led us to conclude that de novo synthesis of the OdhI 

protein is necessary for penicillin-induced glutamate overproduction. 

 

 

Figure 2.4 Confirmation of OdhI protein overproduction in pHT1-odhI by SDS-PAGE. 

The ATCC 31831/pHT1-odhI (odhI-overexpressing strain) and ATCC 31831/pHT1 strains 

were cultivated in Sakaguchi flask at 31.5ºC with shaking, and then total cellular protein (20 

µg) of each cell was obtained at 12, 20, 28, 30, and 38 h. 
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Figure 2.5 Glutamate production and change in ODHC specific activity in the 

odhI-overexpressing strain of C. glutamicum without any triggers. ATCC 31831/pHT1 and the 

odhI-overexpressing ATCC 31831 were, respectively, cultured, and then glutamate production 

was observed. Cell growth (A), glucose consumption (B), glutamate production (C), and ODHC 

specific activity (D) in ATCC 31831/pHT1 (circles) and in the odhI-overexpressing strain 

(triangles) are represented. Averages with standard deviation in three independent experiments 

are shown. 
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2.3.5 Continuous glutamate production in the odhI-overexpressing C. 

glutamicum by supplying a carbon source 

Glutamate production by the odhI-overexpressing strain begins in the late 

exponential or early stationary phase, as described above, suggesting that the cellular 

state of this strain reaches the glutamate production phase at that phase. To investigate 

whether glutamate production by this odhI-overexpressing strain continues in the 

absence of any triggers after the cells reach the late exponential phase, additional 

glucose was supplemented to the culture medium after most of the initial glucose was 

depleted. As shown in Figure 2.6, glutamate production by the odhI-overexpressing 

strain was observed after glucose addition. After glucose addition, cell growth stopped, 

but the cells continued to consume glucose. The supplemental glucose consumption and 

glutamate production occurred together. These results suggest that the 

odhI-overexpressing strain can continue to produce glutamate even during the early 

stationary growth phase. These results also suggest that glutamate can be efficiently 

produced using a simple carbon source without any additional biomass formation. 
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Figure 2.6 Continuous glutamate productions by the odhI-overexpressing strain without 

any triggers. The ATCC 31831/pHT1 (circles) and the odhI-overexpressing strains (triangles) 

were cultured in Sakaguchi flasks containing synthetic medium, respectively. Glucose as a 

carbon source was added when most of the initially added glucose was depleted and cell growth 

had reached the late exponential phase. Cell growth (A), glucose consumption (B), and 

glutamate production (C) were then measured. Arrows with solid and dashed lines in each graph 

represent glucose supplementation in ATCC 31831/pHT1 and the odhI-overexpressing strains, 

respectively. Averages with standard deviations in three independent experiments are shown.
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2.4 Discussion 

Many researchers have reported analyses of the glutamate production 

mechanism of C. glutamicum at the metabolic and molecular levels, as described in 

“Introduction” section because a better understanding of a cellular state is required for a 

metabolic engineering strategy to be successful. To identify the important protein(s) for 

glutamate production, proteome analysis of C. glutamicum followed by penicillin 

addition was performed with two-dimensional gel electrophoresis. 

 Firstly, to confirm whether de novo protein synthesis is required for 

penicillin-induced glutamate production, we examined the effect of the addition of 

chloramphenicol during penicillin-induced glutamate overproduction. The results 

shown in Figure 2.1 indicate that de novo protein synthesis within 4 h after penicillin 

addition is absolutely required for penicillin-induced glutamate production. Therefore, 

we performed proteomic analysis, considering it as an effective approach for a better 

understanding of a cellular state to identify proteins required for penicillin-induced 

glutamate production. 

 We could detect approximately 500 protein spots of the C. glutamicum ATCC 

31831 strain by two-dimensional gel electrophoresis (pI range, 4–7) with SYPRO red 

staining (Figure 2.2). The comparison of the protein patterns before and after penicillin 

G addition revealed that, of the approximately 500 protein spots detected, the amounts 

of 13 proteins were significantly increased by penicillin G addition (Table 2.1). Among 

the increased proteins, we found that the increase in the amount of the OdhI protein 

directly contributed to penicillin-induced glutamate production by C. glutamicum. 

Recently, Schultz et al. (2007) reported that odhI deletion abolishes penicillin-induced 

glutamate overproduction by C. glutamicum. In this regard, our results indicate that de 
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novo synthesis of the OdhI protein is absolutely necessary for penicillin-induced 

glutamate overproduction by C. glutamicum. However, Schultz et al. (2007) also 

reported that the introduction of the plasmid carrying the odhI gene with its native 

promoter into the odhI deletion strain of C. glutamicum could not induce glutamate 

overproduction without any triggers, which is totally inconsistent with our results. In 

our case, since the odhI gene with its native promoter was cloned under the lac 

promoter of E. coli on the pHT1 shuttle vector and the lac promoter is constitutively 

active in C. glutamicum cells, it is thought that the expression of the odhI gene on pHT1 

might be achieved by both the native promoter for the odhI and lac promoter. Therefore, 

the expression level of odhI from our plasmid might be higher than that from the 

plasmid reported by Schultz et al. (2007), and the increased expression level of odhI in 

the overexpressing strain might be similar to the expression level after penicillin 

addition. As a result, we successfully induced glutamate overproduction by introducing 

the odhI-carrying plasmid alone as the amplification of metabolic pathway. 

 In addition, as shown in Figure 2.3, the expression of the OdhI protein in the 

strain ATCC 31831 was very low before penicillin G addition. This phenomenon was 

inconsistent with the result reported by Schultz et al. (2007). They detected the OdhI 

protein by Western blotting, whereas we detected it by SYPRO red staining. Since the 

amplification magnitude of protein abundance for detection in Western blotting is 

generally larger than that in SYPRO red staining, very small amounts of protein(s) can 

be detected by Western blotting. Thus, the abundance of the OdhI protein was shown to 

be very low in SYPRO red staining. The reason why OdhI protein has to be expressed 

after penicillin G addition has been still obscure. However, the disruption of odhI gene 

does not induce glutamate overproduction after triggers as reported by Schultz et al. 
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(2007) and the decrease in ODHC specific activity is an important factor for glutamate 

overproduction as reported by Kawahara et al. (1997). Therefore, the induction of de 

novo synthesis of OdhI protein by penicillin G addition, which causes the decrease in 

ODHC specific activity, is considered to be a reasonable phenomenon. 

 Nakamura et al. (2007) showed that the ODHC specific activity in the mutant 

strain of NCgl1221 gene encoding a possible glutamate exporter was half lower than 

that in the parent strain, indicating that both activation of NCgl1221 protein, which is 

probably caused by conformational change, and the decrease in ODHC specific activity 

occurred in C. glutamicum during glutamate overproduction. In addition, they also 

suggested that the inhibition of ODHC-catalyzed reaction by disruption of odhA gene, 

encoding one of the subunits of ODHC, does not activate NCgl1221 protein, but the 

activation of NCgl1221 protein decreases the ODHC specific activity in C. glutamicum. 

Since the overproduction of OdhI protein by metabolic amplification of odhI gene 

resulted in glutamate overproduction as shown in Figure 2.5, the overproduced OdhI 

protein might be able to activate NCgl1221 protein. The mechanism of 

penicillin-induced glutamate production, including NCgl1221, is speculated as follows: 

(1) penicillin treatment, (2) OdhI production and NCgl1221 activation, (3) decrease in 

ODHC specific activity, and (4) glutamate overproduction. 

 In order for OdhI to exhibit an inhibitory effect on ODHC activity (i.e., binding 

to the E1o subunit of ODHC, OdhA), the dephosphorylation of the specific amino acid 

residue in OdhI is necessary (Barthe et al. 2009; Niebisch et al. 2006; Schultz et al. 

2007). In our experiments, phosphorylated OdhI protein could not be found on the 

two-dimensional gel as shown in Figure 2.2 and 2.3. Moreover, the serine/threonine 

protein kinase (STPK) and phosphatase for OdhI have been already identified: the 
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kinase is encoded by the pknG gene and the phosphatase is encoded by the ppp gene 

(Niebisch et al. 2006; Schultz et al. 2007). On the other hand, Fiuza et al. (2008) 

reported that OdhI is also phosphorylated by other STPKs such as PknA and PknB and 

PknL and that the phosphorylation of OdhI by PknG depends on the phosphorylation of 

PknG by PknA. Although the abundance of STPKs and Ppp proteins might be changed 

by penicillin addition, we could not detect these proteins in this study. Analysis of not 

only the phosphorylation status of OdhI but also the expression of the genes encoding 

STPKs and quantification of the amount of their products during glutamate production 

will be required for a better understanding of glutamate overproduction by C. 

glutamicum. 

 Since the odhI-overexpressing strain produced glutamate after cell growth 

reached the late exponential or early stationary phase, we examined the effect of 

supplemental glucose on glutamate production by the odhI-overexpressing strain when 

the initial glucose was almost consumed, without any triggers. Glucose addition as a 

carbon source during the late exponential phase resulted in continuous glucose 

consumption, although cell growth stopped. Importantly, using the odhI-overexpressing 

strain of C. glutamicum, continuous glutamate production without another biomass 

formation was successfully achieved by supplemental glucose (Figure 2.6). This result 

indicates that glucose added at the late exponential phase was efficiently converted to 

glutamate. However, glucose consumption and glutamate production rates after glucose 

addition were slightly lower than those before glucose addition (Figure 2.6), suggesting 

that high amounts of glucose might be stress for cells. Thus, the level of glutamate 

production in this experiment was slightly increased compared to that shown in Figure 
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2.5. The decrease in glutamate production rate might be overcome by continuous 

glucose feeding to achieve a low glucose concentration in the culture. 

