

Title	Remarks on the lifting property of simple modules			
Author(s)	Okado, Morihiro; Oshiro, Kiyoichi			
Citation	Osaka Journal of Mathematics. 1984, 21(2), p. 375-385			
Version Type	VoR			
URL	https://doi.org/10.18910/12761			
rights				
Note				

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

REMARKS ON THE LIFTING PROPERTY OF SIMPLE MODULES

MORIHIRO OKADO AND KIYOICHI OSHIRO

(Received February 8, 1983)

Throughout this paper, we assume that R is an associative ring with identity and $\{M_{\alpha}\}_I$ is an infinite set of completely indecomposable right R-modules. We put $M = \sum_I \oplus M_{\alpha}$ and $\overline{M} = M/J(M)$, where J(M) ($= \sum_I \oplus J(M_{\alpha})$) denotes the Jacobson radical of M.

If each M_{α} is a cyclic hollow module, then M is completely reducible. In this case, M is said to have the *lifting property of simple modules modulo the* radical if every simple submodule of \overline{M} is induced from a direct summand of M ([3]). On the other hand, for the family \mathcal{M} of all maximal submodules of M, M is said to have the *lifting property of modules for* \mathcal{M} if every member A in \mathcal{M} is co-essentially lifted to a direct summand of M, that is, there exists a decomposition $M=A^*\oplus A^{**}$ such that $A^*\subseteq A$ and $A\cap A^{**}$ is small in M ([5]). These two concepts are both dual to 'extending property of simple modules' mentioned in [4]. Therefore, we must observe whether these two lifting properties coincide or not. In this paper, we study this problem and show the following result: M has the lifting property of modules for \mathcal{M} if and only if it has the lifting property of simple modules modulo the radical and satisfies the following condition: For any $\{M_{\alpha_i}\}_{i=1}^{\infty} \subseteq \{M_{\alpha}\}_I$ and epimorphisms $\{f_i: M_{\alpha_i} \to M_{\alpha_{i+1}}\}_{i=1}^{\infty}$, there exist n (depending on the sets) and epimorphism $g\colon M_{\alpha_{n+1}} \to M_{\alpha_n}$ such that $\bar{g} = \bar{f}_n^{-1}$, where \bar{g} and \bar{f}_n are the induced isomorphisms: $\bar{M}_{\alpha_{n+1}} \to \bar{M}_{\alpha_n}$ and $\bar{M}_{\alpha_n} \to \bar{M}_{\alpha_n}$ $\overline{M}_{\alpha_{n+1}}$, respectively (Theorem 10).

NOTATION. By P(M) we denote the set of all submodules X of M such that $X \cap M_{\sigma} \neq M_{\sigma}$ for all $\alpha \in I$ and $X = \sum_{I} \bigoplus (X \cap M_{\sigma})$.

We first show

Theorem 1. The following conditions are equivalent:

- 1) For any pair α , $\beta \in I$, every epimorphism from M_{α} to M_{β} is an isomorphism.
- 2) Let $\{A_{\beta}\}_J$ be a family of indecomposable direct summands of M. If $A_{\beta_1} + \cdots + A_{\beta_n} + X \supseteq A_{\beta_{n+1}}$ for any $X \in P(M)$ and any finite subset $\{\beta_1, \dots, \beta_{n+1}\}$

 $\subseteq J$, then $\sum_{\tau} A_{\beta}$ is a direct sum (and a locally direct summand of M).

Proof. 1) \Rightarrow 2). Let $\beta_1, \dots, \beta_{n+1} \in J$ and assume that $A = A_{\beta_1} + \dots + A_{\beta_n}$ is a direct sum and a direct summand of M. We may show $A \oplus A_{\beta_{n+1}} \langle \oplus M$. We see from [1] and [6] that every indecomposable direct summand of M satisfies the exchange property and hence we have a subset $I' = \{\alpha_1, \dots, \alpha_n\} \subseteq I$ satisfying $M = A \oplus \sum_{I-I'} \oplus M_{\gamma}$. We get either $M = A \oplus A_{\beta_{n+1}} \oplus \sum_{\{I-I'\} - \{\nu\}} \oplus M_{\gamma}$ for some $\nu \in I-I'$ or $M = A_{\beta_1} \oplus \dots \oplus A_{\beta_{i-1}} \oplus A_{\beta_{i+1}} \oplus \dots \oplus A_{\beta_n} \oplus A_{\beta_{n+1}} \oplus \sum_{I-I'} \oplus M_{\gamma}$ for some i.

