

Title	Linearly compact modules over HNP rings
Author(s)	Marubayashi, Hidetoshi
Citation	Osaka Journal of Mathematics. 1985, 22(4), p. 835-844
Version Type	VoR
URL	https://doi.org/10.18910/12775
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

LINEARLY COMPACT MODULES OVER HNP RINGS

Dedicated to Professor Hirosi Nagao for his 60th birthday

HIDETOSHI MARUBAYASHI

(Received May 4, 1984)

Let R be a hereditary noetherian prime ring (an HNP ring for short) and let F be a non-trivial right Gabriel topology on R, i.e., F consists of essential right ideals of R (see §1 of [9]). Then R is a topological ring with elements of F as a fundamental system of neighborhoods of θ . Let M be a topological right R-module with a fundamental system of neighborhoods of θ consisting of submodules. Then M is called F-linearly compact (F-l.e. for short) if

- (i) it is Hausdorff,
- (ii) if every finite subset of the set of congruences $x \equiv m_{\alpha} \pmod{N_{\alpha}}$, where N_{α} are closed submodules of M, has a solution in M, then the entire set of the congruences has a solution in M.

This paper is concerned with F-l.c. modules over HNP rings in the case F is special. Let A be a maximal invertible ideal of R and let F_A be the right Gabriel topology consisting of all right ideals containing some power of A. Then we give, in §2, a complete algebraic structure of F_A -l.c. modules by using Kaplansky's duality theorem and basic submodules. From this result we get: " F_A -l.c. modules" \Rightarrow " F_A^ω -pure injective modules". This implication is not necessary to hold for any right Gabriel topology as it is shown in §3. It is established that there is a duality between F_A -l.c. modules and left \hat{R}_A -modules, where \hat{R}_A is the completion of R with respect to A (see Theorem 2.6). Main results in this paper were announced without proofs in [11].

Concerning our terminologies and notations we refer to [8] and [9].

1. Throughout this paper, R denotes an HNP ring with quotient ring Q and $K=Q/R \neq 0$. Let F be any non-trivial right Gabriel topology on R; "trivial" means that either all modules are F-torsion-free or all modules are F-torsion. Then F consists of essential right ideals of R (see [9, p. 96]). Let I be any essential right ideal of R. Define $(R: I)_I = \{q \in Q \mid qI \subseteq R\}$. Similarly $(R: J)_r = \{q \in Q \mid Jq \subseteq R\}$ for any essential left ideal J of R. An ideal X of R is called invertible if $(R: X)_I X = R = X(R: X)_r$. In this case we have $(R: X)_I = (R: X)_r$, denoted by X^{-1} . For any right Gabriel topology F, put $Q_F = \bigcup (R: I)_I (I \subseteq F)$, the ring of quotients of R with respect to F. The family F_I of

left ideals J of R such that $Q_F J = Q_F$ is a left Gabriel topology on R, which is called the left Gabriel topology corresponding to F. It is clear that $Q_F = Q_{F_I} = \bigcup$ $(R:J)_r$, $(J \in F_I)_r$. Define $\hat{R}_F = \lim_{r \to \infty} R/I$ $(I \in F)_r$, the inverse limit of the modules R/I, and $\hat{R}_{F_I} = \lim_{r \to \infty} R/J$ $(J \in F_I)_r$. Then both \hat{R}_F and \hat{R}_{F_I} are rings (see [16, §4]). Let M be an F-torsion module. Then it is an \hat{R}_F -module as follows; for any $m \in M$ and $\hat{r} = ([r_I + I]) \in \hat{R}_F$, we define $m\hat{r} = mr_L$, where L is any element in F contained in $O(m) = \{r \in R \mid mr = 0\}$. Similarly, an F_I -rotsion left module is an \hat{R}_{F_I} -module. In [7], we studied F-l.c. modules over a Dedekind prime ring. All results in [7, §2] are carried over F-l.c. modules over any HNP rings without any changes of the proofs. Here we pick up some of them which are frequently used in §2. Let $\eta: R \to \hat{R}_F$ be the canonical map and $\hat{F} = \{\hat{L}: \text{ right ideals of } \hat{R}_F | \hat{L} \supset \eta(I) \hat{R}_F$ for some $I \in F\}$. Then \hat{R}_F is a topological ring with elements of \hat{F} as a fundamental system of neighborhoods of θ . For any \hat{R}_F -module, we can define the concept of \hat{F} -l.c. modules.

