<table>
<thead>
<tr>
<th>Title</th>
<th>Remarks on the lifting property of simple modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Okado, Morihiro; Oshiro, Kiyoichi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 21(2) P.375-P.385</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1984</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/12761</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/12761</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
Throughout this paper, we assume that R is an associative ring with identity and $\{M_\alpha\}_I$ is an infinite set of completely indecomposable right R-modules. We put $M=\sum_I \oplus M_\alpha$ and $\bar{M}=M/J(M)$, where $J(M)=\sum_I \oplus J(M_\alpha)$ denotes the Jacobson radical of M.

If each M_α is a cyclic hollow module, then M is completely reducible. In this case, M is said to have the lifting property of simple modules modulo the radical if every simple submodule of M is induced from a direct summand of M ([3]). On the other hand, for the family \mathcal{H} of all maximal submodules of M, M is said to have the lifting property of modules for \mathcal{H} if every member A in \mathcal{H} is co-essentially lifted to a direct summand of M, that is, there exists a decomposition $M=A^* \oplus A^{**}$ such that $A^* \subseteq A$ and $A \cap A^{**}$ is small in M ([5]). These two concepts are both dual to 'extending property of simple modules' mentioned in [4]. Therefore, we must observe whether these two lifting properties coincide or not. In this paper, we study this problem and show the following result: M has the lifting property of modules for \mathcal{H} if and only if it has the lifting property of simple modules modulo the radical and satisfies the following condition: For any $\{M_\alpha\}_I \subseteq \{M_\alpha\}_I$ and epimorphisms $\{f_i: M_\alpha \to M_{\alpha_i+1}\}_{i=1}^n$, there exist n (depending on the sets) and epimorphism $g: M_{\alpha_{n+1}} \to M_{\alpha_n}$ such that $g=f_n^{-1}$, where g and f_n are the induced isomorphisms: $M_{\alpha_{n+1}} \to M_{\alpha_n}$ and $M_{\alpha_n} \to M_{\alpha_{n+1}}$, respectively (Theorem 10).

NOTATION. By $P(M)$ we denote the set of all submodules X of M such that $X \cap M_\alpha=M_\alpha$ for all $\alpha \in I$ and $X=\sum_I \oplus (X \cap M_\alpha)$.

We first show

Theorem 1. The following conditions are equivalent:

1) For any pair $\alpha, \beta \in I$, every epimorphism from M_α to M_β is an isomorphism.

2) Let $\{A_\beta\}_I$ be a family of indecomposable direct summands of M. If $A_{\beta_1}+\cdots+A_{\beta_n}+X\cong A_{\beta_{n+1}}$ for any $X \in P(M)$ and any finite subset $\{\beta_1, \cdots, \beta_{n+1}\}$
If \(J \subseteq I \), then \(\sum J A_\beta \) is a direct sum (and a locally direct summand of \(M \)).

Proof. 1) \(\Rightarrow \) 2). Let \(\beta_1, \ldots, \beta_{n+1} \in J \) and assume that \(A = \sum \bigoplus \oplus M_{\gamma} \). We may show \(A = \sum_{\beta} A_\beta \oplus M\). We see from [1] and [6] that every indecomposable direct summand of \(M \) satisfies the exchange property and hence we have a subset \(I' = \{ \alpha_1, \ldots, \alpha_n \} \subseteq I \) satisfying \(M = A \oplus \bigoplus \oplus M_{\gamma} \). We get either \(M = A \oplus \bigoplus \oplus M_{\gamma} \) for some \(\nu \in I - I' \) or \(M = \sum_{J \subseteq I'} \bigoplus A_{\beta} \oplus \bigoplus \oplus \bigoplus M_{\gamma} \) for some \(i \).

In the former case, \(A = \bigoplus M_{\gamma} \) as desired. In the latter case, \(M = \bigoplus A_{\beta} \oplus \bigoplus \bigoplus M_{\gamma} \) for some \(\alpha \subseteq \{ \alpha_1, \ldots, \alpha_n \} \). For each \(\gamma \in I - I' \), \(\pi_{\gamma} \) denotes the projection: \(M = \bigoplus \bigoplus M_{\gamma} \). If \(\pi_{\gamma}(A_{\beta+1}) = M_{\gamma} \) for all \(\gamma \in I - I' \) then \(X = \bigoplus \bigoplus \bigoplus \pi_{\gamma}(A_{\beta+1}) = \bigoplus \bigoplus M_{\gamma} \). Therefore, \(\pi_{\gamma}(A_{\beta+1}) = M_{\gamma} \) for some \(\gamma \in I - I' \). Since \(M = \bigoplus A_{\beta+1} \oplus \bigoplus \bigoplus \bigoplus M_{\gamma} \) is an isomorphism by the assumption. Hence it follows that \(M = \bigoplus A_{\beta} \oplus \bigoplus \bigoplus M_{\gamma} \). Since \(M = \bigoplus A_{\beta+1} \oplus \bigoplus \bigoplus M_{\gamma} \), where \(K = \{ I - I' \} - \{ \gamma \} \).