In the former case, $A \oplus A_{\beta_{n+1}} \langle \oplus M$ as desired. In the latter case, $M_{\omega} \simeq A_{\beta_{n+1}}$ for some $\alpha \in \{\alpha_1, \dots, \alpha_n\}$. For each $\gamma \in I-I'$, π_{γ} denotes the projection: $M = A \oplus \sum_{I=I'} \oplus M_{\gamma} \to M_{\gamma}$. If $\pi_{\gamma}(A_{\beta_{n+1}}) \neq M_{\gamma}$ for all $\gamma \in I-I'$ then $X = \sum_{I=I'} \oplus \pi_{\gamma}(A_{\beta_{n+1}}) \in P(M)$ and $A_{\beta_{n+1}} \subseteq A_{\beta_1} + \dots + A_{\beta_n} + X$, a contradiction. Therefore, $\pi_{\gamma_0}(A_{\beta_{n+1}}) = M_{\gamma_0}$ for some $\gamma_0 \in I-I'$. Since $M_{\omega} \simeq A_{\beta_{n+1}}$ and $\alpha \neq \gamma_0$, $\pi_{\gamma_0} \mid A_{\beta_{n+1}}$ is an isomorphism by the assumption. Hence it follows that $M = A_{\beta_1} \oplus \dots \oplus A_{\beta_n} \oplus A_{\beta_{n+1}} \oplus \sum_{\Gamma} \oplus M_{\gamma}$, where $K = \{I-I'\} - \{\gamma_0\}$.

2) \Rightarrow 1). Let α , $\beta \in I$ and consider an epimorphism $f: M_{\alpha} \rightarrow M_{\beta}$. Putting $M'_{\alpha} = \{x + f(x) \mid x \in M_{\alpha}\}$, we see that $M_{\alpha} = M'_{\alpha} \in M$ and $M'_{\alpha} + X \supseteq M_{\alpha}$ for any X in P(M); whence, by 2), ker $f = M'_{\alpha} \cap M_{\alpha} = 0$ and hence f is an isomorphism.

Theorem 2. Assume that each X in P(M) is small in M or each M_{ω} is cyclic hollow. Then the following condition is equivalent to each of conditions 1) and 2) in Theorem 1.

(K) If $M = \sum_{\beta} A_{\beta}$ is an irredundant sum and each A_{β} is an indecomposable direct summand, then this sum is a direct sum.

Proof. $(K) \Rightarrow 1$) is shown by the same proof as in $2) \Rightarrow 1$) in Theorem 1. Now, assume that 2) holds and let $M = \sum_{J} A_{\beta}$ be an irredundant sum and each A_{β} an indecomposable direct summand. First, if each X in P(M) is small in M, then we see that $A_{\beta_1} + \cdots + A_{\beta_n} + X \not\supseteq A_{\beta_{n+1}}$ for any X in P(M) and any finite subset $\{\beta_1, \dots, \beta_{n+1}\} \subseteq J$. Hence the sum $M = \sum_{J} A_{\beta}$ is a direct sum by 2). Next, consider the case when each M_{β} is cyclic hollow. Assume that there exist a subset $\{\beta_1, \dots, \beta_n\} \subseteq J$ and X in P(M) such that $A_{\beta_1} + \dots + A_{\beta_n} + X \supseteq A_{\beta_{n+1}}$. Then we can take a finite subset $F \subseteq I$ and $Y \subseteq \sum_{F} \bigoplus M_{\alpha}$ such that $A_{\beta_1} + \dots + A_{\beta_n} + Y \supseteq A_{\beta_{n+1}}$ and $Y \in P(M)$. Since Y is small in M, this implies that $M = \sum_{J = (\beta_{n+1})} A_{\beta}$, a contradiction. Therefore, such $\{\beta_1, \dots, \beta_n\}$ and X do not exist; whence the sum $M = \sum A_{\beta}$ is a direct sum by 2).

Theorem 3. The following conditions are equivalent:

1) For any irredundant sum $\sum A_{\beta}$ of direct summands of M with the pro-

perty that $A_{\beta_1} + \cdots + A_{\beta_n} + X \not\supseteq A_{\beta_{n+1}}$ for any X in P(M) and any finite subset $\{\beta_1, \dots, \beta_n\} \subseteq J$, the sum $\sum_J A_{\beta}$ is a direct sum and moreover a direct summand of M

2) $\{M_{\alpha}\}_{I}$ is a locally semi-T-nilpotent set and 2) in Theorem 1 holds.

Proof. 1) \Rightarrow 2). We may only show the first condition. Let $\{M_{\alpha_i}\}_{i=1}^{\infty} \subseteq \{M_{\alpha_i}\}_{I}$ and $\{f_i \colon M_{\alpha_i} \to M_{\alpha_{i+1}}\}_{i=1}^{\infty}$ be a set of non-isomorphisms. Then each f_i is not an epimorphism by Theorem 1. Consider $M'_{\alpha_i} = \{x + f_i(x) \mid x \in M_{\alpha_i}\}$, $i=1, 2, \cdots$. Then, as is easily seen, $\{M'_{\alpha_i}\}_{i=1}^{\infty}$ is a set of indecomposable direct summands of M and satisfies the condition: $M'_{\beta_1} + \cdots + M'_{\beta_n} + X \supseteq M'_{\beta_{n+1}}$ for any X in P(M) and $\{\beta_1, \dots, \beta_{n+1}\} \subseteq \{\alpha_i\}_{i=1}^{\infty}$. Hence we get $M' = \sum_{i=1}^{\infty} \bigoplus M'_{\alpha_i} \oplus M'_{\alpha_i} \oplus M'_{\alpha_i} = M' \oplus T$. Assume that T is not indecomposable and non-zero. Then, by the Krull-Remak-Schmidt Azumaya's theorem, we see $M' \cap (M_{\alpha_n} \oplus M_{\alpha_m}) = 0$ for some $n \neq m$. But we can verify that this is impossible. As a result, T is indecomposable or zero, from which we get N = M' or $N = M' \oplus M_{\alpha_n}$ for some α_n . In either case, we see that for every x in M_{α_1} there exists m such that $f_m f_{m-1} \cdots f_1(x) = 0$. $2) \Rightarrow 1$) is clear from Theorem 1 and [2, Theorem 3.2.5].