(1.1) A module is an F-l.c. module if and only if it is an \hat{R}_F -module and is an \hat{F} -l.c. module (see Proposition 2.10 of [7]).

Let M be an F-l.c. module. Then M^* means the left module of all continuous homomorphisms from M into K_F ($=Q_F/R$), where K_F is equipped with the discrete topology. It is evident that an element $f \in \operatorname{Hom}_R(M, K_F)$ is continuous if and only if $\operatorname{Ker} f$ is open. Let G be a left \hat{R}_{F_I} -module. Then we denote by G^* the right module $\operatorname{Hom}_{\hat{R}_{F_I}}(G, K_F)$ and define its finite topology by taking the submodules $\operatorname{Ann}(N) = \{f \in G^* | (N) f = 0\}$ as a fundamental system of neighborhoods of zero, where N runs over all finitely generated \hat{R}_{F_I} -submodules of G.

- (1.2) (Kaplansky's duality theorem) Let M be an F-l.c. module. Then M^* is a left \hat{R}_{F_i} -module and M is isomorphic to M^{**} as topological modules, where M^{**} is equipped with the finite topology induced by M^* as the above (see Lemma 2.11 and Theorem 2.12 of [7]).
- 2. Let A be a maximal invertible ideal of R and let $F_A=\{I: \text{ right ideal of } R \mid I \supseteq A^n \text{ for some } n>0\}$, a right Gabriel topology. Then $F_{A_I}=\{J: \text{ left ideal of } R \mid J \supseteq A^m \text{ for some } m>0\}$. We denote the inverse limit of the modules R/A^n $(n=1, 2, \cdots)$ by \hat{R} . Then $\hat{R}_{F_A}=\hat{R}=\hat{R}_{F_{A_I}}$ and it is an HNP ring with the Jacobson radical $\hat{A}=A\hat{R}=\hat{R}A$ and with quotient ring $\hat{Q}=Q\otimes_R\hat{R}$ (see Lemma 1.2 and Theorem 1.1 of [8]). F_A -l.c. modules and F_A -torsion modules are said to be A-l.c. modules and A-primary modules, respectively. We note that $K_{F_A}=\hat{Q}/\hat{R}$, because $K_{F_A}=\bigcup A^{-n}/R=(\bigcup A^{-n}/R)\otimes_R\hat{R}\cong \bigcup \hat{A}^{-n}/\hat{R}=\hat{Q}/\hat{R}$.

In this section, we shall give a complete algebraic structure of A-l.c. modules. We can see from (1.1) that a module is A-l.c. if and only if it is an \hat{R} -module and an \hat{A} -l.c. module. If A is a maximal ideal of R, then \hat{R} is a Dede-

kind prime ring with unique maximal ideal \hat{A} . Thus, in this case, the algebraic structure of A-l.c. modules has been characterized in Theorem 3.4 of [7]. If A is not maximal ideal, then $A=M_1\cap\cdots\cap M_p$, where M_1,\cdots,M_p are all maximal idempotent ideals of R and is a cycle, i.e., $O_r(M_1)=O_l(M_2),\cdots$, $O_r(M_p)=O_l(M_1)$, where $O_r(M_1)=\{q\in Q\,|\,M_1q\subseteq M_1\}$ and $O_l(M_2)=\{q\in Q\,|\,qM_2\subseteq M_2\}$. Furthermore, we have the following (see Theorem 1.1 of [8] and Lemma 4 of [10]):

(a) $\hat{R} = (e_1 \hat{R} \oplus \cdots \oplus e_1 \hat{R}) \oplus \cdots \oplus (e_p \hat{R} \oplus \cdots \oplus e_p \hat{R})$, where each $e_i \hat{R}$ is a uniform right ideal of \hat{R} , e_i is idempotent in \hat{R} , $e_i \hat{R}/e_i \hat{A}$ is a simple module annihilated by M_i and k_i is the Goldie dimension of R/M_i .

(b) $\hat{A} = \hat{M}_i \cap \cdots \cap \hat{M}_p$, where \hat{M}_i , \cdots , \hat{M}_p are all maximal idempotent ideals of \hat{R} and is a cycle, and $\hat{M}_i = M_i \hat{R} = \hat{R} M_i$ for each $i \ (1 \le i \le p)$.

