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The Effect of Neutron Irradiation on Cryogenic
Temperature Strength of High-Mn Steels and Their
Electron Beam Welded JointT

Takeshi NISHIYAMA®, Isamu FUKUHARA™*, Nobuyuki ABE***,

Seiichi KAGA****

Abstract

The effect of neutron irradiation on the mechanical properties of High-Mn Steels and their electron
beam welded joints have been studied using a miniature tensile testing method.

In the present study, High-Mn steels, A-T and B-T, for cryogenic structures were selected as the
test materials, and their base metals and electron beam welded joints were tested at cryogenic

temperatures.

Ductility in both materials decreases with increasing neutron flux, but it is larger in B-T than A-

KEY WORDS: (Neutron irradiation)(High-Mn steels)(Cryogenic temperature)(Electron beam)

(Ductility)

1. Introduction

High-Mn steels are selected as candidate materials for
fusion reactors because of their ductility. They are
intended to be used as the material for the first wall of
nuclear fusion reactors.

So, in this investigation, these materials are welded
by the electron beam process irradiated in the research
reactor, tensile tests are conducted at cryogenic
temperatures.

2. Testing Method
2.1 Test materials

Chemical compositions are shown in Table.1.
Both materials were hot rolled at 1473K and treated by
water toughening for 1 hr at 1323K.

2.2 Processing of the materials

The test materials were welded by the electron beam
welder shown schematically in Fig.1. Preheating and

post welding heat treatment were not employed.
Welding conditions are shown in Table.2. Hardness
distributions in the welded joints of both materials are
shown in Fig.2 and Fig.3.

After electron beam welding tensile specimens were
cut in the direction of rolling. The dimensions of the
specimen are shown in Fig.4(a). A small specimen
size is used to suit the capacity of the testing machine
and minimize He.

Test specimen were exposed to neutron irradiation in
the reactor core in KUR (Kyoto University Research
Reactor Institute), Neutron irradiation conditions are
shown in Table.3.

2.3 Tensile tests at cryogenic temperaturesl'
5)

Tensile tests were conducted by Autograph (AG-
500A type, Capacity 500kgf). The load-displacement
curve was recorded. Testing temperatures were room
temperature (293K), liquid nitrogen temperature (77K)
and liquid helium temperature (4.2K). Crosshead speed
was controlled in 0.1 mm/min.
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Table.1 Chemical composition of materials used.

Maberial Chemical compositions (wt¥)
ateri
SRS e T o st ¢ b s N M VNN
A-T ' Bal. 17.8 6.83 4.70 0.032 0.0016 0.0067 - - - - -
B-T Bal. 21.6 6.39 4.42 0.029 0.0014 0.0074 ~— - - - 0.182
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Fig.2 Hardness distribution in welded joint of A-T.
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Fig.1 Schematic diagram of electron beam welding
method in the position.
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Table.2 Welding conditions of materials used.

Micro vickers hardness, Hv (Load 4.9N)
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Fig.3 Hardness distribution in welded joint of B-T.
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Table.3 Neutron irradiation conditions of high Mn steels.

Material g?st geutr?n Irradjation Neutron Mark
aterials X dens i m ux
?n/m§085 Y hr (n/m2) o
Base 313.66 8.24x10%2 | |R+B1
material 7.30x10'8
specimens 989.35 2.60x10%% | |R-B2
76.90 3.32x1022 +W1
We|ded IR
Joint 1.20%x10'7 377.31 1.63x10%3 | IR-W2
specimens
687.76 2.97%10%% | [R-¥3

Irradatjon apparatus . KUR reactor ¢ £>0. 1MeV
Irradation tggperature . 360K or core M)

#12
shs

$4.5
1

AN

Unit : mm

Fig.4(a) Test specimen of high Mn steels.
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Fig.4(b) Sampling of specimens for tensile test.
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3. Test Results and Discussion
3.1 Nominal stress - Nominal strain curve

Test results for base metal and welded joints of High-
Mn steels irradiated at different neutron fluxes are shown
in Fig.5 - Fig.8, respectively. Serration is observed in
the test at 4.2K of both materials at every neutron
fluence.

3.2 Effect of neutron irradiation on the
strength of materials

Neutron flux dependencies of ultimate tensile
strength and 0.2% proof stress of both materials are
shown in Fig.9 - Fig.12, respectively. The increase
of 0.2% proof stress at 4.2K following irradiation is
larger than of the ultimate tensile strength at 4.2K in
both materials®-®).
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Fig.S Nominal stress-strain curves at various test
temperatures of A-T base metal irradiated
to different neutron fluxes.
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Fig.6 Nominal stress-strain curves at vatious test temperatures
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Fig.7 Nominal stress-strain curves at various test temperatures
) of B-T base metal irradiated to different neutron fluxes.
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Fig.8 Nominal stress-strain curves at various test temperatures
of B-T weld metal irradiated to different neutron fluxes.
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Fig.9 Neutron flux dependences of ultimate tensile
strength of A-T at various test temperatures.
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Fig.11 Neutron flux dependences of ultimate tensile
strength of B-T at various test temperatures.
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of B-T at various test temperatures.



Effect of Newtron Irradiation on EBW Joint

3.3 Effect of neutron irradiation on the
ductility of materials

The neutron flux dependencies of elongation of the
materials are shown in Fig.13 and Fig.14. The
elongation of base metal and the welded joint of
materials A-T and B-T decreases with increase of neutron
flux.
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Fig.13 Neutron flux dependences of elongation of A-T
at various test temperatures.

4. Conclusion

(1)Serration is observed in the test at 4.2K of both
materials at every neutron flux.

(2)The increase of 0.2% proof stress with increasing
neutron flux is larger than that of the ultimate
strength in both materials.

(3)The reduction of elongation of material A-T with
increasing neutron flux is larger the reduction of
elongation material B-T.
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Fig.14 Neutron flux dependences of elongation of B-T
at various test temperatures.
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