2) \(\Rightarrow \) 1). Let \(\alpha, \beta \in I \) and consider an epimorphism \(f: M_a \to M_\beta \). Putting \(M_a' = \{ x + f(x) \mid x \in M_a \} \), we see that \(M_a = M_a' \oplus M \) and \(M_a + X \cong M_a \) for any \(X \in \text{P}(M) \); whence, by 2), \(\ker f = M_a' \cap M_a = 0 \) and hence \(f \) is an isomorphism.

Theorem 2. Assume that each \(X \in \text{P}(M) \) is small in \(M \) or each \(M_\alpha \) is cyclic hollow. Then the following condition is equivalent to each of conditions 1) and 2) in Theorem 1.

(K) If \(M = \bigoplus A_\beta \) is an irredundant sum and each \(A_\beta \) is an indecomposable direct summand, then this sum is a direct sum.

Proof. (K) \(\Rightarrow \) 1) is shown by the same proof as in 2) \(\Rightarrow \) 1) in Theorem 1. Now, assume that 2) holds and let \(M = \bigoplus A_\beta \) be an irredundant sum and each \(A_\beta \) an indecomposable direct summand. First, if each \(X \in \text{P}(M) \) is small in \(M \), then we see that \(A_{\beta_1} + \cdots + A_{\beta_n} \oplus X \cong A_{\beta+1} \) for any \(X \in \text{P}(M) \) and any finite subset \(\{ \beta_1, \cdots, \beta_{n+1} \} \subseteq J \). Hence the sum \(M = \bigoplus A_\beta \) is a direct sum by 2).

Next, consider the case when each \(M_\beta \) is cyclic hollow. Assume that there exist a subset \(\{ \beta_1, \cdots, \beta_n \} \subseteq J \) and \(X \in \text{P}(M) \) such that \(A_{\beta_1} + \cdots + A_{\beta_n} + X \cong A_{\beta_1} + Y \). Then we can take a finite subset \(F \subseteq I \) and \(Y \subseteq \bigoplus M_\alpha \) such that \(A_{\beta_1} + \cdots + A_{\beta_n} + Y \cong A_{\beta_1} + Y \). Since \(Y \) is small in \(M \), this implies that \(M = \bigoplus A_\beta \), a contradiction. Therefore, such \(\{ \beta_1, \cdots, \beta_n \} \) and \(X \) do not exist; whence the sum \(M = \bigoplus A_\beta \) is a direct sum by 2).

Theorem 3. The following conditions are equivalent:

1) For any irredundant sum \(\sum J A_\beta \) of direct summands of \(M \) with the pro-
property that \(A_{\beta_1} + \cdots + A_{\beta_n} + X \cong A_{\beta_{n+1}} \) for any \(X \in P(M) \) and any finite subset \(\{\beta_1, \cdots, \beta_n\} \subseteq J \), the sum \(\sum_{\beta \in J} A_{\beta} \) is a direct sum and moreover a direct summand of \(M \).

2) \(\{M_\alpha\} \) is a locally semi-\(T \)-nilpotent set and 2) in Theorem 1 holds.

Proof. 1) \(\Rightarrow \) 2). We may only show the first condition. Let \(\{M_\alpha\}_{\alpha \in I} \subseteq \{M_\alpha\} \) and \(\{f_i: M_\alpha \to M_{\alpha + i}\}_{i = 1}^\infty \) be a set of non-isomorphisms. Then each \(f_i \) is not an epimorphism by Theorem 1. Consider \(M_{\alpha_i} = \{x + f_i(x) | x \in M_\alpha\} \), \(i = 1, 2, \cdots \). Then, as is easily seen, \(\{M_\alpha\}_{\alpha \in I} \) is a set of indecomposable direct summands of \(M \) and satisfies the condition: \(M_{\beta_1} + \cdots + M_{\beta_n} + X \cong M_{\beta_{n+1}} \) for any \(X \in P(M) \) and \(\{\beta_1, \cdots, \beta_{n+1}\} \subseteq \{\alpha_i\}_{i = 1}^\infty \). Hence we get \(M' = \sum_{\alpha} M_{\alpha} \cong (\oplus M_{\alpha}) \). We put \(N = \sum_{\alpha} M_{\alpha} = M' \oplus T \). Assume that \(T \) is not indecomposable and non-zero. Then, by the Krull-Remak-Schmidt Azumaya's theorem, we see \(M' \cap (M_\alpha \oplus M_{\alpha}) = 0 \) for some \(n \neq m \). But we can verify that this is impossible. As a result, \(T \) is indecomposable or zero, from which we get \(N = M' \) or \(N = M' \oplus M_{\alpha} \) for some \(\alpha \). In either case, we see that for every \(x \in M_\alpha \), there exists \(m \) such that \(f_m f_{m-1} \cdots f_i(x) = 0 \). 2) \(\Rightarrow \) 1) is clear from Theorem 1 and [2, Theorem 3.2.5].