Lemma 2.1. Under the same notations as in (a) and (b), we have the following

- (1) $(e_i \hat{A}^{-1} + \cdots + e_i \hat{A}^{-1}) + \hat{R} = O_i(\hat{M}_{i+1}) = O_r(\hat{M}_i) \ (1 \le i \le p \ and \ p+1=1).$
- (2) $\hat{R}e_i/\hat{A}e_i$ is left M_i -primary, i.e., each element of $\hat{R}e_i/\hat{A}e_i$ is annihilated by M_i .

Proof. Firstly we note that $\hat{A}^{-1} = (e_1 \hat{A}^{-1} \oplus \cdots \oplus e_1 \hat{A}^{-1}) \oplus \cdots \oplus (e_p \hat{A}^{-1} \oplus \cdots \oplus e_p \hat{A}^{-1})$ and $\hat{A}^{-1} = O_l(\hat{M}_1) + \cdots + O_l(\hat{M}_p)$, because $O_l(\hat{M}_i) = (\hat{R}: \hat{M}_i)_l$. Thus we have

- (c) $\hat{A}^{-1}/\hat{R} = (e_1\hat{A}^{-1} + \cdots + e_1\hat{A}^{-1} + \hat{R})/\hat{R} \oplus \cdots \oplus (e_p\hat{A}^{-1} + \cdots + e_p\hat{A}^{-1} + \hat{R})/\hat{R}$, and
- (d) $\hat{A}^{-1}/\hat{R} = O_l(\hat{M}_1)/\hat{R} \oplus \cdots \oplus O_l(\hat{M}_p)/\hat{R}$.

It is clear that $O_l(\hat{M}_i)/\hat{R}$ is M_i -primary. Since $e_i\hat{Q}/e_i\hat{A}$ is a uniform and injective \hat{R} -module, it is a uniform and injective R-module by Lemma 2.4 of [8]. Thus we have $e_i\hat{A}^{-1}/e_i\hat{R}$ is M_{i+1} -primary by periodicity theorem and (a) (see Theorem 22 of [4]). It follows that $(e_i\hat{A}^{-1})\hat{M}_{i+1}\subseteq e_i\hat{R}\subseteq \hat{R}$ and $e_i\hat{A}^{-1}\subseteq O_l(\hat{M}_{i+1})$. Thus (1) follows from (c) and (d).

(2) Since $O_r(\hat{M}_i) = O_l(\hat{M}_{i+1})$, we have $\hat{M}_i(e_i\hat{A}^{-1}) \subseteq \hat{R}$ by (1) and hence $\hat{M}_ie_i \subseteq \hat{A}e_i$. This implies that $\hat{R}e_i/\hat{A}e_i$ is M_i -primary as left modules.

Let M be an \hat{R} -module. Then write $M^{\sharp} = \operatorname{Hom}_{\hat{R}}(M, K_{F_A})$.

Lemma 2.2. Under the same notations as in (a) and (b), we have

- (1) for any positive integer n and any i $(1 \le i \le p)$, $(e_i \hat{R}/e_i \hat{A}^n)^* = \hat{R}e_j/\hat{A}^n e_j$ for some j $(1 \le j \le p)$.
- (2) $(e_i \hat{R})^{\sharp} = \hat{Q}e_i / \hat{R}e_i = E(\hat{R}e_{i-1}/\hat{A}e_{i-1})$, the injective hull of $\hat{R}e_{i-1}/\hat{A}e_{i-1}$, where $1 \le i \le p$ and i-1=p if i=1.
- (3) $(e_i\hat{Q})^* = \hat{Q}e_i$ for each $i (1 \leq i \leq p)$.
- (4) $(e_i\hat{Q}/e_i\hat{R})^* = \hat{R}e_i$ for each i $(1 \le i \le p)$.

These modules are all A-l.c. modules.