DEFINITION ([5]). Let $\{A_1, \dots, A_n\}$ be a family of submodules of M. We say that the family is *co-independent* if the canonical map: $M \to \sum_{i=1}^{n} \bigoplus (M/A_i)$ is an epimorphism.

Theorem 4. The following conditions are equivalent:

- 1) For any $\alpha \in I$, every epimorphism from $\sum_{I=\{\alpha\}} \bigoplus M_{\beta}$ to M_{α} splits.
- 2) If $\{A_1, \dots, A_n\}$ is a co-independent family of direct summands of M such that $M|A_i$ is indecomposable, then $\bigcap_{i=1}^n A_i$ is a direct summand of M.

Proof. By [1] and [6], we see that every indecomposable direct summand of M is isomorphic to some member in $\{M_{\alpha}\}_{I}$ and hence satisfies the finite exchange property.

- 2) \Rightarrow 1). Let $\alpha \in I$ and f: $T = \sum_{I \{\alpha\}} \oplus M_{\beta} \rightarrow M_{\alpha}$ be an epimorphism. Putting $N = \{x + f(x) | x \in T\}$, we see that M = N + T, whence $\{N, T\}$ is co-independent. Thus $\ker f = T \cap N \triangleleft M$.
- 1) \Rightarrow 2). We show this by induction. So, let $\{A_1, \dots, A_n, A\}$ be a coindependent family of direct summands of M such that each M/A_i and M/A are indecomposable, and assume $B = \bigcap_{i=1}^n A_i \langle \bigoplus M$. Setting

$$M = A \oplus A^*$$

$$=B\oplus B^*$$

we see, by the above remark, that either

$$M = B \oplus X \oplus A^*$$

for some $X \subseteq B^*$ or

$$M = B' \oplus A^* \oplus B^*$$

for some $B' \subseteq B$.

We first assume the former case, and let π_A : $M=A\oplus A^*\to A$ and π_{A^*} : $M=A\oplus A^*\to A^*$ be the projections. Since M=A+B and $B\oplus A^* \subset M$ we see $\pi_{A^*}(B)=A^*$ and $B\subseteq \pi_A(B)\oplus \pi_{A^*}(B)=B\oplus A^* \subset M$; so $\pi_A(B)\subset M$. Since $B\cap A^*=0$, the mapping $f\colon \pi_A(B)\to A^*$ given by $\pi_A(b)\to \pi_{A^*}(b)$ is well defined and an epimorphism. As a result, $B\cap A=\ker f\subset M$ by the condition 1).

Next consider the latter case:

$$M = B' \oplus A^* \oplus B^*$$

where $B' \subseteq B$. Since $B^* \simeq M/B \simeq M/A_1 \oplus \cdots \oplus M/A_n$, B^* has the exchange property (cf. [1], [6]) and so does $A^* \oplus B^*$. Therefore

$$M = B' \oplus A^* \oplus B^*$$
$$= A' \oplus A^* \oplus B^*$$

for some $A' \subseteq A$. Consider the projections:

$$\pi_{A^*}: M \to A^*, \ \pi_{B^*}: M \to B^*$$

with respect to $M=A'\oplus A^*\oplus B^*$, and

$$\tau_{A^*}: M \to A^*, \ \tau_{B^*}: M \to B^*$$

with respect to $M=B'\oplus A^*\oplus B^*$.

Here the mapping $f: B^* \to A^*$ given by $\pi_{B^*}(a) \to \pi_{A^*}(a)$ for $a \in A$ and $g: A^* \to B^*$ given by $\tau_{A^*}(b) \to \tau_{B^*}(b)$ for $b \in B$ are well defined. Put

$$X = \{\pi_{B^*}(a) + \pi_{A^*}(a) \mid a \in A\}$$
, $Y = \{\tau_{A^*}(b) + \tau_{B^*}(b) \mid b \in B\}$.

Then $A=A'\oplus X$, $B=B'\oplus Y$, $X\oplus A^*=Y\oplus B^*=A^*\oplus B^*$ and

$$M = A' \oplus X \oplus A^*$$
$$= B' \oplus Y \oplus B^*.$$

If $X \oplus A^* = X \oplus T$ for some $T \subseteq B^*$, then $B = \{\delta(b) + \delta'(b) | b \in B\}$ where δ and

 δ' are the projections: $M \rightarrow A' \oplus X$ and $M \rightarrow T$, respectively with respect to $M = A' \oplus X \oplus T$. Noting M = A + B and $B \cap T = 0$, we see $\delta(B) = A$ and $\delta'(B) = T$, and further the mapping $\phi: A \rightarrow T$ given by $\delta(b) \rightarrow \delta'(b)$ is well defined and an epimorphism. Consequently $A \cap B = \ker \phi \leqslant M$.