Definition ([5]). Let \(\{A_1, \cdots, A_n\} \) be a family of submodules of \(M \). We say that the family is **co-independent** if the canonical map: \(M \to \bigoplus_{i=1}^n (M/A_i) \) is an epimorphism.

Theorem 4. The following conditions are equivalent:

1) For any \(\alpha \in I \), every epimorphism from \(\sum_{I \setminus \{\alpha\}}^1 \oplus M_{\beta} \) to \(M_{\alpha} \) splits.

2) If \(\{A_1, \cdots, A_n\} \) is a co-independent family of direct summands of \(M \) such that \(M/A_i \) is indecomposable, then \(\bigcap_{i=1}^n A_i \) is a direct summand of \(M \).

Proof. By [1] and [6], we see that every indecomposable direct summand of \(M \) is isomorphic to some member in \(\{M_\alpha\} \) and hence satisfies the finite exchange property.

2) \(\Rightarrow \) 1). Let \(\alpha \in I \) and \(f: T = \sum_{I \setminus \{\alpha\}}^1 \oplus M_{\beta} \to M_{\alpha} \) be an epimorphism. Putting \(N = \{x + f(x) | x \in T\} \), we see that \(M = N + T \), whence \(\{N, T\} \) is co-independent. Thus \(\ker f = T \cap N \subseteq \oplus M \).

1) \(\Rightarrow \) 2). We show this by induction. So, let \(\{A_1, \cdots, A_n, A\} \) be a co-independent family of direct summands of \(M \) such that each \(M/A_i \) and \(M/A \) are indecomposable, and assume \(B = \bigcap_{i=1}^n A_i \subseteq \oplus M \). Setting

\[M = A \oplus A^* \]
we see, by the above remark, that either

\[M = B \oplus X \oplus A^* \]

for some \(X \subseteq B^* \) or

\[M = B' \oplus A^* \oplus B^* \]

for some \(B' \subseteq B \).

We first assume the former case, and let \(\pi_A : M = A \oplus A^* \to A \) and \(\pi_{A^*} : M = A \oplus A^* \to A^* \) be the projections. Since \(M = A + B \) and \(B \oplus A^* \uplus M \) we see \(\pi_A(B) = A^* \) and \(B \subseteq \pi_A(B) \oplus \pi_{A^*}(B) = B \oplus A^* \uplus M \); so \(\pi_A(B) \uplus M \). Since \(B \cap A = 0 \), the mapping \(f : \pi_A(B) \to A^* \) given by \(\pi_A(b) \to \pi_{A^*}(b) \) is well defined and an epimorphism. As a result, \(B \cap A = \ker f \uplus M \) by the condition 1).

Next consider the latter case:

\[M = B' \oplus A^* \oplus B^* \]

where \(B' \subseteq B \). Since \(B^* = M/B = M/A_1 \oplus \cdots \oplus M/A_n \), \(B^* \) has the exchange property (cf. [1], [6]) and so does \(A^* \oplus B^* \). Therefore

\[M = B' \oplus A^* \oplus B^* \]

for some \(A' \subseteq A \). Consider the projections:

\[\pi_{A^*} : M \to A^*, \pi_{B^*} : M \to B^* \]

with respect to \(M = A' \oplus A^* \oplus B^* \), and

\[\tau_A : M \to A^*, \tau_{B^*} : M \to B^* \]

with respect to \(M = B' \oplus A^* \oplus B^* \).

Here the mapping \(f : B^* \to A^* \) given by \(\pi_{B^*}(a) \to \pi_{A^*}(a) \) for \(a \in A \) and \(g : A^* \to B^* \)
given by \(\tau_{A^*}(b) \to \tau_{B^*}(b) \) for \(b \in B \) are well defined. Put

\[X = \{ \pi_{B^*}(a) + \pi_{A^*}(a) \mid a \in A \} , \]

\[Y = \{ \tau_{A^*}(b) + \tau_{B^*}(b) \mid b \in B \} . \]

Then \(A = A' \oplus X, B = B' \oplus Y, X \oplus A^* = Y \oplus B^* = A^* \oplus B^* \) and

\[M = A' \oplus X \oplus A^* \]

\[= B' \oplus Y \oplus B^* . \]

If \(X \oplus A^* = X \oplus T \) for some \(T \subseteq B^* \), then \(B = \{ \delta(b) + \delta'(b) \mid b \in B \} \) where \(\delta \) and
\(\delta' \) are the projections: \(M \to A' \oplus X \) and \(M \to T \), respectively with respect to \(M = A' \oplus X \oplus T \). Noting \(M = A + B \) and \(B \cap T = 0 \), we see \(\delta(B) = A \) and \(\delta'(B) = T \), and further the mapping \(\phi: A \to T \) given by \(\delta(b) \to \delta'(b) \) is well defined and an epimorphism. Consequently \(A \cap B = \ker \phi \oplus M \).