- Proof. (1) Clearly $(e_i \hat{R}/e_i \hat{A}^n)^{\sharp} = \hat{A}^{-n}e_i + \hat{R}/\hat{R} = \hat{A}^{-n}e_i/\hat{R}e_i$ by left multiplications of elements in $\hat{A}^{-n}e_i$. $\hat{A}^{-n}e_i/\hat{R}e_i$ is a uniserial module of length n with composition factor modules $\hat{A}^{-k}e_i/\hat{A}^{-(k-1)}e_i$ $(1 \le k \le n \text{ and } \hat{A}^{-0} = \hat{R})$. There is j $(1 \le j \le p)$ such that $\hat{A}^{-n}e_i/\hat{A}^{-(n-1)}e_i \cong \hat{R}e_j/\hat{A}e_j$ and then $\hat{R}e_j/\hat{A}^ne_j \cong \hat{A}^{-n}e_i/\hat{R}e_i$ by the periodicity theorem.
- (2) The first isomorphism is also obtained by left multiplication of elements in $\hat{Q}e_i$. The second isomorphism follows from the periodicity theorem.
- (3) Let $x=xe_i$ be any element of $\hat{Q}e_i$. Then a mapping λ_x : $e_iQ \to K_{FA}$ given by $\lambda_x(y) = [xy + \hat{R}]$ ($y \in e_i\hat{Q}$) is a homomorphism. Assume that $\lambda_x = 0$ and $x \neq 0$. Then $x\hat{Q} = xe_i\hat{Q} \subseteq \hat{R}$, that is, $x \in \hat{R}$. Hence $\hat{R}x\hat{R}\hat{Q} \subseteq \hat{R}$. But $\hat{R}x\hat{R}$ contains a regular element in \hat{R} and so $\hat{R}x\hat{R}\hat{Q} = \hat{Q}$, a contradiction. Hence we may assume that $\hat{Q}e_i \subseteq (e_i\hat{Q})^*$. Conversely, let f be any non zero element in $(e_i\hat{Q})^*$ and let $f(e_i) = [q + \hat{R}]$, where $q = qe_i \in \hat{Q}$. Since $(f \lambda_q)(e_i\hat{R}) = 0$, $f \lambda_q$ induces an element $f = (e_i\hat{Q}/e_i\hat{R})^*$. Since $\hat{Q}/\hat{R} = e_i\hat{Q}/e_i\hat{R} \oplus (1-e_i)\hat{Q}/(1-e_i)$ \hat{R} , we may consider that $f = (e_i\hat{Q}/\hat{R})^*$. By Proposition A.3 of [8], $\hat{R} \cong (\hat{Q}/\hat{R})^*$. Hence $f = \lambda_q = \lambda_r$, for some $r \in \hat{R}$ and $f = \lambda_q = \lambda_r$. So we get that $(e_i\hat{Q})^* \subset \hat{Q}e_i$ and therefore $(e_i\hat{Q})^* = \hat{Q}e_i$.
- (4) The exact sequence $0 \rightarrow e_i \hat{R} \rightarrow e_i \hat{Q} \rightarrow e_i \hat{Q}/e_i \hat{R} \rightarrow 0$ induces the exact sequence $0 \rightarrow (e_i \hat{Q}/e_i \hat{R})^{\sharp} \rightarrow (e_i \hat{Q})^{\sharp} \rightarrow (e_i \hat{R})^{\sharp} \rightarrow 0$, because K_{F_A} is injective. The assertion follows from (2) and (3). The left modules in (1) and (2) are artinian and A-primary. So they are A-l.c. modules in the discrete topology by Lemma 2.1 of [7] (as it has been pointed out in §1, all results in [7, §2] hold in F-l.c. modules over any HNP rings). \hat{R} is an A-l.c. modules by Lemma 2.4 of [7]. Thus it follows that $\hat{R}e_i$ is also an A-l.c. module. Finally consider the exact sequence $0 \rightarrow \hat{R}e_i \rightarrow \hat{Q}e_i \rightarrow \hat{Q}e_i/\hat{R}e_i \rightarrow 0$. $\hat{Q}e_i$ is a topological module by taking as a fundamental system of 0 the submodules $\{\hat{A}^n e_i | n=0, \pm 1, \pm 2, \cdots\}$. Hence $\hat{Q}e_i$ is an A-l.c. module by Proposition 9 of [20].

Following [9], a submodule L of a module M is called F^{ω} -pure if $MJ \cap L = LJ$ for any $J \in F_l$. Let F_o be the right Gabriel topology of all essential right ideals of R. Then "an F_o^{ω} -pure submodule" is merely called a pure submodule.