If the case: $X \oplus A^* = X \oplus T$ for some $T \subseteq B^*$ does not occur, we must have $A^* \oplus B^* = X \oplus Y$, so

$$M = A' \oplus X \oplus Y$$
$$= B' \oplus Y \oplus X.$$

Then let $\eta_{A'}: M \to A'$ and $\eta_X: M \to X$ be the projections with respect to $M = A' \oplus X \oplus Y$. Putting $Z = \{\eta_{A'}(b') + \eta_X(b') | b' \in B'\}$, we get $Z \in A = A' \oplus X$ and $A \cap B = Z \in M$. The proof is now completed.

REMARK. a) Under the assumptions 'each M_{∞} is cyclic hollow' and 'J(M) is small in M' the equivalence of 1) in Theorem 1 and (K) in Theorem 2 was shown in [3]. Theorem 2 says that this second assumption is supperfluous. b) In the case when each M_{∞} is cyclic hollow, the condition 1) in Theorem 1 and 1) in Theorem 4 are clearly equivalent and hence all conditions in Theorems 1, 2 and 4 are equivalent. We also know from [3] that the following condition is also an equivalent condition: If $\{A_{\alpha}\}_J$ is a family of direct summands of M such that $\{\bar{A}_{\beta}\}_J$ is independent in $\bar{M}=M/J(M)$, then the sum $\sum_i A_{\beta}$ is a direct sum and a locally direct summand.

Theorem 5. The following conditions are equivalent:

- 1) For any independent family $\{A_{\beta}\}_J$ of indecomposable direct summands of M, $\sum_{r} \bigoplus A_{\beta}$ is a locally direct summand.
- 2) For any $\alpha \in I$ and any monomorphism $f: M_{\alpha} \to \sum_{I \{\alpha\}} \oplus M_{\beta}$, $f(M_{\alpha})$ is a direct summand of $\sum_{I \{\alpha\}} \oplus M_{\beta}$.

Proof. The proof is done as in the proof of [4, Theorem 13].

- 1) \Rightarrow 2). Let $\alpha \in I$ and consider a monomorphism $f \colon M_{\alpha} \to T = \sum_{I = (\alpha)} \oplus M_{\beta}$. Put $M'_{\alpha} = \{x + f(x) \mid x \in M_{\alpha}\}$. Then $M'_{\alpha} \cap T = 0$ and $M'_{\alpha} \oplus T = M_{\alpha} \oplus T$; whence $M'_{\alpha} \cong M_{\alpha}$ and M'_{α} is a direct summand of $M_{\alpha} \oplus M_{\beta}$. Further $M'_{\alpha} \cap M_{\alpha} = 0$ and hence it follows from 1) that $M'_{\alpha} \oplus M_{\alpha} = M_{\alpha} \oplus \operatorname{Im} f \langle \oplus M \rangle$; so $\operatorname{Im} f \langle \oplus M \rangle$.
- 2) \Rightarrow 1). We may show the following: If $\{A_1, \dots, A_n\}$ is an independent set of indecomposable direct summands of $M, A_1 \oplus \dots \oplus A_n$ is also a direct summand of M.

If n=1, this is clear. Assume n>1 and $A=A_1\oplus\cdots\oplus A_{n-1}\langle\oplus M$. Since each member of $\{A_1, \dots, A_{n-1}\}$ is isomorphic to some member in $\{M_{\alpha}\}_I$ (cf. [1]), A has the exchange property (cf. [6]), so

$$M = A \oplus \sum_{\tau} \oplus M_{\gamma}$$

for some subset $J \subseteq I$. Since A_n has the exchange property,

$$M = A_1 \oplus \cdots \oplus A_{k-1} \oplus A_{k+1} \oplus \cdots \oplus A_{n-1} \oplus A_n \oplus \sum_{\mathcal{I}} \oplus M_{\mathcal{I}} \cdots (*)$$

for some k or

$$M = A \oplus A_n \oplus \sum_{I = \{\sigma\}} \oplus M_{\gamma}$$

for some $\sigma \in J$. In the latter case the proof is completed. In the former case, $A_k \simeq M_\lambda$ for some $\lambda \in I-J$ and $f=\pi \mid A_k \colon A_k \to \sum_J \oplus M_\gamma$ is a monomorphism, where π denotes the projection: $M \to \sum_J \oplus M_\gamma$ with respect to (*). By 1), $f(A_k) \subset M$ and hence we see that $A \oplus A_r \subset M$.

Theorem 6. Assume that each M_{α} is uniform. Then the following conditions are equivalent:

- 1) For any pair α , $\beta \in I$, every monomorphism from M_{∞} to M_{β} is an isomorphism.
- 2) For any $\alpha \in I$ and any monomorphism f from M_{α} to $\sum_{I=\{\alpha\}} \bigoplus M_{\beta}$, the image $f(M_{\alpha})$ is a direct summand.