If the case: \(X \oplus A^* = X \oplus T \) for some \(T \subseteq B^* \) does not occur, we must have \(A^* \oplus B^* = X \oplus Y \), so

\[
M = A' \oplus X \oplus Y = B' \oplus Y \oplus X.
\]

Then let \(\eta_A: M \to A' \) and \(\eta_X: M \to X \) be the projections with respect to \(M = A' \oplus X \oplus Y \). Putting \(Z = \{ \eta_A(b') + \eta_X(b') \mid b' \in B' \} \), we get \(Z \subset A = A' \oplus X \) and \(A \cap B = Z \subset \ker \phi \). The proof is now completed.

Remark. a) Under the assumptions that each \(M_a \) is cyclic hollow and \(J(M) \) is small in \(M' \) the equivalence of 1) in Theorem 1 and \((K) \) in Theorem 2 was shown in [3]. Theorem 2 says that this second assumption is superfluous. b) In the case when each \(M_a \) is cyclic hollow, the condition 1) in Theorem 1 and 1) in Theorem 4 are clearly equivalent and hence all conditions in Theorems 1, 2 and 4 are equivalent. We also know from [3] that the following condition is also an equivalent condition: If \(\{ A_a \} \) is a family of direct summands of \(M \) such that \(\{ \bar{A}_a \} \) is independent in \(\bar{M} = M / J(M) \), then the sum \(\sum \bar{A}_a \) is a direct sum and a locally direct summand.

Theorem 5. The following conditions are equivalent:

1) For any independent family \(\{ A_\beta \} \) of indecomposable direct summands of \(M \), \(\sum_\beta A_\beta \) is a locally direct summand.

2) For any \(\alpha \in I \) and any monomorphism \(f: M_\alpha \to \sum_\beta \alpha A_\beta \), \(f(M_\alpha) \) is a direct summand of \(\sum_\beta \alpha A_\beta \).

Proof. The proof is done as in the proof of [4, Theorem 13].

1) => 2). Let \(\alpha \in I \) and consider a monomorphism \(f: M_\alpha \to T = \sum_\beta \alpha M_\beta \).

Put \(M'_\alpha = \{ x + f(x) \mid x \in M_\alpha \} \). Then \(M'_\alpha \cap T = 0 \) and \(M'_\alpha \oplus T = M_\alpha \oplus T \); whence \(M'_\alpha = M_\alpha \) and \(M'_\alpha \) is a direct summand of \(M_\alpha \oplus M_\beta \). Further \(M'_\alpha \cap M_\alpha = 0 \) and hence it follows from 1) that \(M'_\alpha \oplus M_\alpha = M_\alpha \oplus \text{Im } f \oplus M \); so \(\text{Im } f \oplus T \).

2) => 1). We may show the following: If \(\{ A_1, \ldots, A_n \} \) is an independent set of indecomposable direct summands of \(M \), \(A_1 \oplus \cdots \oplus A_n \) is also a direct summand of \(M \).

If \(n = 1 \), this is clear. Assume \(n > 1 \) and \(A = A_1 \oplus \cdots \oplus A_{n-1} \oplus M \). Since each member of \(\{ A_1, \ldots, A_{n-1} \} \) is isomorphic to some member in \(\{ M_a \} \) (cf. [1]), \(A \) has the exchange property (cf. [6]), so
for some subset \(J \subseteq I \). Since \(A_n \) has the exchange property,

\[
M = A_1 \oplus \cdots \oplus A_{k-1} \oplus A_{k+1} \oplus \cdots \oplus A_{n-1} \oplus A_n \oplus \sum_j \oplus M_j \cdots \quad (*)
\]

for some \(k \) or

\[
M = A \oplus A_n \oplus \sum_j \oplus M_j
\]

for some \(\sigma \in J \). In the latter case the proof is completed. In the former case, \(A_\lambda \supseteq \sum_j \oplus M_j \) for some \(\lambda \in I - J \) and \(f=\pi|A_k: A_k \to \sum_j \oplus M_j \) is a monomorphism, where \(\pi \) denotes the projection: \(M \to \sum_j \oplus M_j \) with respect to \((*)\). By 1), \(f(A_\lambda) \oplus M \) and hence we see that \(A \oplus A_n \oplus M \).

Theorem 6. Assume that each \(M_\alpha \) is uniform. Then the following conditions are equivalent:

1) For any pair \(\alpha, \beta \in I \), every monomorphism from \(M_\alpha \) to \(M_\beta \) is an isomorphism.

2) For any \(\alpha \in I \) and any monomorphism \(f \) from \(M_\alpha \) to \(\sum_{j \in (\alpha)} \oplus M_\beta \), the image \(f(M_\alpha) \) is a direct summand.

