<table>
<thead>
<tr>
<th>Title</th>
<th>イオン打ち込みされたシリコンのレーザー・アニーリング</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>福岡, 登</td>
</tr>
<tr>
<td>Citation</td>
<td>大阪大学低温センターだより. 31 P.8-P.10</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1980-07</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/12752</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
イオン打込みされたシリコンの
レーザー・アニーリング

教養部 福岡 穂登（豊中5234）

イオン打込みによる半導体中への不純物のドーピングは熱拡散法による従来の不純物ドーピングともに重要な半導体素子製作の技術となって来た。しかし、イオン打込みにより生じる格子欠陥の除去が重要な問題となった。これらの格子欠陥を除去し、ドーピングを電的にアクティブにする方法として、電気炉中の焼鈍が行なわれて来たが、この方法では、ドーピングの析出、不純物による汚染、基板の電気的特性の劣化等の問題があるため、他の焼鈍法が、いろいろ研究されて来た。その1つとして高出力、短パルス幅のレーザーを用いて、焼鈍を行ない、焼鈍を行う試みが、1974年頃よりShlyrkov等1)によって始められ、1976年のイオン打込み国際会議において、ソ連のKachurin等2)がこの方法について報告して以来、世界的な注目を集め、米国・イタリア・日本を始めとする各国で、いろいろの研究が行なわれて来た。レーザー・アニーリングの応用面での利点としては、焼鈍が短時間で行なえること、基板に影響を与えない焼鈍が出来るること、イオン注入面の任意の場所を選択して焼鈍できる。またレーザー・アニーリングは応用面以外にも、格子欠陥の動的焼鈍過程や非晶質の結晶化の過程を調べる方法として、大変興味ある方法である。レーザー・アニーリングの特徴及び、その焼鈍機構について、昨年の私の滞在していたオーク・リッジ国立研究所のグループによって得られた結果を中心に、現在の状況についてのべる。
境界は時間とともに基板内部へ進行し、エネルギー密度が閾値を超えるときは、圧縮境界がイオン打込みにより乱されていない基板の単結晶にまで達する。そして溶融層が冷却するとき、単結晶側からエピタキシャル成長機構で再結晶化が起こる。再結晶は数十到に短時間で起こるので、析出、積層欠陥や転位等の欠陥の発生及び成長は、このような短時間に追随できず、再結晶により無欠陥になると推測した。またレーザー・アニューリングのうち、炉の中で 900 ℃、80 分の焼熱を行なうと表面近くに析出がみられるが、これは、この考えが正しいことを示していると解釈している。このモデルに立って、理論的なドーパントのプロファイルを求めた結果が、実験結果とともに図2に示されている。理論値と実験値はよい一致をみせているが、熱拡散係数等の取り方に問題が残らないわけではない。

上記のような熱溶融モデルに対して、レーザー・アニューリングは単なる熱溶融によって起こるのではなく、プラズマ・アニューリングによるとする説がVan Vechten等によってシリコン中に作ら
れる高濃度エレクトロンホール・プラズマのために焼純が起こると説明する。例えば、イオン打込みによって作られた空格子点の焼純は次のように説明される。シリコン中の空格子点は80K近傍で焼純することが知られているが、全ての空格子点が80K近傍で消減するわけではない。空格子点は+、0、-、-の荷電状態をもち、結晶中の他の荷電状態の欠陥とクーロン力によって複合欠陥を作る。そうなると空格子点は安定になり、室温以上になっても、焼純せずに生きのびることになる。ところが高濃度のエレクトロンホール・プラズマが生じると、空格子点と他の欠陥との結合力が弱くなり、空格子点は小さなエネルギーで複合欠陥より自由になり、移動して、格子間原子と再結合したり、表面に達して消滅したりする。このようなプラズマ・アニリング機構でイオン打込みによって生じた欠陥は、ほぼ完全に焼純され、打込まれた不純物も格子位置に入れると説明する。また最近レーザー・アニリング中の格子温度を測定した結果、試料表面は800℃程度にしかならなかったという報告がなされた。プラズマ・アニリングの起こっている証拠であると主張されている。

この2つの焼純機構のうち、これまでのところ熱時効説を主張するグループが優勢の模であるが、プラズマ・アニリング説にとって有利な実験結果もあり、どちらが正しいかを決めるには、新しい実験結果の蓄積が必要である。

レーザーの他にも、電子線、フラッシュ・ランプを利用した焼純の研究も進められており、これらの結果及び従来から行なわせて来た炉を用いての焼純結果を統合することにより、格子欠陥の焼純機構及び物理的性質の解明に大きな寄与をすることが期待される。

参考文献
1) E.I.Shtyrkov, I.B.Khaiitullin, M.M.Zaripov, M.F.Galyatudinov and R.M.Boyazitov:
2) G.A.Kachurin, V.A.Bogatyriov, S.I.Romanov and L.S.Smirnov:
Proc. Ion Implantation of Semiconductors, Corolado, 1976
4) J.C.Wang, R.F.Wood and P.P.Pronko:
5) J.A.Van Vechten, R.Tsu and F.W.Saris:
Phys. Lett. 74A (1979), 422.