Proof. 2) \Rightarrow 1) is clear. Assume 1). Let $\alpha \in I$ and consider a monomorphism $f \colon M_{\sigma} \to \sum_{I-(\alpha)} \oplus M_{\beta}$. Put $T = f(M_{\sigma})$. Since each M_{γ} is uniform, we can take $\beta \in I - \{\alpha\}$ such that $T \cap \sum_{I-(\beta)} \oplus M_{\gamma} = 0$. Let π be the projection: $M = \sum_{I} \oplus M_{\sigma} \to M_{\beta}$. Then $g = \pi \mid T \colon T \to M_{\beta}$ is a monomorphism and hence $gf \colon M_{\sigma} \to M_{\beta}$ is a monomorphism. Therefore g is an isomorphism by 1) and it follows that $M = T \oplus \sum_{I-\{\beta\}} \oplus M_{\gamma}$.

REMARK. Under the assumption that each M_{ω} is uniform, all conditions in Theorems 5 and 6 are equivalent (cf. [4, Theorem 13]).

DEFINITION. Let \mathcal{A} be a family of submodules of M. M is said to have the *lifting property of modules for* \mathcal{A} if, for any A in \mathcal{A} , there exists a decomposition $M = A^* \oplus A^{**}$ such that $A^* \subseteq A$ and $A \cap A^{**}$ is small in M (see [5]).

NOTATION. By $\mathcal{H}(M)$, we denote the set of all submodules A of M such that M/A is a cyclic hollow module and define $\mathcal{H}^*(M) = \{A \in \mathcal{H}(M) \mid A \text{ contains almost all } M_{\alpha} \text{ but finit}\}$.

Theorem 7. Assume that each M_{∞} is cyclic hollow. Then the following conditions are equivalent:

1) M has the lifting property of modules for $\mathcal{H}^*(M)$.

2) For any pair α , $\beta \in I$, any $X \subseteq M_{\beta}$ and any epimorphism $f: M_{\alpha} \to M_{\beta} | X$, there exists either $g: M_{\alpha} \to M_{\beta}$ or $h: M_{\beta} \to M_{\alpha}$ such that

is commutative, where ϕ is the canonical map.

Proof. 1) \Rightarrow 2). Let α , $\beta \in I$ and consider submodules $X_{\alpha} \subseteq M_{\alpha}$ and $X_{\beta} \subseteq M_{\beta}$. Put $\overline{M} = M/(X_{\alpha} \oplus X_{\beta} \oplus \sum_{I = \{\alpha, \beta\}} \oplus M_{\gamma})$ and let $f : \overline{M}_{\alpha} \to \overline{M}_{\alpha}$ be an isomorphism. If we put $A = \{x \in M_{\alpha} \oplus M_{\beta} \mid \overline{x} \in \{\overline{y} + f(\overline{y}) \mid y \in M_{\alpha}\}\}$, then $M/A \simeq \overline{M}/\overline{A} \simeq \overline{M}_{\alpha}$ and hence $A \oplus \sum_{I = \{\alpha, \beta\}} \oplus M_{\gamma} \in \mathcal{H}^*(M)$. So, by 1), there exists a decomposition $M = A^* \oplus A^{**}$ such that $A^* \subseteq A$ and $A \cap A^{**}$ is small in M. Since $M/A \simeq A^{**}/(A \cap A^{**})$ is cyclic hollow, A^{**} is also cyclic hollow. Hence A^{**} can be exchanged by some member in $\{M_{\alpha}\}_{I}$. Since $\overline{M} = \overline{A}^*$, A^{**} must be in fact exchanged by M_{α} or M_{β} ; whence we get either $M = A^* \oplus M_{\alpha}$ or $M = A^* \oplus M_{\beta}$. In the former case, let $\pi : M = A^* \oplus M_{\beta} \to M_{\beta}$ be the projection. Then the diagram

is commutative, where $f'=-\pi|M_{\sigma}$ and φ_{σ} and φ_{β} are the canonical maps. In the latter case, we can obtain the desired epimorphism: $M_{\beta} \rightarrow M_{\sigma}$ by considering the projection: $M=A^* \oplus M_{\sigma} \rightarrow M_{\sigma}$.

2) \Rightarrow 1). Let $A \in \mathcal{H}^*(M)$. Then we can take $F = \{\alpha_1, \dots, \alpha_n\} \subseteq I$ and submodule $T \subseteq M_{\alpha_1} \oplus \dots \oplus M_{\alpha_n}$ such that $A = \sum_{I=F} \oplus M_{\beta} \oplus T$ and $M = A + M_{\alpha_i}$, $i = 1, \dots, n$. We put $X = (A \cap M_{\alpha_1}) \oplus \dots \oplus (A \cap M_{\alpha_n}) \oplus \sum_{I=B} \oplus M_{\beta}$ and $\tilde{M} = M/X$. Then

$$\tilde{M} = \tilde{A} \oplus \tilde{M}_{\sigma_1} = \cdots = \tilde{A} \oplus \tilde{M}_{\sigma_n}$$

 $\tilde{M}_{\sigma_i} \simeq M_{\sigma_i} / (A \cap M_{\sigma_i})$ (canonically), $i = 1, \dots, n$.