In conclusion, the de novo synthesis of the OdhI protein is absolutely required 

for penicillin-induced glutamate overproduction by C. glutamicum, and odhI 

overexpression as one of metabolic engineering methods for amplification results in 

continuous glutamate overproduction without any triggers. However, it is thought that 

other factors such as the phosphorylation status of OdhI, expression of kinases and 

phosphatase for OdhI, expression of other genes and/or proteins, and metabolic 

regulation are also involved in glutamate overproduction by C. glutamicum. Moreover, 

we could identify eight additional proteins whose amounts were increased followed by 

penicillin G addition (Table 2.1). The effect of artificial overexpression or deletion of 

these genes on glutamate production by C. glutamicum should be further analyzed. 

Furthermore, since we could not identify four proteins, further analyses are needed to 

assess the contribution of these unidentified proteins in glutamate production by C. 

glutamicum.  
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Chapter 3 

 

Effect of odhA overexpression and odhA antisense RNA expression on 

Tween 40-triggered glutamate production by Corynebacterium 

glutamicum  

 

3.1 Introduction 

A coryneform bacterium, C. glutamicum, is a Gram-positive and facultatively 

anaerobic bacterium with a high G+C content. It was originally isolated as a 

glutamate-producing bacterium (Kinoshita et al. 1957; Udaka 1960) and has been used 

for the industrial fermentation of various amino acids such as lysine and threonine 

(Nakayama et al. 1961; Shiio and Nakamori 1970).  

 Among those produced by microbial fermentation, glutamate is one of the 

prominent amino acids. Glutamate overproduction by C. glutamicum is induced by the 

depletion of biotin, which is an essential element for growth (Shiio et al. 1962), by the 

addition of fatty acid ester surfactants such as Tween 40 (polyoxyethylene sorbitan 

monopalmitate; Takinami et al. 1965), by the addition of penicillin, which inhibits 

peptidoglycan biosynthesis (Nara et al. 1964; Nunheimer et al. 1970), or by the addition 

of ethambutol, an antimycobacterial drug which inhibits the biosynthesis of mycolic 

acid in Mycobacteria (Radmacher et al. 2005).  

 The 2-oxoglutarate dehydrogenase complex (ODHC) is a key enzyme in 

glutamate production, which is located at the branch point between the tricarboxylic 

acid (TCA) cycle and the glutamate biosynthesis pathway. ODHC consists of three 

subunits: 2-oxoglutarate dehydrogenase (E1o; EC 1.2.4.2), coded by odhA (Usuda et al. 
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1996); dihydrolipoamide S-succinyltransferase (E2; EC 2.3.1.61), coded by sucB (found 

from the genome sequencing); and dihydrolipoamide dehydrogenase (E3; EC 1.8.1.4), 

coded by lpd (Schwinde et al. 2001). Shingu and Terui (1971) and Kawahara et al. 

(1997) found that ODHC specific activity is dramatically reduced during glutamate 

overproduction. Moreover, metabolic flux analysis revealed that attenuation of ODHC 

activity has a great impact on glutamate production by C. glutamicum (Shimizu et al. 

2003; Shirai et al. 2005). These results suggest that decrease in ODHC specific activity 

is an important factor for producing glutamate by C. glutamicum, leading to increase in 

the metabolic flux for glutamate biosynthesis. 

The odhA deletion strain could produce glutamate in the presence of excess 

biotin; however, this strain showed a severe growth defect under the aerobic conditions, 

implying the necessity of the odhA gene in the cell growth of C. glutamicum (Asakura 

et al. 2007). To solve the problem of cell growth defect in the odhA deletion strain, the 

mutant strains carrying the missense mutation in the odhA gene were constructed using 

in vitro mutagenesis (Nakamura et al. 2006). Although these mutants could produce 

glutamate with less than half of ODHC specific activity of the wild-type strain in the 

presence of excess biotin, they also showed a moderate cell growth defect. Therefore, 

the odhA deletion strain and the odhA mutant strains might not be suitable for industrial 

glutamate production. As an alternative method for down-regulation of the expression 

of the odhA gene and its product, antisense RNA technology was considered as one of 

metabolic engineering approaches for the control of metabolic pathway in this chapter.  

 The antisense RNA technology is recognized as one of the effective methods 

for regulating gene expression at the posttranscriptional level. Almost all of the 

naturally occurring cases of antisense RNA have been found in bacteria (see Wagner 
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and Simons 1994). It forms a complementary duplex between the antisense RNA and 

target messenger RNA (mRNA); thus, translation from the target mRNA is blocked. 

This technology can be also applied to metabolic engineering to control the flow of 

specific metabolic pathways. Therefore, this technology shows promise for application 

in industrial production processes. Among several antisense RNA methods such as 

antisense oligonucleotides, antisense RNA expression, and small interfering RNA (Lee 

and Roth 2003), the antisense RNA expression system was used because of its 

advantages: it is possible to control antisense RNA expression in trans at a certain time 

according to the requirements. Moreover, down-regulation of protein expression by 

antisense RNA offers ease of implementation and flexibility, which are not seen in gene 

deletion or knockout technologies. For example, some studies have demonstrated the 

effectiveness of antisense RNA in the metabolic engineering of Clostridium 

acetobutylicum (Desai and Papoutsakis 1999; Tummala et al. 2003a; Tummala et al. 

2003b). 

In this chapter, we examined the effect of modulation of ODHC specific 

activity by odhA overexpression and odhA antisense RNA expression as metabolic 

engineering approaches for metabolic pathway control of glutamate production by C. 

glutamicum. Moreover, the relationship between changes in ODHC specific activity 

levels and glutamate production due to odhA overexpression or odhA antisense RNA 

expression was also investigated. 
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3.2 Materials and methods  

3.2.1 Bacterial strains, plasmids, and media  

All bacterial strains and plasmids used in this study are listed in Table 3.1. For 

the recombinant DNA techniques, Escherichia coli and C. glutamicum were cultivated 

in Lennox medium (1% polypeptone, 0.5% Bacto yeast extract, 0.5% NaCl, and 0.1% 

glucose; pH 7.2). To escape the restriction system of C. glutamicum, the plasmids 

obtained from the dam dcm mutant strains of E. coli SCS110 were used for the 

transformation (Vertès et al. 1993).  

 For glutamate production assay of C. glutamicum, two culture media were used. 

For seed preparation, a CM2B plate (1% polypeptone, 1% Bacto yeast extract, 0.5% 

NaCl, 10 µg/l D-biotin, and 1.5% agar; pH 7.2; Miwa et al. 1985) was used. For the 

preculture, the synthetic medium (Shirai et al. 2006) used was 80 g glucose, 30 g 

(NH4)2SO4, 3 g Na2HPO4, 6 g KH2PO4, 2 g NaCl, 3.9 mg FeCl3, 0.9 mg ZnSO4·7H2O, 

0.3 mg CuCl2·2H2O, 5.56 mg MnSO4·5H2O, 0.1 mg (NH4)6Mo7O24·4H2O, 0.3 mg 

Na2B4O7·10H2O, 0.4 g MgSO4·7H2O, 40 mg FeSO4·7H2O, 84 mg CaCl2, 500 μg 

thiamin hydrochloride, 0.1 g ethylenediaminetetraacetic acid, and 10 μg biotin, per liter 

of deionized water (pH 7.2). To avoid the decrease in pH throughout culture using 

Sakaguchi flask, 25 g/l of CaCO3 was added to the culture broth. The composition of 

the medium for the main culture was the same as that for the preculture except for the 

concentration of biotin (20 µg/l). When necessary, kanamycin (20 μg/ml for the E. coli 

strains and 10 μg/ml for the C. glutamicum strains) or ampicillin (50 µg/ml for E. coli) 

was added to the medium. 
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Table 3.1 Bacterial strains and plasmids used in this study. 

Strain/plasmid Relevant characteristics Reference/source  

Strains   

E. coli    
JM109 recA1 endA1 gyrA96 thi hsdR17 supE44 relA1 Δ(lac-proAB)/F′

(traD36 proAB+ lacIq lacZΔM15) 
Yanisch-Perron et al. 1985 

SCS110 rpsL (Strr) thr leu endA thi-1 lacY galK galT ara tonA tsx dam 

dcm supE44 Δ(lac-proAB)/F′(traD36 proAB+ lacIq lacZΔM15) 

Stratagene, La Jolla, CA, USA; 
Westmoreland et al. 1997 

C. glutamicum   
ATCC 13032 Wild- type National Institute of Technology 

and Evaluation, Biological 
Resource Center, Japan 

Plasmids   
pECt E. coli–C. glutamicum shuttle expression plasmid Sato et al. 2008 
pECt-odhA C. glutamicum odhA gene on pECt Kim et al. 2009 
pECt-Anti-odhA odhA antisense RNA (3837 bp) on pECt  Kim et al. 2009 
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Table 3.2 Primers for PCR of odhA gene fragments to construct the odhA overexpressing and odhA antisense RNA expressing plasmids. 

Plasmid carrying the amplified odhA 
gene fragment 

Primer sequence Restriction enzymes for 
cloning 

pECt-odhA 5′-CAAATACATGTTACAACTGGGGCTTAGG-3′ 
5′-CCATCGGATCCCTCGAGCTGCGTTGTGG-3′ 

PciI 
BamHI 

pECt-Anti-odhA 5′-AAGTCGACTACGCCCGCATGTG-3′ 
5′-GGGACATGTTTAAGCCTCGAAAGCCTCG-3′ 

SalI 
PciI 

Restriction sites artificially added for cloning are underlined. 

 

 

 

 
 

Figure 3.1 The target region of odhA antisense RNA on pECt-Anti-odhA. Numbers indicate the position of the nucleotides when the position 

of the first ‘irst tthe initiation codon GTG for the odhA gene was defined as +1, as determined by Asakura et al. (2007). SD, Shine-Dalgarno 

sequence encompassing -11 to -16 regions in the upstream region of the odhA gene. 

odhA gene
C. glutamicum
genomic DNASD

pECt-Anti-odhA +3666

-16
-171

+1

-11
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3.2.2 Construction of odhA gene and odhA antisense RNA expressing strains, 

respectively 

The target regions for odhA overexpression and odhA antisense RNA 

expression for metabolic pathway control were, respectively, amplified by polymerase 

chain reaction (PCR) from the genomic DNA of C. glutamicum ATCC 13032 using 

Z-Taq DNA polymerase (Takara Bio, Shiga, Japan) and the primers shown in Table 3.2. 