Consider the following condition:

(e) all finitely generated F and F_l -torsion modules are a direct sum of cyclic modules.

This condition is satisfied by any topologies F and F_I on R if R has enough invertible ideals and so, especially, if R has a non zero Jacobson radical (see Corollary 3.4 and Theorems 4.12, 4.13 of [3]). If all F and F_I -torsion modules are of bounded orders, i.e., unfaithful modules, then this condition is satisfied, because every factor ring of an HNP ring is serial (Corollary 3.2 of [1]). Note that [9, Lemma 1.2] is still valid for topologies F and F_I on any HNP ring R satisfying the condition (e). Furthermore, if R has a nonzero Jacobson radical, then a submodule L of a module M is pure if and only if $Mc \cap L = Lc$ for any

regular element c in R by Proposition 3 of [19] and the remark to Theorem 3.6 of [15].

Lemma 2.3. Let R be an HNP ring with the Jacobson radical A and A be a maximal invertible ideal of R. If as hort exact sequence $0 \rightarrow L \xrightarrow{\alpha} M \xrightarrow{\beta} N \rightarrow 0$ is pure, then $0 \rightarrow \operatorname{Hom}_R(N, K) \xrightarrow{\beta^*} \operatorname{Hom}_R(M, K) \xrightarrow{\alpha^*} \operatorname{Hom}_R(L, K) \rightarrow 0$ is pure as left R-modules.

Proof. Let c be any regular element of R and let $cf=g\beta$ be any element in $c\operatorname{Hom}_R(M, K)\cap(\operatorname{Hom}_R(N, K))\beta^*$, where $f\in\operatorname{Hom}_R(M, K)$ and $g\in\operatorname{Hom}_R(N, K)$. Since $g\beta\alpha(L)=0$, we have $\alpha(L)\subset\operatorname{Ker} g\beta=\operatorname{Ker} cf$. There is a nature number n such that $Rc\supset A^n$. It follows that $0=Rcf\alpha(L)\supseteq A^nf\alpha(L)$. Put $f\alpha(L)=X/R$, where X is a submodule of Q containing R. Then $A^nX\subseteq R$ and so $X\subseteq (R:A^n)_r=A^{-n}=(R:A^n)_l$. Thus we have $XA^n\subseteq R$. This implies that $f\alpha(L)A^n=0$. Put $\overline{M}=M/\alpha(L)A^n$. Then $\overline{L}=\alpha(L)/\alpha(L)A^n$ is pure in \overline{M} , because L is pure in M. It follows from Theorem 3 of [13] and Theorem 1.3 of [14] that L is a direct summand of \overline{M} , because L is of bounded order. Thus we have the following sequence;

$$M \stackrel{\eta}{\to} \bar{M} = \bar{L} \oplus \bar{M}_1 \stackrel{\pi}{\to} \bar{M}_1 \stackrel{f_1}{\to} K$$

where η is a natural homomorphism, π is a projection map from \overline{M} to \overline{M}_1 (M_1 is a submodule of M) and f_1 is the map induced by f (note that $f\alpha(L)A^n=0$). Put $h=f_1\pi\eta$ and let x be any element of M. Write $\overline{x}=\overline{x}_1+\overline{x}_2$ ($x_1\in\alpha(L)$ and $x_2\in M_1$). Then $ch(x)=cf_1\pi\eta(x)=cf_1(\overline{x}_2)=cf(x_2)$. Since $x-x_2\in\alpha(L)+\alpha(L)A^n\subseteq\alpha(L)$ and cf $\alpha(L)=0$, we have $ch(x)=cf(x_2)=cf(x)$. Therefore ch=cf. By the construction of h, $h(\alpha(L))=0$. This entails that h induces a map $h: N\to K$ such that h hence we have $cf=ch=ck\beta\in c(\operatorname{Hom}_R(N,K))$ β^* , as desired.

Theorem 2.4. Under the same notations as in (a) and (b), a module is an A-l.c. module if and only if it is isomorphic to a direct product of modules of the following types:

 $e_i \hat{R}/e_i \hat{A}^n$ (n=1, 2, ...), $E(e_i \hat{R}/e_i \hat{A})$, the injective hull of $e_i \hat{R}/e_i \hat{A}$, $e_i \hat{R}$ and $e_i (Q \otimes_R \hat{R})$ ($1 \leq i \leq p$).