Let π_i : $\tilde{M} = \tilde{A} \oplus \tilde{M}_{\omega_i} \to \tilde{M}_{\omega_i}$ be the projection, $i = 1, \dots, n$. Then $\pi_i(\tilde{M}_{\omega_j}) = \tilde{M}_{\omega_i}$ and $\{\tilde{x} + \pi_i(\tilde{x}) \mid x \in M_{\omega_j}\} \subseteq \tilde{A}$ for $j \neq i$. Here, using 2), we can take $i_0 \in \{1, \dots, n\}$ and mappings $\{f_j : M_{\omega_j} \to M_{\omega_{i_n}} \mid j \neq i_0\}$ such that

$$\widetilde{f_j(x)} = \pi_{i_0}(\widetilde{x})$$

for all $x \in M_{\omega_j}$ and $j \neq i_0$. Putting $A_j = \{x + f_j(x) \mid x \in M_{\omega_j}\}$ and $T = A_1 \oplus \cdots \oplus A_{i_0-1} \oplus A_{i_0+1} \oplus \cdots \oplus A_n \oplus \sum_{\tau} \oplus M_{\beta}$, we see that $T \subseteq A$ and $M = T \oplus M_{\omega_{i_0}}$.

NOTATION. By $\mathcal{M}(M)$ we denote the set of all maximal submodules of M and put $\mathcal{M}^*(M) = \{A \in \mathcal{M}(M) \mid A \text{ contains almost all } M_{\sigma} \text{ but finite} \}$.

Theorem 8. Assume that each M_{\bullet} is a cyclic hollow module. Then the following conditions are equivalent:

- 1) M has the lifting property of simple modules modulo the radical.
- 2) M has the lifting property of modules for $\mathcal{M}^*(M)$.
- 3) For any pair α , β in I such that $\overline{M}_{\alpha} \simeq \overline{M}_{\beta}$ and any isomorphism $f \colon \overline{M}_{\alpha} \to \overline{M}_{\beta}$ (where $\overline{M} = M/J(M)$) there exists an epimorphism g of either M_{α} onto M_{β} or M_{β} onto M_{α} such that $\overline{g} = f$ or $\overline{g} = f^{-1}$, where \overline{g} is the induced isomorphism.

Proof. $1) \Leftrightarrow 3$) is due to Harada ([3]). $2) \Leftrightarrow 3$) is shown by the quite same argument as in the proof of Theorem 7.

NOTATION. Let $\{M_{\alpha_i}\}_{i=1}^{\infty} \subseteq \{M_{\alpha}\}_I$ and let $\{f_i \colon M_{\alpha_i} \to M_{\alpha_{i+1}}\}$ be a set of epimorphisms. By X_i we denote the set of all x in M_{α_i} such that $f_n f_{n-1} \cdots f_i(x) = 0$ for some n (depending on x). Put $X = \sum_{i=1}^{\infty} \bigoplus X_i$ and $\hat{M} = M/X$. Then, as is easily seen, f_i induces an isomorphism $\hat{f}_i \colon \hat{M}_{\alpha_i} \to \hat{M}_{\alpha_{i+1}}$. Here we shall consider the following condition:

(*) For any such $\{M_{\omega_i}\}_{i=1}^{\infty}$, epimorphisms $\{f_i\colon M_{\omega_i}\to M_{\omega_{i+1}}\}_{i=1}^{\infty}$ and \hat{M} , there exist n (depending on the sets) and epimorphism $g\colon M_{\omega_{n+1}}\to M_{\omega_n}$ such that g induces \hat{f}_n^{-1}

Theorem 9. Assume that each M_{∞} is cyclic hollow. Then the following conditions are equivalent:

- 1) M has the lifting property of modules for $\mathcal{A}(M)$.
- 2) M has the lifting property of modules for $\mathcal{H}^*(M)$ and satisfies the condition (*).

Proof. 1) \Rightarrow 2). The first part is clear. Let $\{M_{\alpha_i}\}_{i=1}^{\infty} \subseteq \{M_{\alpha_i}\}_I$ and let $\{f_i \colon M_{\alpha_i} \to M_{\alpha_{i+1}}\}_{i=1}^{\infty}$ be a set of epimorphisms. To verify (*) for these sets we can assume that $\{M_{\alpha_i}\}_I = \{M_{\alpha_i}\}_{i=1}^{\infty}$, since $\sum_{i=1}^{\infty} \oplus M_{\alpha_i}$ also has the lifting property of modules for $\mathcal{H}(\sum_{i=1}^{\infty} \oplus M_{\alpha_i})$. Now, we put $X_i = \{x \in M_{\alpha_i} \mid \exists n \colon f_n f_{n-1} \cdots f_i(x) = 0\}$, $X = \sum_{i=1}^{\infty} \oplus X_i$ and $\hat{M} = M/X$. Since each M_{α_i} is cyclic hollow, we can put $M_{\alpha_i} = m_i R$ with $f_i(m_i) = m_{i+1}$ for some $\{m_i\}_{i=1}^{\infty}$. Putting $A = \sum_{i=1}^{\infty} (m_i + m_{i+1})R$, we see that $M = m_i R + A$ and $m_i R \cap A = X_i$, $i = 1, 2, \cdots$. Since $M/A = (m_i R + A)/A = m_i R/(A \cap m_i R)$, A lies in $\mathcal{H}(M)$. Hence there exists a decomposition $M = A^* \oplus A^{**}$ such that $A^* \subseteq A$ and $A \cap A^{**}$ is small in M. Since $M/A \cong$