The PCR products were cloned in a pGEM-T easy vector (Promega, Madison, WI, 

USA), and the sequences of the cloned PCR products were confirmed using a BigDye 

terminator cycle sequencing kit v1.1 (Applied Biosystems, Foster City, CA, USA) and 

an ABI PRISM 310 genetic analyzer (Applied Biosystems).  

 For the construction of the odhA overexpression plasmid pECt-odhA, the PCR 

product corresponding to the odhA gene on the pGEM-T easy vector was digested with 

PciI and BamHI, and then cloned into the NcoI and BamHI sites of the E. coli–C. 

glutamicum shuttle expression plasmid pECt (Sato et al. 2008). 

 For the construction of the odhA antisense RNA expression plasmid, the PCR 

product on the pGEM-T easy vector was digested using appropriate restriction enzymes, 

as shown in Table 3.2, and then inserted into pECt in an antisense orientation relative to 

the open reading frame of the odhA gene including the coding regions and ribosome 

binding site, as shown in Figure 3.1.  

The resulting plasmids, pECt-odhA for odhA overexpression and 

pECt-Anti-odhA for odhA antisense RNA expression, were introduced into the C. 

glutamicum wild-type strain ATCC 13032, respectively. In the odhA overexpressing 

and odhA antisense RNA expressing strain, the expression of the odhA gene and odhA 

antisense RNA cloned under the trc promoter on pECt were induced by addition of 
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isopropyl-β-D-thiogalactoside (IPTG). 

 

3.2.3 Culture conditions for glutamate production assay 

In this study, Sakaguchi flask culture was used for preliminary evaluation of 

glutamate production because of its easy operation. However, since C. glutamicum 

requires a lot of oxygen supply for its growth and glutamate production, Sakaguchi 

flask culture is not suitable for detailed evaluation of glutamate production by C. 

glutamicum because of the disadvantage in supplying oxygen into the culture broth. 

Moreover, a large amount of C. glutamicum cells was necessary for measurement of 

ODHC specific activity. Therefore, for further evaluation of effects of odhA 

overexpression and odhA antisense RNA expression on glutamate production and 

ODHC specific activity, we used a jar bioreactor, which enables to supply enough 

amount of oxygen to the culture by changing the agitation speed and to obtain a large 

amount of C. glutamicum cells.  

The C. glutamicum strains carrying pECt, pECt-odhA and pECt-Anti-odhA, 

respectively, were grown at 30°C for 24 h on a CM2B plate for seed preparation. For 

the preculture, cells on the CM2B plate were collected and inoculated into 40 ml of the 

synthetic medium in a Sakaguchi flask and then incubated aerobically at 31.5°C. 

Seventeen hours after incubation, 1 ml of this preculture was inoculated into 40 ml of 

the synthetic medium in a Sakaguchi flask for glutamate production assay, and the cells 

were cultivated for 38 h at 31.5°C.  

In jar bioreactor culture, 80 ml of the preculture was inoculated into 2 l of 

the synthetic medium in a 5-l jar bioreactor (KMJ-5B; Mitsuwa Rikagaku, Osaka, 

Japan), and the cells were aerobically cultivated at 31.5°C. The agitation speed was 
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changed to allow enough oxygenation, and the airflow rate was maintained at 2 l/min. 

The pH was maintained at 7.2 by automatic addition of 14% (v/v) ammonia solution, 

which was also supplied as a nitrogen source. Foaming was controlled by the addition 

of an antifoaming agent (Disfoam GD-113K; NOF, Japan). After cell growth reached 

the early exponential phase (OD660 = 12), Tween 40 was added to the medium in order 

to achieve the final concentrations of 4 mg/ml for triggering glutamate production in 

both flask and jar bioreactor. Expression of the odhA gene and odhA antisense RNA was 

induced by IPTG addition into the culture media, at the appropriate time, at a final 

concentration of 0.1 mM for odhA overexpression and 1 mM for odhA antisense RNA 

expression for the purposeful alteration of metabolic pathway, respectively.  

 

3.2.4 Measurements of cell growth and glucose and glutamate concentrations 

Cell growth was monitored by measuring the optical density of the culture at 

660 nm (OD660) using a spectrophotometer (U-2000; Hitachi High-Technologies, Tokyo, 

Japan) after dilution of the culture with 0.2 M HCl to dissolve CaCO3. Glucose and 

glutamate in the supernatant were measured using a biochemical analyzer (2700; YSI, 

Yellow Springs, OH, USA) and F-kit glutamate (R-Biopharm AG, Darmstadt, 

Germany), respectively.  

 

3.2.5 Measurement of ODHC specific activity 

ODHC specific activity was measured according to the method described by 

Shiio and Ujigawa-Takeda (1980). C. glutamicum cells were harvested, washed twice 

with 0.2% KCl, and suspended in 3 ml of 0.1 M N-tris(hydroxymethyl) 

methyl-2-aminoethanesulfonic acid (TES)·NaOH buffer (pH 7.7) containing 30% (v/v) 
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glycerol. Cells were disrupted by sonication and then centrifuged to remove the cell 

debris. One milliliter of the supernatant, applied to the gel filtration column (PD-10 

Desalting Column; GE Healthcare UK, Buckinghamshire, UK) to remove 

low-molecular-weight compounds, was used for the enzyme assay. 

 The reaction mixture was prepared as follows: 100 mM TES·NaOH (pH 7.7), 5 

mM MgCl2, 3 mM cysteine, 0.3 mM thiamine pyrophosphate, 0.2 mM coenzyme A, 1 

mM 3-acetylpyridine adenine dinucleotide (APAD+) instead of oxidized form of 

nicotinamide adenine dinucleotide (NAD+), and 150 µl of the cell extract. After addition 

of 1 mM 2-oxoglutarate to the reaction mixture, the initial increase in the absorbance of 

APADH at 365 nm was measured at 31.5°C for 3 min with 15-s intervals. ODHC 

specific activity was defined as the amount of enzyme required for the conversion of an 

equivalent of 1 µmol of NAD+ into reduced form of nicotinamide adenine dinucleotide 

(NADH) in 1 min. The concentration of total protein in the crude extract was 

determined by Bradford’s method (Bradford 1976) using a Bio-Rad protein assay kit 

(Bio-Rad Laboratories, Hercules, CA, USA).  
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3.3 Results  

3.3.1 Confirmation of OdhA protein overexpression in the odhA overexpressing 

strain of C. glutamicum 

Overexpression of the OdhA protein in C. glutamicum ATCC 13032 carrying 

pECt-odhA was verified by 7.5% sodium dodecyl sulfate (SDS)-polyacrylamide gel 

electrophoresis. Cells of the ATCC 13032 strains carrying pECt-odhA and pECt, 

respectively, were cultured at 30°C and harvested 2, 4, and 6 h after IPTG addition. 

Proteins were obtained from the harvested cells by sonication and then separated by 

SDS-polyacrylamide gel.  

 

  

Figure 3.2 Confirmation of OdhA overexpression in the odhA overexpressing strain. All 

the cellular proteins from the ATCC 13032/pECt-odhA and ATCC 13032/pECt strains 

separated by 7.5% SDS-polyacrylamide gel electrophoresis is shown. Lane 1 proteins from 

the cells of ATCC 13032/pECt-odhA before IPTG addition; lane 2-4 proteins obtained from 

the cells of ATCC 13032/pECt-odhA 2 h, 4 h, and 6 h after 0.1 mM IPTG addition, 

respectively; lane 5 proteins obtained from the cells of ATCC 13032/pECt 6 h after IPTG 

addition; arrow the position corresponding to the OdhA protein (138.8 kDa) 

OdhA
175

83

62

47.5

(kDa) 1 2 3 4 5
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As shown in Figure 3.2, the protein band with a molecular mass of about 140 

kDa, corresponding to the OdhA protein, was detected in ATCC 13032/pECt-odhA but 

not in ATCC 13032/pECt after visualization with Coomassie Brilliant Blue staining; 

therefore, OdhA overexpression was successfully exhibited in the odhA overexpressing 

strain. 

 

3.3.2 Effect of odhA overexpression on glutamate production triggered by 

Tween 40 addition 

To investigate the effect of odhA overexpression on glutamate production, jar 

bioreactor cultures of ATCC 13032/pECt-odhA and ATCC 13032/pECt were carried 

out under Tween 40-triggered glutamate production. When cell growth reached the 

early exponential phase (OD660 = 12), Tween 40 for triggering glutamate production and 

IPTG for odhA overexpression were simultaneously added to the media.  

 As shown in Figure 3.3, cell growth was reduced and glutamate was produced 

in both ATCC 13032/pECt-odhA and ATCC 13032/pECt by Tween 40 addition. 

However, in the presence of IPTG, the ATCC 13032/pECt-odhA strain showed 

significantly low glutamate production (less than 4 g/l) and the increase in ODHC 

specific activity in spite of Tween 40 addition; on the other hand, the control strain 

ATCC 13032/ pECt showed the decreased ODHC specific activity and glutamate 

production (about 18 g/l). These results indicate that the increase in ODHC specific 

activity by odhA overexpression resulted in the decreased glutamate production, and 

supports the view (see Shingu and Terui 1971; Kawahara et al. 1997; Shimizu et al. 

2003; Shirai et al. 2005) that decrease in ODHC specific activity is an important factor 

for glutamate overproduction by C. glutamicum. 
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Figure 3.3 Cell growth (A, circles), glucose consumption (A, squares), glutamate production (B, triangles), and relative ODHC specific 

activity (C, diamonds) of the odhA overexpressing strain ATCC 13032/pECt-odhA (closed symbols) and the control strain ATCC 13032/pECt (open 

symbols) under Tween 40-triggered glutamate production in jar bioreactor culture. Arrows indicate both IPTG and Tween 40 addition for odhA 

overexpression and triggering glutamate overproduction, respectively 
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3.3.3 Effect of odhA antisense RNA expression on glutamate production in flask 

culture 

It was assumed that controlling the expression level of the OdhA protein by 

odhA antisense RNA expression as a metabolic engineering approach leads to the 

change of glutamate production in C. glutamicum. Therefore, we developed C. 

glutamicum strain carrying the odhA antisense RNA expression plasmid 

pECt-Anti-odhA and examined glutamate production by this strain. The target region 

for the antisense RNA on the pECt-Anti-odhA includes the ribosome binding site and 

complete coding region of odhA gene. The odhA antisense RNA expression was 

induced by 1 mM IPTG addition at the early exponential growth phase.  