Proof. The sufficiency follows from Proposition 1 of [20] and Lemma 2.2. Conversely let M be an A-l.c. module. Then M^* is a left \hat{R} -module by (1.2). So M^* has a basic submodule B by Theorem 2.1 of [8]. Then B is a direct sum of modules of types; $\hat{R}e_i/\hat{A}^ne_i$ and $\hat{R}e_i$ ($1 \le i \le p$) and $n=1, 2, \cdots$), and M^*/B is a direct sum of modules of types; $E(\hat{R}e_i/\hat{A}e_i)$ and $(Q \otimes_R \hat{R})e_i$ (see Theorem 2.2 of [8]). Then from pure exact sequence $0 \to B \to M^* \to M^*/B \to 0$, we derive the pure exact sequence $0 \to (M^*/B)^* \to M^{**} \to B^* \to 0$ (as right \hat{R} -modules) by Lemma 2.3. By Lemma 2.2, $(M^*/B)^*$ is a direct product of modules of types; $e_i(Q \otimes_R \hat{R})$ and $e_i \hat{R}$. Here $e_i(Q \otimes_R \hat{R})$ is an injective \hat{R} -module.

Since $\hat{R} \cong \operatorname{Hom}_{R}(K_{F_{A}}, K_{F_{A}}) \cong \operatorname{Hom}_{\hat{R}}(\hat{Q}/\hat{R}, \hat{Q}/\hat{R})$ (see Lemma 1.5 and Proposition A.3 of [8]), \hat{R} is a pure injective \hat{R} -module by Propositions A.5, A.6 of [8] and Theorem 3.5, the remark to Proposition A.5 of [9], i.e., \hat{R} has the injective property relative to the class of pure exact sequences and so is $\epsilon_i \hat{R}$. Hence $(M^*/B)^*$ is also pure injective. This entails that $M^{**} \cong (M^*/B)^* \oplus B^*$, and the assertion follows from (1.2) and Lemma 2.2.

Lemma 2.5. Let M be a left \hat{R} -module and let m be any non zero element of M. Then there is an element f in M^* such that $(m) f \neq 0$.

Proof. $\hat{R}m$ is a finite direct sum of modules of types; $\hat{R}e_i/\hat{A}^ne_i$ and $\hat{R}e_i$ by Theorems 2.1 and 2.2 of [8]. Thus the assertion follows from Lemma 2.2, because K_{FA} is an injective \hat{R} -module.

Theorem 2.6. Let R be an HNP ring and let A be a maximal invertible ideal of R. Then

- (1) Let M be any A-l.c. module. Then M^* is a left \hat{R} -module and $M \cong M^{*\sharp}$.
- (2) Let M be any left \hat{R} -module. Then M^* is an A-l.c. module in a certain topology and $M \cong M^{**}$ (M^* is equipped with the finite topology).

Proof. (1) is clear from (1.2).

(2) Let M be any left \hat{R} -module. Then M^{\sharp} is a direct product of modules of types in Theorem 2.4 (this is proved in the same way as in Theorem 2.4 by using basic submodules). Thus M^{\sharp} is an A-l.c. module. Now M^{\sharp} is equipped with the finite topology (it is not requested that M^{\sharp} is an A-l.c. module in the finite topology). Let $\beta \colon M \to M^{\sharp *}$ be the natural map given by $((m) \beta) (f) = (m) f$, where $m \in M$ and $f \in M^{\sharp}$. Note that $(m) \beta \in M^{\sharp *}$, because $\operatorname{Ker}(m) \beta = \{g \in M^{\sharp} \mid (m)g = 0\}$. By Lemma 2.5, β is a monomorphism. To prove that β is an epimorphism, let g be any element in $M^{\sharp *}$. Since $\operatorname{Ker} g$ is open in M^{\sharp} , there is a finitely generated left module N of M such that $\operatorname{Ker} g \supseteq \operatorname{Ann}(N)$. Write