Proof. 2) \(\Rightarrow \) 1) is clear. Assume 1). Let \(\alpha \in I \) and consider a monomorphism \(f: M_\alpha \to \sum_{j \in (\alpha)} \oplus M_\beta \). Put \(T=f(M_\alpha) \). Since each \(M_\gamma \) is uniform, we can take \(\beta \in I - \{\alpha\} \) such that \(T \cap \sum_{j \in (\beta)} \oplus M_\gamma = 0 \). Let \(\pi \) be the projection: \(M=\sum_{j \in (\beta)} \oplus M_\alpha \to M_\beta \). Then \(g=\pi|T: T \to M_\beta \) is a monomorphism and hence \(gf: M_\alpha \to M_\beta \) is a monomorphism. Therefore \(g \) is an isomorphism by 1) and it follows that \(M=T \oplus \sum_{j \in (\beta)} \oplus M_\gamma \).

Remark. Under the assumption that each \(M_\alpha \) is uniform, all conditions in Theorems 5 and 6 are equivalent (cf. [4, Theorem 13]).

Definition. Let \(\mathcal{A} \) be a family of submodules of \(M \). \(M \) is said to have the lifting property of modules for \(\mathcal{A} \) if, for any \(A \) in \(\mathcal{A} \), there exists a decomposition \(M=A^* \oplus A^{**} \) such that \(A^* \subseteq A \) and \(A \cap A^{**} \) is small in \(M \) (see [5]).

Notation. By \(\mathcal{H}(M) \), we denote the set of all submodules \(A \) of \(M \) such that \(M/A \) is a cyclic hollow module and define \(\mathcal{H}^*(M) = \{ A \in \mathcal{H}(M) | A \) contains almost all \(M_\alpha \) but finit \}.

Theorem 7. Assume that each \(M_\alpha \) is cyclic hollow. Then the following conditions are equivalent:

1) \(M \) has the lifting property of modules for \(\mathcal{H}^*(M) \).
2) For any pair $\alpha, \beta \in I$, any $X \subseteq M_\beta$ and any epimorphism $f: M_\alpha \to M_\beta/X$, there exists either $g: M_\alpha \to M_\beta$ or $h: M_\beta \to M_\alpha$ such that

\[
M_\alpha \xrightarrow{g} M_\beta \quad \text{or} \quad M_\beta \xleftarrow{h} M_\alpha
\]

is commutative, where ϕ is the canonical map.

Proof. 1) \Rightarrow 2). Let $\alpha, \beta \in I$ and consider submodules $X_\alpha \subseteq M_\alpha$ and $X_\beta \subseteq M_\beta$. Put $\overline{M} = M/(X_\alpha \oplus X_\beta \oplus \sum_{f \in (I_{-\alpha, \beta})} M_f)$ and let $f: \overline{M} \to \overline{M}$ be an isomorphism. If we put $A = \{x \in M_\alpha \oplus M_\beta \mid x \in \{y + f(y) \mid y \in M_\alpha\}\}$, then $M/A \cong \overline{M}$ and hence $A \oplus \sum_{f \in (I_{-\alpha, \beta})} M_f \in \mathcal{A}(M)$. So, by 1), there exists a decomposition $M = A^* \oplus A^{**}$ such that $A^* \subseteq A$ and $A \cap A^{**}$ is small in M. Since $M/A = A^{**}/(A \cap A^{**})$ is cyclic hollow, A^{**} is also cyclic hollow. Hence A^{**} can be exchanged by some member in $\{M_\alpha\}_I$. Since $\overline{M} = A^*$, A^{**} must be in fact exchanged by M_α or M_β; whence we get either $M = A^* \oplus M_\alpha$ or $M = A^* \oplus M_\beta$. In the former case, let $\pi: M = A^* \oplus M_\beta \to M_\beta$ be the projection. Then the diagram

\[
\begin{array}{ccc}
\overline{M} & \xrightarrow{f} & \overline{M} \\
\varphi_\alpha & \uparrow & \varphi_\beta \\
M_\alpha & \xrightarrow{f'} & M_\alpha
\end{array}
\]

is commutative, where $f' = -\pi|M_\alpha$ and φ_α and φ_β are the canonical maps. In the latter case, we can obtain the desired epimorphism: $M \to M_\alpha$ by considering the projection: $M = A^* \oplus M_\alpha \to M_\alpha$.