 In the flask culture, neither was cell growth and glucose consumption of C. 

glutamicum affected, nor was there any significant increase in glutamate production by 

odhA antisense RNA expression only in the ATCC 13032/pECt-Anti-odhA strain 

(Figure 3.4). Under Tween 40 addition condition, cell growth of the odhA antisense 

RNA expressing strain with IPTG addition was similar to that without IPTG addition; 

exponential growth was initially observed, and then the cell growth was reduced after 

Tween 40 addition (Figure 3.4A). As expected, Tween 40 addition induced glutamate 

production in the odhA antisense RNA expressing strain (Figure 3.4C). Moreover, the 

level of Tween 40-triggered glutamate production with IPTG addition was higher than 

that with no IPTG added (Figure 3.4C). These results indicate that the expression of 

odhA antisense RNA as a metabolic engineering approach can further enhance Tween 

40-triggered glutamate production by C. glutamicum. 
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Figure 3.4 Cell growth (A), glucose consumption (B), and glutamate production (C) of the odhA antisense RNA expressing strain ATCC 

13032/pECt-Anti-odhA in Sakaguchi flask culture. The representative results of three independent experiments under each culture condition are 

shown. Arrows Tween 40 and IPTG addition; open circles neither IPTG nor Tween 40 addition; closed circles IPTG addition; open triangles Tween 

40 addition; closed triangles both Tween 40 and IPTG addition 
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Figure 3.5 Cell growth (A, circles), glucose consumption (A, squares), glutamate production (B, triangles), and relative ODHC specific 

activity (C, diamonds) of the odhA antisense RNA expressing strain ATCC 13032/pECt-Anti-odhA by odhA antisense RNA expression without any 

triggers for glutamate overproduction in jar bioreactor culture. Arrows IPTG addition for odhA antisense RNA expression; open symbols without 

IPTG addition; closed symbols with IPTG addition 
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3.3.4 Effect of odhA antisense RNA expression on glutamate production without 

any triggers in jar bioreactor cultures 

Decrease in ODHC specific activity in the TCA cycle is one of the important 

factors for producing glutamate (Shingu and Terui 1971; Kawahara et al. 1997). To 

further investigate the effect of odhA antisense RNA expression on glutamate 

production and ODHC specific activity in C. glutamicum without any triggers, the odhA 

antisense RNA expressing strain was cultivated in a jar bioreactor. 

 As shown in Figure 3.5, ODHC specific activity in this strain in the presence of 

IPTG (i.e., odhA antisense RNA expressing condition) was lower than that in the 

absence of IPTG, suggesting that odhA antisense RNA expression can indeed lead to 

decrease in ODHC specific activity. However, no significant glutamate production was 

achieved by expression of odhA antisense RNA only (less than 1 g/l) as shown in Figure 

3.5B. In addition, in the odhA antisense RNA expressing strain, cell density became 

significantly high (OD660 = over 140) in a short time and glucose consumption was also 

high in both the absence and presence of IPTG (Figure 3.5A). From the mid-exponential 

to the early stationary phases, cell density and glucose consumption in the presence of 

IPTG were slightly lower than those in the absence of IPTG. It was assumed that the 

decreased cell density and glucose consumption by IPTG addition results from the 

malfunction of TCA cycle due to the decrease in ODHC specific activity, leading to the 

decreased cell growth by expression of odhA antisense RNA. These results suggest that 

the expression of odhA antisense RNA constructed in this study alone is able to 

decrease ODHC specific activity, leading to slight decrease in cell growth and substrate 

consumption; however, it does not directly lead to glutamate production by C. 

glutamicum. This means that decrease in ODHC specific activity might not be the only 
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factor for glutamate overproduction by C. glutamicum. 

 

3.3.5 Effect of odhA antisense RNA expression on glutamate production 

triggered by Tween 40 addition 

For further investigation on the effect of odhA antisense RNA expression under 

Tween 40-triggered glutamate production, jar bioreactor cultures of the odhA antisense 

RNA expressing strain was also carried out. 

 Figure 3.6 shows the time course for cell growth, glucose consumption, 

glutamate production, and ODHC specific activity of the odhA antisense RNA 

expressing strain under Tween 40-triggered glutamate production. Similar to results 

obtained by the Sakaguchi flask culture experiments (Figure 3.4), Tween 40 addition 

resulted in reduced cell growth and glutamate overproduction; Tween 40-triggered 

glutamate production was enhanced about 10% at 34 h in the ATCC 

13032/pECt-Anti-odhA strain by IPTG-induced odhA antisense RNA expression as 

shown in Figure 3.6B. Moreover, ODHC specific activity in the ATCC 

13032/pECt-Anti-odhA was further lowered by odhA antisense RNA expression under 

Tween 40-triggered glutamate production, leading to enhanced glutamate production in 

jar bioreactor culture (Figure 3.6B and C). Our results shown in this chapter suggest that 

the metabolic engineering approach by the odhA antisense RNA expression is effective 

for the enhancement of glutamate production triggered by Tween 40 addition. 
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Figure 3.6 Cell growth (A, circles), glucose consumption (A, squares), glutamate production (B, triangles), and relative ODHC specific 

activity (C, diamonds) of the odhA antisense RNA expressing strain ATCC 13032/pECt-Anti-odhA under Tween 40-triggered glutamate production 

in jar bioreactor culture. Average with standard deviation in three independent experiments is shown. Arrows Tween 40 and/or IPTG addition; open 

symbols with Tween 40 addition only; closed symbols with both Tween 40 and IPTG addition 
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3.4 Discussion 

 It has been already demonstrated that decrease in ODHC specific activity is one 

of the key factors in glutamate overproduction by C. glutamicum, which is triggered by 

biotin depletion, penicillin addition, or Tween 40 addition (Shingu and Terui 1971; 

Kawahara et al. 1997). Therefore, we focused on the relationship between change in 

ODHC specific activity and glutamate production triggered by Tween 40 addition. In 

this study, the effects of odhA overexpression and the odhA antisense RNA expression 

were analyzed to further investigate the role of the odhA gene and its product in 

glutamate production by C. glutamicum. 

First, the odhA overexpressing strain was constructed by introducing a 

plasmid pECt-odhA carrying the C. glutamicum odhA gene cloned under trc promoter 

on E. coli–C. glutamicum shuttle expression plasmid pECt (Sato et al. 2008). As 

expected, ODHC specific activity was increased, and glutamate production was 

concomitantly decreased by the odhA overexpression under Tween 40-triggered 

glutamate production condition (Figure 3.3). This result supports the view that the 

decrease in ODHC specific activity is important for glutamate production by C. 

glutamicum as described in “Introduction” section. In spite of the increase in ODHC 

specific activity and low glutamate production, the cell growth and glucose 

consumption in the odhA-overexpressing strain was lower than those in Tween 

40-treated ATCC 13032/pECt strain. Since ODHC catalyzes the formation of NADH as 

well as succinyl-CoA, ODHC activity by the overexpression of odhA may increase the 

level of these metabolites. The relationship among changes in the balance of metabolites 

level, redox and cell growth should be carefully examined in the future. 

 Asakura et al. (2007) reported that the odhA deletion strain could produce 
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glutamate without any triggers; however, this strain showed a severe growth defect 

under the aerobic growth conditions, implying the necessity of the odhA gene in C. 

glutamicum. To improve cell growth, the mutant strains carrying the missense mutation 

in the odhA gene were constructed using PCR-based in vitro mutagenesis (Nakamura et 

al. 2006). Although these mutants could produce glutamate with less than half of ODHC 

specific activity of the wild-type strain in the presence of excess biotin, they also 

showed a moderate growth defect. In these respect, the odhA deletion strain and the 

odhA mutant strains might not be suitable for industrial glutamate production. As an 

alternative method for down-regulation of the expression of the odhA gene and its 

product, antisense RNA technology as a metabolic engineering approach was 

considered for this study. This technology shows promise for application in industrial 

production processes. Among several antisense RNA methods such as antisense 

oligonucleotides, antisense RNA expression, and small interfering RNA (Lee and Roth 

2003), the antisense RNA expression system was used because of its advantages: it is 

possible to control antisense RNA expression in trans at a certain time according to the 

requirements. 

 In this chapter, we attempted to decrease the ODHC specific activity through 

odhA antisense RNA expression as a metabolic engineering approach. It was expected 

that the expressed odhA antisense RNA hybridizes to the complementary sequence of 

the target mRNA and leads to translation stoppage from the odhA mRNA, resulting in 

decrease in ODHC specific activity. To evaluate the effect of odhA antisense RNA 

expression on glutamate production, the C. glutamicum strain carrying the odhA 

antisense RNA expression plasmid was constructed and cultivated by both Sakaguchi 

flask and jar bioreactor methods. It has been assumed that decrease in ODHC specific 
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activity leads to malfunction of TCA cycle, and as a result, cell growth and substrate 

uptake decrease and probably glutamate production is induced. As shown in Figures 

3.5C and 3.6C, we could confirm that odhA antisense RNA expression could decrease 

ODHC specific activity. Although the level of decrease in ODHC specific activity in the 

odhA antisense RNA-expressing strain was similar to those in the ATCC 13032/pECt 

treated with Tween 40, cell growth and glucose consumption in the odhA antisense 

RNA-expressing strain became higher than those in the Tween 40-treated ATCC 

13032/pECt strain (Figures 3.3 and 3.5). As is well known, Tween 40 affects the 

biosynthesis of fatty acids, particularly mycolic acid that is one of the components in 

cell wall of C. glutamicum. Therefore, the cell growth and glucose consumption might 

be decreased in the Tween 40-treated C. glutamicum strain due to the malfunction of 

TCA cycle and fatty acid biosynthesis.  