(*)
$$N \simeq \sum_{i=1}^{p} \sum_{j} \oplus \hat{R}e_{i} / \hat{A}^{n_{ij}} e_{i} \oplus \sum \oplus \hat{R}e_{k} \ (1 \leq k \leq p) ,$$

where $n_{ij} \ge 0$. Thus N is a left A-l.c. module by Lemma 2.2. Consider the following commutative diagram;

where η is a natural map, \overline{g} is a map induced by g and δ ($[f+\operatorname{Ann}(N)]$)=f|N, the restriction map of f to N ($f\in M^{\sharp}$). Let h be any element of N^{\sharp} . Then

there is a natural number n such that $\hat{A}^n(N) h = 0$, because N is finitely generated. This entails that Ker $h \supseteq \sum_{i=1}^{p} \sum_{j} \oplus \hat{A}^n e_i / \hat{A}^{n_{ij}} e_i \oplus \sum \oplus \hat{A}^n e_k$, open in N (in the topology given in Lemma 2.2). Thus we have $h \in N^*$ and hence $N^* = N^*$. It follows from (1.2) that $\alpha \colon N \cong N^{**}$. So, for the element $g \delta^{-1} \in N^{**}$ there is an element $n \in N$ such that $(n)\alpha = \overline{g}\delta^{-1}$, i.e., $((n)\alpha)\delta = \overline{g}$. Now let x be any element in M^* . Then we have $g(x) = \overline{g}\eta(x) = ((n)\alpha)\delta\eta(x) = (n)\{\delta\eta(x)\} = (n)\{\delta[x + \operatorname{Ann}(N)]\} = (n)x = ((n)\beta)$ (x). Hence $g = (n)\beta$, as desired.

- 3. In this section, we study relationships between F-l.c. modules and F^{ω} -pure injective modules in case F is special. A module G is F^{ω} -pure injective if it has the injective property relative to the class of F^{ω} -pure exact sequences. Let A be a maximal invertible ideal of R. Then F_A^{ω} -pure injective modules are just called A-pure injective modules. The cancellation set of A, C(A), is defined to be $\{c \in R \mid cx \in A \Rightarrow x \in A\} = \{c \in R \mid cx \in A \Rightarrow x \in A\}$. By [6], R satisfies the Ore condition with respect to C(A) and the local ring R_A of R at A is an HNP ring with Jacobson radical $AR_A = R_A A$. Note that a module T is A-primary if and only if it is an R_A -module and torsion as R_A -modules (see the proof of Lemma 2.4 of [8]). Since R_A is R-flat and the inclusion map: $R \rightarrow R_A$ is an epimorphism, we have the following
- **Lemma 3.1.** (1) An exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is A-pure, then the induced sequence $0 \rightarrow L \otimes_R R_A \rightarrow M \otimes_R R_A \rightarrow N \otimes_R R_A \rightarrow 0$ is exact and is pure as R_A -modules.
- (2) if an exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ of R_A -modules is pure as R_A -modules, then it is A-pure.

Proof. Use (3) in Lemma 1.2 of [9].

Lemma 3.2. Let F be a right Gabriel topology on R satisfying the condition (e) and let G be any F^{ω} -pure injective module. Then $G=D\oplus H$, where D is an injective module, and H is F-reduced, F^{ω} -pure injective and F^{ω} -complete. In particular, H is an \hat{R}_F -module.

Proof. The proof of Theorem 3.2 of [9] may be used unaltered to yield this lemma.

Proposition 3.3. Let G be a reduced module, i.e., G has no non zero injective submodules. Then

- (1) G is A-pure injective if and only if G is an R_A -module and is pure injective as R_A -modules.
 - (2) G is A-pure injective if and only if $G \cong \hat{G} = \lim_{r \to \infty} G/GA^r$.
- Proof. (1) It is clear from Lemmas 3.1 and 3.2. (2) follows from Theorems 3.2.4 and 3.3.3 of [18] and (1), because R_A is a bounded HNP ring.

From Theorem 2.4 and Proposition 3.3, we have

Corollary 3.4. A-l.c. modules are A-pure injective modules.

In general, it is not necessary to hold that $(F-l.c. \text{ modules}) \Rightarrow (F^{\omega}\text{-pure injective modules})$. We will end up this paper with giving a counter example. To do this, let B be an idempotent ideal of R. Then write

(f)
$$F_1 = \{I \mid IO_r(B) = O_r(B), I: right ideal of R\}$$
.
 $F_2 = \{I \mid IO_l(B) = O_l(B), I: right ideal of R\}$.