2) \Rightarrow 1). Let $A \in \mathcal{A}(M)$. Then we can take $F = \{\alpha_1, \ldots, \alpha_n\} \subseteq I$ and submodule $T \subseteq M_{\alpha_1} \oplus \cdots \oplus M_{\alpha_n}$ such that $A = \sum_{i=1}^n M_{\alpha_i} \oplus T$ and $M = A + M_{\alpha_i}$, $i = 1, \ldots, n$. We put $X = \sum_{i=1}^n M_{\alpha_i}$ and $\overline{M} = M/X$. Then

\[
\begin{align*}
\overline{M} &= A \oplus \overline{M}_{\alpha_1} \oplus \cdots \oplus \overline{M}_{\alpha_n} \\
\overline{M}_{\alpha_i} &= M_{\alpha_i}/(A \cap M_{\alpha_i}) \quad \text{(canonically), } i = 1, \ldots, n.
\end{align*}
\]

Let $\pi_i: \overline{M} = A \oplus \overline{M}_{\alpha_i} \to \overline{M}_{\alpha_i}$ be the projection, $i = 1, \ldots, n$. Then $\pi_i(\overline{M}_{\alpha_j}) = \overline{M}_{\alpha_i}$ and $\{x + \pi_i(x) \mid x \in M_{\alpha_j}\} \subseteq A$ for $j \neq i$. Here, using 2), we can take $i_0 \in \{1, \ldots, n\}$ and mappings $\{f_j: M_{\alpha_i} \to M_{\alpha_{i_0}} \mid j \neq i_0\}$ such that

\[
\overline{f_j}(x) = \pi_{i_0}(x)
\]
for all \(x \in M_{a_j} \) and \(j = i_0 \). Putting \(A_j = \{ x + f_j(x) \mid x \in M_{a_j} \} \) and \(T = A_1 \oplus \cdots \oplus A_{i_0-1} \oplus A_{i_0+1} \oplus \cdots \oplus A_s \oplus \sum_{j} \oplus M_b \), we see that \(T \subseteq A \) and \(M = T \oplus M_{a_{i_0}} \).

Notation. By \(\mathcal{H}(M) \) we denote the set of all maximal submodules of \(M \) and put \(\mathcal{H}^*(M) = \{ A \in \mathcal{H}(M) \mid A \text{ contains almost all } M \text{ but finite} \} \).

Theorem 8. Assume that each \(M_a \) is a cyclic hollow module. Then the following conditions are equivalent:

1) \(M \) has the lifting property of simple modules modulo the radical.
2) \(M \) has the lifting property of modules for \(\mathcal{H}^*(M) \).
3) For any pair \(\alpha, \beta \) in \(I \) such that \(\bar{M}_\alpha = \bar{M}_\beta \) and any isomorphism \(f: \bar{M}_\alpha \rightarrow \bar{M}_\beta \) (where \(\bar{M} = M/J(M) \)) there exists an epimorphism \(g \) of either \(M_{\alpha} \) onto \(M_{\beta} \) or \(M_{\beta} \) onto \(M_{\alpha} \) such that \(g = f \) or \(g = f^{-1} \), where \(g \) is the induced isomorphism.

Proof. 1)\(\Leftrightarrow \)3) is due to Harada ([3]). 2)\(\Leftrightarrow \)3) is shown by the quite same argument as in the proof of Theorem 7.

Notation. Let \(\{ M_{a_i} \}_{i=1}^r \subseteq \{ M_{a_i} \}_{i=1}^r \) and let \(\{ f_i: M_{a_i} \rightarrow M_{a_{i+1}} \} \) be a set of epimorphisms. By \(X_i \) we denote the set of all \(x \) in \(M_{a_i} \) such that \(f_i(x) = 0 \) for some \(n \) (depending on \(n \)). Put \(X_i = \sum_{i=1}^n \oplus X_i \) and \(\bar{M} = M/X_i \). Then, as is easily seen, \(f_i \) induces an isomorphism \(\bar{f}_i: \bar{M}_{a_i} \rightarrow \bar{M}_{a_{i+1}} \). Here we shall consider the following condition:

\((*)\) For any such \(\{ M_{a_i} \}_{i=1}^r \), epimorphisms \(\{ f_i: M_{a_i} \rightarrow M_{a_{i+1}} \}_{i=1}^r \) and \(\bar{M} \), there exist \(n \) (depending on the sets) and epimorphism \(g: M_{a_{n+1}} \rightarrow M_{a_n} \) such that \(g \) induces \(\bar{f}_i^{-1} \)

Theorem 9. Assume that each \(M_a \) is cyclic hollow. Then the following conditions are equivalent:

1) \(M \) has the lifting property of modules for \(\mathcal{H}(M) \).
2) \(M \) has the lifting property of modules for \(\mathcal{H}^*(M) \) and satisfies the condition \((*)\).