Moreover, odhA antisense RNA expression alone could not achieve glutamate 

production (Figure 3.5B), but it could enhance glutamate production triggered by 

Tween 40 addition (Figure 3.6B). No glutamate production in the odhA antisense 

RNA-expressing strain without triggers suggests that not only decrease in ODHC 

specific activity but other factors as well might contribute to glutamate production by C. 

glutamicum. It can be thought that other factor(s) triggered by Tween 40 addition is 

important for glutamate overproduction in the odhA antisense RNA-expressing strain. 

Therefore, other factors have to be considered to explain the precise mechanism of 

glutamate overproduction by C. glutamicum. Niebisch et al. (2006) identified the OdhI 

protein that directly binds to the OdhA protein (one of the subunits of ODHC) and 

inhibits ODHC activity. The phosphorylation status of OdhI is controlled by 

serine/threonine protein kinase G (PknG) and the phosphatase (Ppp; Schultz et al. 2007). 
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The unphosphorylated OdhI can bind to the OdhA protein and thus inhibit ODHC 

activity. Moreover, it was shown that the deletion strain of the odhI gene impaired 

glutamate production under biotin depletion, penicillin addition, and Tween 40 addition, 

indicating that inhibition of ODHC activity by the OdhI protein is essential for 

glutamate production (Schultz et al. 2007).  



 68

Chapter 4 

 

Expression changes of OdhA and OdhI proteins during glutamate 

overproduction in Corynebacterium glutamicum  

 

4. 1 Introduction 

The mechanism of glutamate overproduction in C. glutamicum is not 

completely understood at present. However, it has been demonstrated that glutamate 

production is accompanied by a decrease in 2-oxoglutarate dehydrogenase complex 

(ODHC) activity, triggered by biotin depletion, penicillin addition, or Tween 40 

addition (Shingu and Terui 1971; Kawahara et al. 1997). Inhibition of ODHC activity is 

caused by the complex between the E1o subunit OdhA of ODHC and unphosphorylated 

OdhI (Niebisch et al. 2006). Using copurification and surface plasmon resonance 

experiments with the different OdhI and OdhA length variants, Krawczyk et al. (2010) 

revealed that the entire forkhead-associated (FHA) domain of OdhI and the C-terminal 

dehydrogenase domain of OdhA are required for interaction. Moreover, the FHA 

domain was also sufficient for inhibition of ODHC activity. However, phosphorylated 

OdhI was binding-incompetent to the C-terminal dehydrogenase domain of OdhA, 

relieving the inhibition of ODHC activity (Krawczyk et al. 2010). Moreover, OdhI can 

also be phosphorylated, not only by PknG, but also by other serine/threonine protein 

kinases (STPKs) present in C. glutamicum, such as PknA, PknB, and PknL (Schultz et 

al. 2009). This phosphorylation of OdhI by STPKs relieves the inhibition of ODHC 

activity. Dephosphorylation of OdhI is catalyzed by the phosphatase domain of the 

phospho-serine/threonine protein phosphatase Ppp in vitro, confirming that OdhI is a 



 69

substrate of Ppp (Krawczyk et al. 2010). In these respects, the phosphorylation status of 

the OdhI protein is also of key importance for glutamate production in C. glutamicum 

(Schultz et al. 2007).  

Protein expression and its phosphorylation status changes play important roles 

in prokaryotic signaling and regulation. However, the dynamics of protein expression 

and its phosphorylation status during glutamate overproduction in C. glutamicum is still 

not reported. In these respects, the expression change of some proteins, such as OdhA 

and OdhI, would also be one of the important factors for understanding the cellular state 

of glutamate production in C. glutamicum. In this chapter, it was assumed that 

glutamate production accompanied by inhibition of ODHC activity might be affected by 

the expression change of some proteins, such as OdhA and OdhI. Therefore, the 

correlation between glutamate production and the expression change of OdhA and OdhI 

proteins were investigated by Western blotting under glutamate production conditions 

in C. glutamicum. 
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4.2 Materials and methods  

4.2.1 Bacterial strains, media, and culture conditions 

All strains and plasmids used in this study are listed in Table 4.1. The strain 

used for cloning and overexpression of OdhA and OdhI proteins was Escherichia coli 

BL21 (DE3) containing pLysS (Studier and Moffatt, 1986). All E. coli strains in a test 

tube were grown and maintained aerobically in Lennox (L) medium (1% polypeptone, 

0.5% Bacto yeast extract, 0.5% NaCl, and 0.1% glucose; pH 7.2).  

In this study, Sakaguchi flask culture was used for investigation of protein 

expression and glutamate production assays. Two culture media were used for C. 

glutamicum. A CM2B plate (1% polypeptone, 1% Bacto yeast extract, 0.5% NaCl, 10 

µg/l D-biotin, and 1.5% agar; pH 7.2; Miwa et al. 1985) was used for the main culture. 

For the preculture, the synthetic medium (Shirai et al. 2006) used was 80 g glucose, 30 

g (NH4)2SO4, 3 g Na2HPO4, 6 g KH2PO4, 2 g NaCl, 3.9 mg FeCl3, 0.9 mg ZnSO4·7H2O, 

0.3 mg CuCl2·2H2O, 5.56 mg MnSO4·5H2O, 0.1 mg (NH4)6Mo7O24·4H2O, 0.3 mg 

Na2B4O7·10H2O, 0.4 g MgSO4·7H2O, 40 mg FeSO4·7H2O, 84 mg CaCl2, 500 μg 

thiamin hydrochloride, 0.1 g ethylenediaminetetraacetic acid, and 20 μg biotin, per liter 

of deionized water (pH 7.2). Using a Sakaguchi flask, 25 g/l of CaCO3 was added to the 

culture medium in order to avoid a decrease in pH throughout the culture. When 

necessary, media were supplemented with 34 µg/ml chloramphenicol, 20 µg/ml 

kanamycin (E. coli), or 10 µg/ml kanamycin (C. glutamicum). 
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Table 4.1 Bacterial strains, plasmids, and primers used in this study. 

Strain/plasmid Relevant characteristics Reference/source  

Strains   

E. coli    
BL21(DE3) F- ompT hsdSB (rB-mB-) gal dcm (DE3) Studier and Moffatt 1986 
BL21(DE3)/ pLysS  F- ompT hsdSB (rB-mB-) gal dcm (DE3) pLysS (CamR) Studier and Moffatt 1986 
BL21(DE3)/ pLysS/pET-28b(+)-odhA C. glutamicum odhA gene on pET-28b(+) in BL21(DE3)/pLysS  
BL21(DE3)/ pLysS/pET-28b(+)-odhI C. glutamicum odhI gene on pET-28b(+) in BL21(DE3)/pLysS   

C. glutamicum   
ATCC 31831 Wild-type National Institute of Technology 

and Evaluation, Biological 
Resource Center, Japan 

ATCC 13032 Wild-type National Institute of Technology 
and Evaluation, Biological 
Resource Center, Japan 

Plasmids   
pHT1 E. coli–C. glutamicum shuttle vector Hirasawa et al. 2003 
pHT1-odhI C. glutamicum odhI gene on pHT1 Kim et al. 2010 
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Table 4.2 Primers for PCR of the odhA and odhI genes for construction of OdhA and OdhI overexpression plasmids in E. coli, respectively. 

 Primer sequence Restriction enzymes for cloning 

OdhA overexpression 5′-CCCGCTAGCGTGAGCAGCGCTAGTAC-3′ 
5′-CCGGATCCTTAAGCCTCGAAAGCC-3′ 

NheI 
BamHI 

OdhI overexpression 5′-GGGGCTAGCATGAGCGACAACAACGG-3′ 
5′-GGGGATCCTTACTCAGCAGGGCCTG-3′ 

NheI 
BamHI 

Restriction sites artificially added for cloning are underlined. 
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After dilution of the culture with 0.2 N HCl to dissolve CaCO3 in case of the C. 

glutamicum strains, cell growth was monitored by measurement of optical density at 

600 nm (OD600) for E. coli strains and at 660 nm for C. glutamicum strains using a 

spectrophotometer (U-2000; Hitachi High-Technologies, Tokyo, Japan). Glutamate 

concentrations in the supernatant were measured by an F-kit glutamate (R-Biopharm 

AG, Darmstadt, Germany).  

 

4.2.2 Overexpression of OdhA and OdhI proteins in E. coli 

DNA fragments encoding OdhA and OdhI were respectively amplified by PCR 

with Z-Taq DNA polymerase using C. glutamicum ATCC 13032 genomic DNA as a 

template and the oligonucleotide pairs (Table 4.2). The resulting DNA fragments, 

confirmed by DNA sequence using the dideoxy method, as previously described, were 

digested with both BamHI and NheI, and then cloned into the BamHI/NheI sites of the 

expression plasmids pET-28b(+), resulting in pET-28b(+)-odhA and pET-28b(+)-odhI, 

respectively. These resultant plasmids were transferred into E. coli BL21(DE3)/pLysS 

(Studier and Moffatt 1986), resulting in E. coli BL21(DE3)/pLysS/pET-28b(+)-odhA 

and E. coli BL21(DE3)/pLysS/pET-28b(+)-odhI, respectively.  

The strains, E. coli BL21(DE3)/pLysS/pET-28b(+)-odhA and E. coli 

BL21(DE3)/pLysS/pET-28b(+)-odhI, were aerobically cultivated at 30°C in 100 ml of 

L medium (1% polypeptone, 0.5% Bacto yeast extract, 0.5% NaCl, and 0.1% glucose; 

pH 7.2) containing 20 μg/ml kanamycin and 34μg/ml chloramphenicol. When cell 

growth reached an early exponential phase (OD600=around 0.5) after inoculation of the 

preculture to be the initial 0.1 OD600 into new fresh L medium, 100 µM final 

concentration of isopropyl-β-D-thiogalactopyranoside (IPTG) was added to the culture 
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medium for overexpression of the target OdhA and OdhI proteins, respectively. 