 $A^{**}/(A \cap A^{**})$, $A^{**}/(A \cap A^{**})$ is cyclic hollow and hence so is A^{**} . As a result, we can assume that A^{**} coincides with some member in $\{M_{\alpha_i}\}_{i=1}^{\infty}$ by the Krull-Remak-Schmidt-Azumaya's theorem: say

$$M = A^* \oplus M_{\alpha_n}$$

with $A^* \subseteq A$. We express m_{n+1} as

$$m_{n+1} = -m_n r_n + (m_n + m_{n+1}) r_n + m_{n+1} r_{n+1}$$

with $m_{n+1}r_{n+1} \in X_{n+1}$.

Now the mapping $g: M_{\alpha_{n+1}} \to M_{\alpha_n}$ given by the rule $m_{n+1}r \to m_n r_n r$ is well defined and an epimorphism. We claim that $\hat{g} = \hat{f}_n^{-1}$. In fact, it is easy to see that $m_n r_n r \in X_n$ if and only if $m_{n+1}r \in X_{n+1}$; whence g induces an isomorphism \hat{g} from $\hat{M}_{\alpha_{n+1}}$ to \hat{M}_{α_n} and moreover $\hat{m}_{n+1} = \hat{m}_{n+1}r_n = \hat{f}_n(\hat{m}_n r_n) = \hat{f}_n \hat{g}(\hat{m}_{n+1})$ and hence $\hat{g} = \hat{f}_n^{-1}$.

2) \Rightarrow 1). We fix $\alpha_0 \in I$ and put $M_{\alpha_0} = m_{\alpha_0}R$. Let $A \in \mathcal{H}(M)$. To show that A can be co-essentially lifted to a direct summand of M, we may assume that each M_{α} is not contained in A, namely, $M = M_{\alpha} + A$ for all $\alpha \in I$. Put $Y_{\alpha} = M_{\alpha} \cap A$ for all $\alpha \in I$, $Y = \sum_{I} \oplus Y_{\alpha}$ and $\widetilde{M} = M/Y$. For any $\beta \in I - \{\alpha_0\}$,

we see

$$egin{aligned} ilde{M} &= ilde{M}_{oldsymbol{lpha}_0} \oplus ilde{A} \ &= ilde{M}_{oldsymbol{eta}} \oplus ilde{A} \ . \end{aligned}$$

So, there exist $m_{\beta} \in M_{\beta}$ and $a_{\beta} \in A$ such that

$$\widetilde{m}_{\alpha_0} = \widetilde{m}_{\beta} + \widetilde{a}_{\beta}$$
.

Clearly the rule $\tilde{m}_{\omega_0}r \to \tilde{m}_{\beta}r$ defines an isomorphism from \tilde{M}_{ω_0} to \tilde{M}_{β} . Therefore the rule $\tilde{m}_{\beta}r \leftrightarrow \tilde{m}_{\beta}r$ define an isomorphism $\eta_{\beta}^{\beta'}: \tilde{M}_{\beta} \to \tilde{M}_{\beta'}$ for any pair β, β' in I. Here we shall show that there does not exist the following subset $\{\alpha_i\}_{i=1}^{\infty}$ $\subseteq I - \{\alpha_0\}$:

- i) there exists a set $\{f_i \colon M_{\alpha_i} \to M_{\alpha_{i+1}}\}_{i=1}^{\infty}$ of epimorphisms such that each f_i induces the isomorphism $\eta_{\alpha_i}^{\alpha_{i+1}}$
- ii) but for all *i* there does not exist any epimorphism $g: M_{\alpha_{i+1}} \to M_{\alpha_i}$ which induces the isomorphism $(\eta_{\alpha_i}^{\alpha_{i+1}})^{-1}$.

In fact, assume, on the contrary, that such $\{\alpha_i\}_{i=1}^{\infty}$ exists. Put $X_i = \{x \in M_{\alpha_i} | f_n f_{n-1} \cdots f_i(x) = 0 \text{ for some } n \geq i\}$, $X = \sum_{i=1}^{\infty} \bigoplus X_i$ and $\hat{M} = M/X$. Then clearly $X_i \subseteq Y_i$ and $f_i(X_i) = X_{i+1}$ for all i. By \hat{f}_i we denote the induced isomorphism: $\hat{M}_{\alpha_i} \to \hat{M}_{\alpha_{i+1}}$. Here using the condition 2) we can take k and an epimorphism $g \colon M_{\alpha_k} \to M_{\alpha_{k-1}}$ such that g induces \hat{f}_k^{-1} . Then $\hat{m}_k = \hat{g}(\hat{m}_{k+1})$ and it follows that $\tilde{m}_k = g(m_{k+1})$. As a result, g induces $(\eta_{\alpha_k}^{\alpha_{k+1}})^{-1}$, a contradiction.