Proof. 1)\(\Rightarrow \)2). The first part is clear. Let \(\{ M_{a_i} \}_{i=1}^r \subseteq \{ M_{a_i} \}_{i=1}^r \) and let \(\{ f_i: M_{a_i} \rightarrow M_{a_{i+1}} \}_{i=1}^r \) be a set of epimorphisms. To verify \((*)\) for these sets we can assume that \(\{ M_{a_i} \}_{i=1}^r \), since \(\sum_{i=1}^r \oplus M_{a_i} \) also has the lifting property of modules for \(\mathcal{H}(\sum_{i=1}^r \oplus M_{a_i}) \). Now, we put \(X_i = \{ x \in M_{a_i} \mid \exists n: f_i f_{i-1} \cdots f_i(x) = 0 \} \), \(X = \sum_{i=1}^r \oplus X_i \), and \(\bar{M} = M/X \). Since each \(M_{a_i} \) is cyclic hollow, we can put \(M_{a_i} = m_i R \) with \(f_i(m_i) = m_{i+1} \) for some \(\{ m_i \}_{i=1}^r \). Putting \(A = \sum_{i=1}^r (m_i + m_{i+1}) R \), we see that \(M = m_i R + A \) and \(m_i R \cap A = X_i, i = 1, 2, \ldots \). Since \(M/A = (m_i R + A)/A = m_i R/(A \cap R), A \) lies in \(\mathcal{H}(M) \). Hence there exists a decomposition \(M = A^* \oplus A^{**} \) such that \(A^* \subseteq A \) and \(A \cap A^{**} \) is small in \(M \). Since \(M/A = \ldots \)
A**/(A ∩ A**), A**/(A ∩ A**) is cyclic hollow and hence so is A**. As a result, we can assume that A** coincides with some member in \(\{ M_{a_i} \}_{i=1}^\infty \) by the Krull-Remak-Schmidt-Azumaya's theorem: say

\[M = A^* \oplus M_{a_n} \]

with \(A^* \subseteq A \). We express \(m_{n+1} \) as

\[m_{n+1} = -m_n r_n + (m_n + m_{n+1}) r_n + m_{n+1} r_{n+1} \]

with \(m_{n+1} r_{n+1} \in X_{n+1} \).

Now the mapping \(g: M_{a_{n+1}} \to M_{a_n} \) given by the rule \(m_{n+1} r \mapsto m_n r \) is well defined and an epimorphism. We claim that \(\hat{g} = \hat{f}_n^{-1} \). In fact, it is easy to see that \(m_n r \in X_n \) if and only if \(m_{n+1} r \in X_{n+1} \); whence \(g \) induces an isomorphism \(\hat{g} \) from \(\hat{M}_{a_{n+1}} \) to \(\hat{M}_{a_n} \) and moreover \(\hat{m}_{n+1} = \hat{m}_n r_n = \hat{f}_n(\hat{m}_n r_n) = \hat{f}_n \hat{g}(\hat{m}_{n+1}) \) and hence \(\hat{g} = \hat{f}_n^{-1} \).

2) \(\Rightarrow \) 1). We fix \(\alpha \in I \) and put \(M_{a_0} = M_{a_\alpha} R \). Let \(A \in \mathcal{H}(M) \). To show that \(A \) can be co-essentially lifted to a direct summand of \(M \), we may assume that each \(M_{a_\alpha} \) is not contained in \(A \), namely, \(M = M_{a_\alpha} + A \) for all \(\alpha \in I \). Put \(Y_\alpha = M_{a_\alpha} \cap A \) for all \(\alpha \in I \), \(Y = \sum_{\alpha \in I} Y_\alpha \) and \(\tilde{M} = M/\tilde{Y} \). For any \(\beta \in I - \{ \alpha_0 \} \), we see

\[\tilde{M} = \tilde{M}_{a_\alpha} \oplus \tilde{A} = \tilde{M}_\beta \oplus \tilde{A} \]

So, there exist \(m_\beta \in M_\beta \) and \(a_\beta \in A \) such that

\[\tilde{m}_{a_\alpha} = m_\beta + a_\beta \]

Clearly the rule \(\tilde{m}_{a_\alpha} r \mapsto m_\beta r \) defines an isomorphism from \(\tilde{M}_{a_\alpha} \) to \(\tilde{M}_\beta \). Therefore the rule \(\tilde{m}_{a_\alpha} r \mapsto m_\beta r \) define an isomorphism \(\eta_{a_\alpha}^{a_\beta} : \tilde{M}_{a_\alpha} \to \tilde{M}_{a_\beta} \) for any pair \(\beta, \beta' \) in \(I \). Here we shall show that there does not exist the following subset \(\{ \alpha_i \}_{i=1}^\infty \subseteq I - \{ \alpha_0 \} \):

i) there exists a set \(\{ f_i : M_{a_i} \to M_{a_{i+1}} \}_{i=1}^\infty \) of epimorphisms such that each \(f_i \) induces the isomorphism \(\eta_{a_i}^{a_{i+1}} \)

ii) but for all \(i \) there does not exist any epimorphism \(g : M_{a_{i+1}} \to M_{a_i} \) which induces the isomorphism \(\eta_{a_i}^{a_{i+1}} \)^{-1}.