Followed by another 12 h incubation period at 20°C, each cell pellet was harvested by 

centrifugation at 9,500 × g for 5 min at 4°C.  

 

4.2.3 Purification of OdhA and OdhI proteins from E. coli 

Cell pellets were washed twice, re-suspended in 100 ml of a binding buffer 

containing 20 mM imidazole, treated by enzymatic lysis buffer (0.2 mg/ml lysozyme, 1 

mM MgCl2, 1 mM PMSF, and 20 µg/ml DNase) supplemented with protease inhibitor 

cocktail (Sigma, Saint Louis, MO, USA), and then disrupted by ultrasonic homogenizer 

(UH-50, SMT Co. Ltd., Tokyo, Japan) at 50 W for 30 s with 30 s intervals for twenty 

times on ice. Lysates were centrifuged at 9,500 × g for 10 min at 4°C for removal of 

cellular debris; the supernatant was then loaded onto a 5 ml HisTrap FF crude kit (GE 

Healthcare) equilibrated in the lysis buffer for OdhA and OdhI protein purification, 

respectively. After washing the column with the binding buffer, the His6-tagged bound 

OdhA and OdhI proteins were eluted by application of 1x phosphate buffer containing 

100 mM imidazole, respectively. The elution fractions of the purified His6-tagged OdhA 

and OdhI proteins, confirmed by 12.5% SDS-PAGE, were concentrated and exchanged 

against 10 mM Tris buffer by application of Amicon Ultra-15 Centrifugal Filter Devices 

(Millipore Corporation USA) with a molecular weight cut-off of 100 kDa for the OdhA 

protein and Amicon Ultra-4 Centrifugal Filter Devices (Millipore Corporation USA) 

with a molecular weight cut-off of 10 kDa for the OdhI protein, respectively. Purified 

His6-tagged OdhA and OdhI proteins were used for production of rabbit anti-OdhI 

polyclonal antibodies (Gene Design, Japan) with six times of boosting for two months, 

respectively.  
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4.2.4 Protein preparation and protein determination  

C. glutamicum cells in Sakaguchi flasks were harvested by centrifugation at 

9,500 × g for 5 min at 4°C, washed twice, and suspended in 500 μl of 50 mM sodium 

phosphate buffer (pH 7.0) containing 12.5% protease inhibitor cocktail for use with 

bacterial cell extracts (Sigma, Saint Louis, MO, USA). The cells were then disrupted by 

the BIORUPTORR (UCD-250HSA, Cosmo Bio Co., LTD, Japan) at 250 W for 10 s 

with 20 s intervals for fifteen times and centrifuged at 9,500 × g for 5 min at 4°C for 

removal of cellular debris. Supernatant containing 20 µg of total proteins was used for 

SDS-PAGE. Concentrations of protein samples were determined by Bradford’s method 

(Bradford 1976) using a Bio-Rad protein assay kit and bovine serum albumin as 

standard (Bio-Rad Laboratories, Hercules, CA, USA).  

 

4.2.5 Analysis of protein expression by Western blotting  

For analysis of protein expression of OdhA and OdhI during glutamate 

production in C. glutamicum by Western blotting analysis using OdhA and OdhI 

antibodies, SDS-PAGE was performed in 7.5% or 12.5% separating gels for OdhA and 

OdhI proteins, respectively. Prior to loading on a gel, 20 µg of each total protein aliquot 

was combined with 3× loading buffer [125 mM Tris-HCl, pH 7.0, 4% (w/v) SDS, 20% 

(v/v) glycerol, 10% (v/v) 2-mercaptoethanol, and 0.01% (w/v) bromophenol blue] and 

heated at 98°C for 5 min. Electrophoresis was performed at constant voltage (50 V) for 

30 min in stacking gels and subsequently at 100 V for about 2 h in separating gels. 

Proteins were fixed in the gels by gentle shaking with 25 mM Tris, 192 mM glycine, 

and 25% methanol. Separated and fixed proteins on SDS-PAGE were then 

electroblotted onto nitrocellulose membranes (Hybond-P membrane, Amersham 
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Bioscineces) using a Mini Semi-Dry Transfer Cell (BE-310, Bio Craft, Japan) at 45 mA 

for 45 min in buffer containing 25 mM Tris, 192 mM glycine, and 20% methanol 

(Towbin et al. 1979).  

Blots were blocked at room temperature with 5% (w/v) membrane blocking 

reagent in phosphate buffered saline (PBS; 80 mM Na2HPO4, 20 mM NaH2PO4, 100 

mM NaCl, pH 7.5) containing 0.1% (v/v) Tween20 for 1 h, incubated, respectively, with 

rabbit anti-OdhI antibodies in a 1:3,000 dilution or rabbit anti-OdhA antibodies in a 

1:6,000 dilution at room temperature for 1 h, and subsequently with Horseradish 

Peroxidase-linked species-specific whole antibody (from donkey; GE Healthcare UK) 

in a 1:6,000 dilution. Detection was performed using Amersham ECL Plus Western 

Blotting Detection Reagents (GE Healthcare UK) and an ImageQuant Imager 

350/350Lumi (GE Healthcare UK). 

The amount of expression of each protein was measured by densitometric 

analysis using the software Image-J 1.43r6 (National Institutes of Health, USA). 

Quantification of the relative abundance of expression of each protein was calculated by 

normalization of the densitometry using the standard protein expression.  

 

4.2.6 Comparison of the DNA sequences of odhI genes and amino acid 

sequences of OdhI proteins between ATCC 13032 and ATCC 31831 

It was hypothesized that the genome sequence of the C. glutamicum ATCC 

31831 strain is generally similar to that of the ATCC 13032 strain, whose genome 

sequence has already been determined by three independent research groups (Ikeda and 

Nakagawa 2003; Kalinowski et al. 2003; Yukawa et al. 2007). Therefore, the genome 
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sequence database and the protein database in the ATCC 13032 strain whose databases 

have already been determined were used.  

 Part of the odhI gene was amplified by polymerase chain reaction (PCR) from 

C. glutamicum ATCC 31831 genomic DNA using Z-Taq polymerase (Takara Bio Inc., 

Shiga, Japan) and the set of primers 5′-GAATTCAACCCACTTGCGGGTAGTGG-3′ 

and 5′-GAATTCTTAGGCATTCTATACACAAAACG-3′, which were designed using 

the sequence data of the ATCC 13032 genomic DNA. PCR fragments independently 

cloned on a pGEM-T Easy Vector (Promega Co., Madison, WI, USA) were determined 

using the BigDye Terminator Cycle Sequencing Kit ver. 3.1 (Applied Biosystems, 

Foster City, CA, USA) and an ABI Prism genetic analyzer 310NT (Applied 

Biosystems). The sequences of five independently cloned PCR fragments on a pGEM-T 

Easy Vector from the ATCC 31831 strain were determined, compared with each other, 

and, thus, the sequence of the odhI gene in the ATCC 31831 strain was obtained. 

Conversion of DNA sequence to amino acid sequence in the odhI gene in the 

ATCC 31831 strain was performed using the web site 

(http://people.alfred.edu/~bde1/dna.php).  

DNA sequence and amino acid sequence alignments of the odhI gene and OdhI 

proteins between ATCC 13032 and ATCC 31831 were respectively compared using 

CLUSTAL X (1.83) multiple sequence alignment. 
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4.3 Results and discussion 

4.3.1 Confirmation and purification of OdhA and OdhI proteins from E. coli  

Overexpression of OdhA and OdhI proteins in E. coli 

BL21(DE3)/pLysS/pET-28b(+)-odhA and E. coli BL21(DE3)/pLysS/pET-28b(+)-odhI 

by addition of 100 µM IPTG was confirmed by 12.5% SDS-polyacrylamide gel 

electrophoresis, respectively (data not shown). Moreover, the His6-tagged purified 

protein bands, corresponding to the OdhA and OdhI proteins, were successfully 

detected, respectively (data not shown). As a result, the purified His6-tagged OdhA and 

OdhI proteins were used for production of rabbit anti-OdhA and anti-OdhI polyclonal 

antibodies, respectively.  

 

4.3.2 Changes in protein expression during glutamate production in the 

odhI-overexpressing strain 

Western blotting was performed for analysis of changes in protein expression 

during glutamate production in the odhI-overexpressing strain. Cells of C. glutamicum 

carrying ATCC 31831/pHT1 or ATCC 31831/pHT1-odhI were cultivated in Sakaguchi 

flasks and harvested by centrifugation at the point of 12, 20, 28, and 36 h. Total protein 

samples were extracted by sonication and 20 µg of total protein were applied on 12.5% 

SDS-PAGE for Western blot analysis using rabbit anti-OdhI polyclonal antibodies, 

which were successively confirmed for use as anti-OdhI antibodies for detection of 

OdhI protein (data not shown). Moreover, the quantitative relative abundance of protein 

expression level was analyzed. 
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 Figure 4.1 Protein expression of OdhI (A) and OdhA (B) proteins, cell growth (C), and 

glutamate production (D) in C. glutamicum ATCC 31831 carrying either the pHT1 or the 

pHT1-odhI strain, respectively. Cells were cultivated in Sakaguchi flasks and harvested at the 

point of 12, 20, 28, and 36 h. Protein samples (20 µg) were applied on SDS-PAGE for Western 

blot analysis. Relative protein expression was calculated by densitometry using the software 

Image-J 1.43r6. Normalization was performed using the protein expression labeled by the 

asterisk (*). White bars represent expression of unphosphorylated forms; black bars represent 

expression of phosphorylated forms; closed circles represent the odhI overexpressing strain 

ATCC 31831/pHT1-odhI; open circles represent the control strain ATCC 31831/pHT1. 
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As shown Figure 4.1A, unphosphorylated (lower) and phosphorylated (upper) 