Now, by this fact and Theorem 8, we may consider the following two cases.

*) For any $\alpha \in I - \{\alpha_0\}$ there exists an epimorphism $f_{\alpha} \colon M_{\alpha} \to M_{\alpha_0}$ such that f_{α} induces the isomorphism $\eta_{\alpha}^{\alpha_0} \colon \tilde{M}_{\alpha} \to \tilde{M}_{\alpha_0}$.

**) There exist $J = \{\alpha_1, \dots, \alpha_t\} \subseteq I - \{\alpha_0\}$ and sets $\{f_i^{i+1}: M_{\alpha_i} \to M_{\alpha_{i+1}} | i=0, \dots, t-1\}$ and $\{f_{\beta}^{\alpha_i}: M_{\beta} \to M_{\beta_t} | \beta \in I - \{J \cup \{\alpha_0\}\}\}$ of epimorphisms such that f_i^{i+1} and $f_{\beta}^{\alpha_i}$ induce $\eta_{\alpha_i}^{\alpha_{i+1}}$ and $\eta_{\beta}^{\alpha_i}$, respectively. Then

$$\widetilde{m}_{\alpha_{i+1}} = \widetilde{f_i^{i+1}(m_{\alpha_i})}$$

for all i=1, 2, ..., t-1, and

$$\widetilde{m}_{\beta} = \widetilde{f_{\beta'}^{\alpha_t}(m_{\alpha_t})}$$

for all $\beta \in K = I - \{J \cup \{\alpha_0\}\}$.

In the first case, consider the map $f = \sum_{I - \{\alpha_0\}} f_{\alpha}^{\alpha_0} : \sum_{I - \{\alpha_0\}} \oplus M_{\alpha} \to M_{\alpha_0}$ and put $A^* = \{x + f(x) \mid x \in \sum_{I - \{\alpha_0\}} \oplus M_{\alpha}\}$. Then $M = A^* \oplus M_{\alpha_0}$ and it follows from $\tilde{A}^* = \sum_{I} \oplus \tilde{a}_{\alpha}R$ that $A^* \subseteq A$ as desired. In the second case we put $M'_{\alpha_i} = \{x + f_i^{i+1}(x) \mid x \in m_{\alpha_i}R\}$ for $i = 0, 1, \dots, t-1$ and $T = \{x + g(x) \mid x \in \sum_{K} \oplus m_{\beta}R\}$ where $g = \sum_{K} f_{\beta}^{\alpha_i}$. Then

$$M = \sum_{i=0}^{t-1} \oplus M'_{\alpha_i} \oplus T \oplus M_{\alpha_t},$$

 $\tilde{M}'_{\alpha_i} = \tilde{a}_{\alpha_i} R \text{ for } i = 1, \dots, t-1, \text{ and }$
 $\tilde{T} = (\tilde{a}_{\beta} - \tilde{a}_{\beta_t})R \text{ for all } \beta \in K.$

Hence putting $A^* = \sum_{i=0}^{t-1} \bigoplus M'_{\alpha_i} \bigoplus T$ we see that $A^* \subseteq A$ and $M = A^* \bigoplus M_{\alpha_t}$. Our proof is now completed.

By a similar proof as in the proof of the above theorem, we can obtain the following result which is mentioned in introduction of this paper.

Theorem 10. Assume that each M_{α} is cyclic hollow. Then the following conditions are equivalent:

- 1) M has the lifting property of modules for $\mathcal{M}(M)$.
- 2) M has the lifting property of modules for $\mathfrak{M}^*(M)$ and satisfies the following condition: For any subfamily $\{M_{\omega_i}\}_{i=1}^{\infty} \subseteq \{M_{\omega}\}_I$ and epimorphisms $\{f_i \colon M_{\omega_i} \to M_{\omega_{i+1}}\}_{i=1}^{\infty}$, there exist n and epimorphism $g \colon M_{\omega_{n+1}} \to M_{\omega_n}$ satisfying $\overline{f}_n^{-1} = \overline{g}$ on $\overline{M} = M/J(M)$ where f_n and \overline{g} are the induced isomorphisms.

References

[1] G. Azumaya: Correction and supplementaries to my paper Krull-Remak-Schmidt's theorem, Nagoya Math. J. 1 (1950), 117-124.

- [2] M. Harada: Applications of factor categories to completely indecomposable modules, Publ. Dep. Math. Lyon 11 (1974), 19-104.
- [3] M. Harada: On lifting property on direct sums of hollow modules, Osaka J. Math. 17 (1980), 783-791.
- [4] M. Harada and K. Oshiro: On extending property on direct sums of uniform modules, Osaka J. Math. 18 (1981), 767-785.
- [5] K. Oshiro: Semiperfect modules and quasi-semiperfect modules, Osaka J. Math. 20 (1983), 337-372.
- [6] R.B. Warfield Jr.: A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1969), 460-465.

Morihiro Okado Oshima Mercantile Marine College 1091 Komatsu Oshima-cho Oshima-Gun Yamagushi 742-21 Japan

Kiyoichi Oshiro Department of Mathematics Yamaguchi University Oaza, Yoshida, Yamaguchi 753 Japan