In fact, assume, on the contrary, that such \(\{ \alpha_i \}_{i=1}^\infty \) exists. Put \(X_i = \{ x \in M_{a_i} | f_i f_{n_i} \cdots f_i(x) = 0 \text{ for some } n \geq i \} \), \(X = \sum_{i=1}^\infty X_i \) and \(\tilde{M} = M/X \). Then clearly \(X_i \subseteq Y_i \) and \(f_i(X_i) = X_{i+1} \) for all \(i \). By \(\hat{f}_i \) we denote the induced isomorphism: \(\hat{M}_{a_i} \to \hat{M}_{a_{i+1}} \). Here using the condition 2) we can take \(k \) and an epimorphism \(g : M_{a_k} \to M_{a_{k+1}} \) such that \(g \) induces \(\hat{f}_k^{-1} \). Then \(\hat{m}_k = \hat{g}(\hat{m}_{k+1}) \) and it follows that \(\hat{m}_k = g(m_{k+1}) \). As a result, \(g \) induces \((\eta_{a_k}^{a_{k+1}})^{-1} \), a contradiction.
Now, by this fact and Theorem 8, we may consider the following two cases.

) For any \(\alpha \in I - \{ \alpha_0 \} \) there exists an epimorphism \(f_\alpha: M_\alpha \to M_{\alpha_0} \) such that \(f_\alpha \) induces the isomorphism \(\eta_\alpha^: \tilde{M}_\alpha \to \tilde{M}_{\alpha_0} \).

**) There exist \(J = \{ \alpha_1, \ldots, \alpha_t \} \subseteq I - \{ \alpha_0 \} \) and sets \(\{ f_i^{t+1}: M_{\alpha_i} \to M_{\alpha_{i+1}} \mid i = 0, \ldots, t-1 \} \) and \(\{ f_\beta^\beta: M_\beta \to M_\beta, \beta \in I - \{ J \cup \{ \alpha_0 \} \} \} \) of epimorphisms such that \(f_i^{t+1} \) and \(f_\beta^\beta \) induce \(\eta_{\alpha_i}^{t+1} \) and \(\eta_\beta^\beta \), respectively. Then

\[
\tilde{m}_{\alpha_{i+1}} = f_i^{t+1}(\tilde{m}_{\alpha_i})
\]

for all \(i = 1, 2, \ldots, t-1 \), and

\[
\tilde{m}_\beta = f_\beta^\beta(\tilde{m}_\alpha)
\]

for all \(\beta \in K = I - \{ J \cup \{ \alpha_0 \} \} \).

In the first case, consider the map \(f = \sum_{I - \{ \alpha_0 \}} f_\alpha^\alpha: \sum_{I - \{ \alpha_0 \}} \oplus M_\alpha \to M_{\alpha_0} \) and put \(A^* = \{ x + f(x) \mid x \in \sum_{I - \{ \alpha_0 \}} \oplus M_\alpha \} \). Then \(M = A^* \oplus M_{\alpha_0} \) and it follows from \(A^* = \sum_{I - \{ \alpha_0 \}} \oplus \tilde{a}_\alpha \) that \(A^* \subseteq A \) as desired. In the second case we put \(M_\alpha = \{ x + f_i^{t+1}(x) \mid x \in m_\alpha R \} \) for \(i = 0, 1, \ldots, t-1 \) and \(T = \{ x + g(x) \mid x \in \sum_{\beta} \oplus m_\beta R \} \) where \(g = \sum_{\beta} f_\beta^\beta \). Then

\[
M = \sum_{t=0}^{t-1} \oplus M_\alpha \oplus T \oplus M_{\alpha_0},
\]

\[
\tilde{M}_\alpha = \tilde{a}_\alpha, R \text{ for } i = 1, \ldots, t-1, \text{ and}
\]

\[
\tilde{T} = (\tilde{a}_\beta - \tilde{a}_\beta)R \text{ for all } \beta \in K.
\]

Hence putting \(A^* = \sum_{t=0}^{t-1} \oplus M_\alpha \oplus T \) we see that \(A^* \subseteq A \) and \(M = A^* \oplus M_{\alpha_0} \). Our proof is now completed.

By a similar proof as in the proof of the above theorem, we can obtain the following result which is mentioned in introduction of this paper.

Theorem 10. Assume that each \(M_\alpha \) is cyclic hollow. Then the following conditions are equivalent:

1) \(M \) has the lifting property of modules for \(\mathcal{M}(M) \).

2) \(M \) has the lifting property of modules for \(\mathcal{M}*(M) \) and satisfies the following condition: For any subfamily \(\{ M_\alpha \} \subseteq \{ M_\alpha \} \) and epimorphisms \(\{ f_i: M_\alpha \to M_{\alpha_{i+1}} \} \), there exist \(n \) and epimorphism \(g: M_{\alpha_{i+1}} \to M_{\alpha_n} \) satisfying \(f_n^{-1} = g \) on \(\tilde{M} = M/MJ(M) \) where \(f_n \) and \(g \) are the induced isomorphisms.

References

Morihiro Okado
Oshima Mercantile Marine College
1091 Komatsu Oshima-cho Oshima-Gun
Yamagushi 742-21
Japan

Kiyoshi Oshiro
Department of Mathematics
Yamaguchi University
Oaza, Yoshida, Yamaguchi 753
Japan