OdhI bands in the ATCC 31831/pHT1-odhI (odhI-overexpressing) strain were strongly 

detected, whereas unphosphorylated and phosphorylated OdhI bands in ATCC 

31831/pHT1 (control) strains were slightly detected in Western blotting during the time 

course of cultivation, indicating that odhI-overexpression resulted in enhanced OdhI 

protein expression in both unphosphorylated and phosphorylated forms. Phosphorylated 

form of the OdhI protein showed a slower migration than unphosphorylated OdhI on 

SDS-PAGE, which made it possible to distinguish the phosphorylation status of OdhI 

by Western blotting (Niebisch et al. 2006). Presence of STPKs, such as PknA, PknB, 

PknG, and PknL and phospho-serine/threonine protein phosphatase Ppp encoded by ppp 

were already reported by the genome sequence of C. glutamicum (Ikeda and Nakagawa, 

2003; Kalinowski et al. 2003). It could be considered that phosphorylated forms of the 

OdhI protein come from the highly expressed unphosphorylated OdhI in C. glutamicum 

cells by STPKs, including PknA, PknB, PknG, and PknL. Schultz et al. (2009) reported 

that all four STPKs can contribute to OdhI phosphorylation, with PknG being the most 

important one, and Fiuza et al. (2008) also reported that the purified kinase domains of 

PknA and PknB were shown to phosphorylate OdhI in vitro. Moreover, the phosphatase 

domain of Ppp catalyzed the dephosphorylation of OdhI in vitro, confirming that OdhI 

is a substrate of Ppp (Krawczyk et al. 2010). Furthermore, unphosphorylated OdhI 

bands were strongly expressed during the time course of cultivation in the 

odhI-overexpression strain. In these respects, high glutamate production in the 

odhI-overexpressing strain (Figure 4.1D) resulted from a high level of 

unphosphorylated OdhI expression, which is caused by a high level of 

unphosphorylated OdhI binding to the OdhA protein. These results are consistent with 
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those of the previous report showing that binding of unphosphorylated OdhI protein to 

OdhA resulted in reduction of ODHC activity, and, thus, glutamate production 

(Niebisch et al. 2006). As a result, the higher unphosphorylated OdhI was expressed, the 

higher glutamate was produced in the odhI-overexpression strain. However, changes in 

protein expression during the time course of cultivation in the same strain were not 

significantly detected. In this respect, it is possible to make the following conclusion 

with regard to changes in OdhI protein expression between the ATCC 31831/pHT1 and 

ATCC 31831/pHT1-odhI strains; high expression of phosphorylated and 

unphosphorylated OdhI in ATCC 31831/pHT1-odhI, and low expression in the ATCC 

31831/pHT1 strain. Therefore, high glutamate production in the odhI-overexpressing 

strain by metabolic engineering might come from strongly expressed OdhI expression.  

To investigate change of OdhA expression, 20 µg of total proteins were applied 

on 7.5% SDS-PAGE for Western blotting using rabbit anti-OdhA polyclonal antibodies; 

quantitative relative abundance was then analyzed. Generally, compared to the change 

of OdhI expression, the change of OdhA expression was not significant during the time 

course of cultivation, as shown in Figure 4.1. Moreover, the level of OdhA expression 

between the ATCC 31831/pHT1 and ATCC 31831/pHT1-odhI strains was almost the 

same; however, the level of OdhA expression in the ATCC 31831/pHT1-odhI strains 

was lower than that in the ATCC 31831/pHT1 strains. As shown in Figure 4.1B, 

expression of OdhA in the ATCC 31831/pHT1 strain was slightly decreased during the 

time course of cultivation; however, expression of OdhA in the ATCC 

31831/pHT1-odhI strain did not change significantly. Kataoka et al. (2006) reported on 

transcriptome analysis of C. glutamicum during glutamate overproduction, in which 

expression of odhA and sucB, encoding the E1o and E2o subunits of ODHC, 
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respectively, were decreased by triggering agents during conditions of glutamate 

overproduction. In these respects, expression of the odhA gene might be directly related 

to protein expression of OdhA for glutamate production.  

Because the strain C. glutamicum carrying ATCC 31831/pHT1 produced a 

small amount of glutamate (about 5 g/l) without any triggers, the strain was changed to 

C. glutamicum ATCC 13032. The pHT1 and pHT1-odhI plasmids, which were purified 

from C. glutamicum ATCC 31831, were introduced into C. glutamicum ATCC 13032, 

respectively. Constructed C. glutamicum ATCC 13032/pHT1-odhI and ATCC 

13032/pHT1 cells were cultivated in Sakaguchi flasks, respectively. Expression of the 

OdhI protein was confirmed by 12.5% SDS-PAGE during the time of cultivation (data 

not shown). Western blotting was conducted in the same manner described in the 

previous section.  

As expected, glutamate production was increased by expression of the odhI 

gene in the ATCC 13032/pHT1-odhI strain, compared to control strains. However, the 

amount of glutamate production in the ATCC 13032/pHT1-odhI strain was very small 

(about 1.5 g/l as shown in Figure 4.2D) compared to the ATCC 31831/pHT1-odhI strain 

(more than 15 g/l shown in Figure 4.1D). As expected, protein expression patterns of 

the OdhI protein in ATCC 13032 were almost consistent with those in ATCC 31831, as 

shown in Figure 4.2A; unphosphorylated and phosphorylated OdhI bands in the 

pHT1-odhI strain were strongly detected. Moreover, unphosphorylated OdhI bands, 

which are highly related to glutamate production by inhibition of ODHC activity, 

appeared to be of higher abundance than phosphorylated OdhI bands in the pHT1-odhI 

strain. Unphosphorylated OdhI bands only slightly appeared in the pHT1 strain. From 

the data presented here, it can be concluded that the increased amount of 
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unphosphorylated OdhI expression is functionally involved in glutamate production in 

C. glutamicum. 
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 Figure 4.2 Protein expression of OdhI (A) and OdhA (B) proteins, cell growth (C), and 

glutamate production (D) in C. glutamicum ATCC 13032 carrying either the pHT1 or the 

pHT1-odhI strain, respectively. Cells were cultivated in Sakaguchi flasks and harvested at the 

point of 12, 20, 28, and 36 h. Protein samples (20 µg) were applied on SDS-PAGE for Western 

blot analysis. Relative protein expression was calculated by densitometry using the software 

Image-J 1.43r6. Normalization was performed using the protein expression labeled by the 

asterisk (*). White bars represent expression of unphosphorylated forms; black bars represent 

expression of phosphorylated forms; closed circles represent the odhI overexpressing strain 

ATCC 13032 /pHT1-odhI; open circles represent the control strain ATCC 13032 /pHT1. 
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4.3.3 Changes in protein expression during Tween 40-trrigered glutamate 

production  

The C. glutamicum ATCC 13032 wild-type strain was cultivated for 

investigation of changes in protein expression on Tween 40-triggered glutamate 

production. After cell growth reached the early exponential phase (OD660 = 12 at 6. 75 

h), Tween 40 was added to the medium with a final concentration of 4 mg/ml for 

triggering glutamate production. As expected, glutamate was produced by addition of 

Tween 40 (Figure 4.3D). 

Protein samples at the point of 6.75, 9, 12, 24, 30, and 36 h were used to investigate 

changes of protein expression during Tween 40-triggered glutamate production 

conditions. As shown in Figure 4.3A, the only unphosphorylated OdhI bands, which 

was surely confirmed by comparison between unphosphorylated (lower) and 

phosphorylated (upper) OdhI proteins in the odhI-overexpressing strain (data not 

shown), were detected during the time course of cultivation in Tween 40-triggered 

glutamate production conditions. Interestingly, unphosphorylated OdhI protein 

expression was gradually increased after addition of Tween 40 (at the point of 6.75 h) 

and its expression was not changed after 12 h. Strikingly, the phosphorylated OdhI 

bands did not apparently appear during the time course. In the case of OdhA expression, 

it was present in the same level during the time course in Tween 40-triggered glutamate 

production (Figure 4.3B). 
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Figure 4.3 Expression of OdhI (A) and OdhA (B) proteins, cell growth (C), and glutamate 

production (D) in C. glutamicum ATCC 13032 under Tween 40-triggered glutamate production. 

Cells were cultivated in Sakaguchi flasks and harvested at the point of 6.75, 9, 12, 24, 30, and 

36 h. Arrows indicate the point of Tween 40 addition at 6.75 h. Protein samples (20 µg) were 

applied on SDS-PAGE for Western blot analysis. Relative protein expression was calculated by 

densitometry using the software Image-J 1.43r6. Normalization was performed using the protein 

expression labeled by the asterisk (*). White bars represent expression of unphosphorylated 

OdhI; black bars represent expression of OdhA. Arrows with dashed lines represent the position 

of unphosphorylated (lower) and phosphorylated (upper) OdhI expression to distinguish the 

phosphorylation status of the OdhI protein. 
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4.3.4 Comparison of DNA sequences of odhI genes and amino acid sequences of 

OdhI proteins between ATCC 13032 and ATCC 31831  

As mentioned in the “Results” section (Figure 4. 1D and 4.2D), the reason for 

the similar response to the protein expression patterns by the odhI-overexpressing strain, 

despite having totally different glutamate production phenomena between ATCC 13032 

and ATCC 31831, remains unclear. Even though the protein expression patterns in 

ATCC 31831 are in accordance with those in ATCC 13032, glutamate production 

patterns in the odhI-overexpressing strains is totally different, as described above 

(Figure 4.1D and 4.2D). Expression of the odhI gene resulted in differing amounts of 

glutamate production between ATCC 13032 (about 1.5 g/l at 30 h in Figure 4.2D) and 

ATCC 31831 (about 15 g/l at 50 h in Figure 4.1D) using the same odhI-overexpressing 

plasmid, pHT1-odhI. The biological reason for these different observations between the 

ATCC 13032 and ATCC 31831 strains is currently obscure. Therefore, the DNA 

sequence of the odhI gene and amino acid sequence of the OdhI protein were, 

respectively, compared between ATCC 13032 and ATCC 31831.  

The DNA sequence and amino acid sequence alignments of the odhI gene and 

OdhI proteins between ATCC 13032 and ATCC 31831 were respectively compared 

using CLUSTAL X (1.83) multiple sequence alignment. As a result, there were seven 

different DNA sequences between ATCC 13032 and ATCC 31831, as shown in Figure 

4.4; the odhI gene shared 98.4% (425 among 432) identity. Intriguingly, most DNA 

sequence substitutions resulted in the same amino acids, except for one amino acid at 

the position of the 44 residue, as shown in Figure 4.5. Only one amino acid residue (A) 

from 143 amino acids in ATCC 13032 is different from an amino acid (V) present in 

sequences of the OdhI protein in ATCC 31831, sharing 99.3% (142 among 143) identity. 
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Moreover, there was no change in the phosphorylation sites of the OdhI protein. 

Phosphorylation sites of OdhI proteins for two threonine residues are involved in 

phosphorylation by STPKs, such as PknG, PknA, PknB, and PknL (Schultz et al. 2009). 

 

 

 

 

 

 

 

Figure 4.4 Alignment of DNA sequences of OdhI proteins between ATCC 13032 (upper line) 

and ATCC 31831 (lower line). There were seven different DNA sequences in the odhI gene 

between ATCC 13032 and ATCC 31831, as indicated by the gray boxes. The sequences of 

odhI genes in the a box, condoning for two threonine residues, represent the encoding regions 

for phosphorylation sites by STPKs, such as PknG, PknA, PknB, and PknL (Schultz et al. 

2009). 
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Figure 4.5 Alignment of amino acid sequences of OdhI proteins between ATCC 13032 (upper 

line) and ATCC 31831 (lower line). As shown in Figure 4.4, most DNA sequence substitutions 

resulted in the same amino acids, except for one amino acid at the position of the 44th residue 

from an N-terminal (alanine form ATCC 13032 to valine ATCC 31831). Residues of OdhI 

proteins in the box represent important phosphorylation sites by STPKs, such as PknG, PknA, 

PknB, and PknL (Schultz et al. 2009). 
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4.4 Conclusion 

In this chapter, it was assumed that glutamate production accompanied by 

decreased ODHC activity might be affected by the expression change of some proteins. 

Niebisch et al. (2006) identified the novel protein OdhI, a 15-kDa protein, comparing 

143 amino acid residues, of C. glutamicum. The importance of the OdhI protein for 

glutamate production in C. glutamicum was reported in Chapter 2 and by Schultz et al. 

(2007). Moreover, the unphosphorylated form of OdhI has a direct interaction with the 

E1o subunit of ODHC (OdhA) and specifically binds to OdhA, resulting in the 

inhibition of ODHC activity. In these respects, the relationship between glutamate 

production and the protein expression change of OdhA and OdhI proteins was 

investigated by Western blotting under glutamate production conditions in C. 

glutamicum in this chapter. 

As expected, the odhI-overexpressing strains in both ATCC 31831 and ATCC 

13032 showed strong unphosphorylated and phosphorylated OdhI expression with 

almost constant OdhA expression, resulting in enhanced glutamate production without 

any triggers (Figure 4.1 and 4.2). In these respects, it is consistent with the fact that high 

glutamate production in the odhI-overexpressing strain resulted from a high level of 

OdhI expression, which is caused by reduction of ODHC activity from high binding 

affinity to OdhA (Niebisch et al. 2006). Addition of Tween 40 leading to glutamate 

production, also resulted in gradually increased expression of unphosphorylated OdhI; 

however, phosphorylated OdhI expression did not appear with constant OdhA 

expression (Figure 4.3). In these respects, the increased amount of unphosphorylated 

OdhI expression is functionally involved in glutamate overproduction in C. glutamicum. 
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Chapter 5 

 

General conclusion 

 

 The discovery of a glutamate-producing bacterium, Corynebacterium 

glutamicum, opens a new era for the microbial fermentation industry. It has been widely 

used in industrial fermentation as an amino acid producer. Therefore, extensive studies 

have focused on improvement of glutamate production due to the usefulness of 

glutamate in our daily life, such as a flavor enhancer, therapeutic, feed additive, 

cosmetics, and so on. Even though C. glutamicum is used as a glutamate producer that 

is induced by triggers such as biotin limitation and addition of Tween 40 and penicillin 

(Shiio et al. 1962; Takinami et al. 1965; Nara et al. 1964), the regulatory mechanism of 

glutamate overproduction by C. glutamicum is still not completely understood. Shingu 

and Terui (1971) and Kawahara et al. (1997) found that activity of the 2-oxoglutarate 

dehydrogenase complex (ODHC) is dramatically reduced during glutamate 

overproduction. Kawahara et al. (1997) reported that glutamate overproduction by C. 

glutamicum is highly associated with change in metabolic flow from the TCA cycle to 

glutamate production by decreased ODHC activity. Moreover, Niebisch et al. (2006) 

determined that unphosphorylated OdhI is responsible for inhibition of ODHC specific 

activity by specifically binding to the E1o subunit of ODHC (OdhA). Moreover, 

Nakamura et al. (2007) identified a possible glutamate exporter of C. glutamicum coded 

by NCgl1221. Disruption of NCgl1221 abolished glutamate production, and specific 

mutations in the NCgl1221 gene induced constitutive glutamate secretion in C. 

glutamicum without any triggers. Based on these results, comprehensive analysis and 
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integrated metabolic engineering approaches were applied in order to understand the 

mechanism of glutamate overproduction in C. glutamicum. 

The background and significance of this study were described in Chapter 1. The 

general introduction focused mainly on the regulatory mechanisms of glutamate 

overproduction by C. glutamicum. Finally, the objective of this study was also presented 

in this chapter.    

In Chapter 2, the requirement for de novo synthesis of the OdhI protein in 

penicillin-induced glutamate overproduction by C. glutamicum was investigated in 

order to understand the cellular condition by analysis of protein production changes of 

C. glutamicum during penicillin-induced glutamate production. It was revealed that de 

novo protein synthesis after addition of penicillin was absolutely required for glutamate 

overproduction in C. glutamicum by examination of the effect of addition of 

chloramphenicol, an inhibitor of de novo protein synthesis. To identify the de novo 

synthesized proteins responsible for penicillin-induced glutamate overproduction in C. 

glutamicum, proteomic analysis was performed using two-dimensional gel 

electrophoresis under penicillin addition. Of more than 500 proteins detected, 13 

proteins, including OdhI (an inhibitory protein for ODHC), significantly increased by 

addition of penicillin. To determine whether de novo OdhI synthesis is necessary for 

penicillin-induced glutamate overproduction in C. glutamicum, the odhI-overexpressing 

strain in which amplification of the odhI gene was used as a metabolic engineering 

approach was constructed and examined, resulting in glutamate overproduction without 

any triggers with the decreased ODHC activity. Moreover, continuous glutamate 

overproduction was also achieved by the odhI-overexpressing strain without any 

triggers. In these respects, amplification of the odhI gene in the odhI-overexpressing 
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strain of C. glutamicum in metabolic engineering can be useful for efficient glutamate 

overproduction. 

In Chapter 3, the effect of odhA overexpression and odhA antisense RNA 

expression on Tween-40-triggered glutamate production by C. glutamicum was 

analyzed for further investigation of the role of the odhA gene and its product in 

glutamate overproduction by C. glutamicum. Recombinant strains of C. glutamicum, in 

which expression of the odhA gene and its product can be controlled by odhA 

overexpression or odhA antisense RNA expression as a method of metabolic pathway 

control, were constructed to examine the effect of modulation of ODHC activity on 

Tween 40-triggered glutamate overproduction in C. glutamicum. As a result, ODHC 

specific activity was increased by metabolic engineering using odhA overexpression, 

resulting in dramatically reduced glutamate production, despite addition of Tween 40, 

indicating that a decrease in the specific activity of ODHC is required for glutamate 

production induced by addition of Tween 40. odhA antisense RNA expression alone did 

not result in glutamate overproduction in spite of the decrease in ODHC specific 

activity. Rather, it enhanced glutamate production triggered by addition of Tween 40 

due to the additional decrease in ODHC specific activity, suggesting that metabolic 

engineering by odhA antisense RNA expression is effective for achievement of a 

particular desired goal, enhancement of Tween 40-triggered glutamate overproduction. 

In Chapter 4, expression changes of OdhA and OdhI proteins during glutamate 

production in C. glutamicum were investigated for correlation between glutamate 

overproduction and protein expression changes. Overexpression of the odhI gene in 

odhI-overexpressing strains in both ATCC 31831 and ATCC 13032 showed strong 

unphosphorylated and phosphorylated OdhI expression with almost constant OdhA 
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expression, resulting in enhanced glutamate production. Moreover, addition of Tween 

40 resulted in increased unphosphorylated OdhI expression with constant OdhA 

expression, leading to glutamate production. In these respects, the increased amount of 

unphosphorylated OdhI expression is functionally involved in glutamate overproduction 

in C. glutamicum.  

In conclusion, metabolic engineering techniques based on better understanding of 

the cellular state by comprehensive analysis of glutamate production in C. glutamicum were 

applied in order to understand the regulatory mechanism of glutamate overproduction in 

C. glutamicum and to improve glutamate production. De novo synthesis of 

unphosphorylated OdhI protein is an absolutely requirement and is functionally 

involved in glutamate overproduction in C. glutamicum for decrease in ODHC activity. 

Moreover, odhI overexpression alone as a metabolic engineering approach can produce 

glutamate without any triggers. Furthermore, the additional decrease of ODHC specific 

activity by odhA antisense RNA expression as a metabolic engineering approach is also 

effective for enhancement of glutamate production triggered by addition of Tween 40. 

As a result, glutamate production in C. glutamicum was successively improved by 

metabolic engineering approaches using odhI overexpression and odhA antisense RNA 

expression in this study, respectively (Figure 5.1).  

Metabolic engineering approaches used in this study can be applied as a promising 

tool for production of targeted materials. 
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Figure 5.1 Increased glutamate production in C. glutamicum by metabolic engineering 

approaches, such as odhI overexpression and odhA antisense RNA expression with increased 

unphosphorylated OdhI expression and decreased ODHC specific activity, respectively. 
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