Then $F_{1l} = \{J \mid O_r(B) \ J = O_r(B), \ J : \text{ left ideal of } R\}$, and $F_{2l} = \{J \mid O_l(B) \ J = O_l(B), \ J : \text{ left ideal of } R\}$. Since $BO_r(B) = B$, $O_r(B)B = O_r(B)$, $BO_l(B) = O_l(B)$ and $O_l(B)B = B$, we have $F_{1l} = \{J \mid J \supseteq B\}$, $F_2 = \{I \mid I \supseteq B\}$, $F_1 \ni B$ and $F_{2l} \ni B$.

Proposition 3.5. Under the same notations as in (f), let G be any module. Then

- (1) G is an F_1 -l.c. module if and only if it is a direct product of modules of types $(R: J)_r/R$, where J is a left ideal of R containing B.
- (2) G is an F_2 -l.c. module, then it is a direct sum of modules of types R/I $(I \supseteq B)$.
- Proof. (1) The sufficiency is evident from Proposition 1 of [20], Proposition A.1 of [8] and Lemma 2.1 of [7]. Let G be an F_1 -l.c. module. Then G^* is a left $\hat{R}_{F_1,l}(=R/B)$ -module by (1.2). Since R/B is a serial ring, G^* is a direct sum of cyclic modules (see Theorem 1.2 and Corollary 3.2 of [1]). Write $G^*=\sum \bigoplus R/J_i$ ($J_i\supseteq B$) and then $G\cong G^{**}=\Pi(R;J_i)_r/R$ by (1.2).
 - (2) is clear, because any F_2 -l.c. module is an \hat{R}_{F_2} (=R/B)-module.

Let C be an idempotent ideal of R such that

(g)
$$O_r(B) = O_l(C)$$
.

Then $F_1 = \{I \mid I \supseteq C, I; \text{ right ideal of } R\}$. Note that there exists an idempotent ideal C of R satisfying the condition (g) for any idempotent ideal B of R if R has enough invertible ideals. In the absense of the condition of having enough invertible ideals, we can easily find a pair of idempotent ideals B and C satisfying the condition (g) (see [4]).

Lemma 3.6. Under the same notations as in (f) and (g), let $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ be an exact sequence. Then it is F_1^{ω} -pure if and only if the induced sequence

(i)
$$0 \rightarrow L/LB \rightarrow M/MB$$

is splitting exact.

Proof. The sufficiency is clear. To prove the necessity, assume that

the sequence is F_1^{ω} -pure. Then (ι) is exact and is F_1^{ω} -pure. Since a module is a finitely presented \overline{R} (=R/B)-module if and only if it is a finitely generated and F_1 -torsion module, (ι) is pure as R-modules in the sense of [19] by Proposition 3 of [19] and Lemma 1.2 of [9]. Furthermore, since $\overline{M} = M/MB$ satisfies Singh's conditions (I), (II) and (III), \overline{L} is h-pure in the sense of Singh (see Theorem 1.3 of [14]). Hence \overline{L} is a direct summand of \overline{M} by Theorem 3 of [13], because \overline{L} is of bounded order.

Proposition 3.7. Under the same notations as in (f) and (g), a reduced module is F_1^{ω} -pure injective if and only if it is an R/B-module.

Proof. This is clear from Lemmas 3.2 and 3.6.

EXAMPLE 3.8. Under the same notations as (f) and (g), R/C is an F_1 -l.c. module in the discrete topology. But it is not an F_1^{ω} -pure injective module.

Proof. R/C is an artinian and F_1 -torsion module. So it is an F_1 -l.c. module in the discrete topology by Lemma 2.1 of [7]. Assume that it is F_1^{ω} -pure injective. Then it is an R/B-module by Proposition 3.7. This implies that $B \subseteq C$ and so $O_l(C) = O_r(B) = (R: B)_r \supset (R: C)_r = O_r(C)$. Thus we have $C = O_l(C) \subset O_r(C) \subset O_r(C) \subset O_r(C) \supset R$, a contradiction.

References

- [1] D. Eisenbud and P. Griffith: Serial rings, J. Algebra 17 (1971), 389-400.
- [2] D. Eisenbud and J.C. Robson: Modules over Dedekind prime rings, J. Algebra 16 (1970), 67-85.
- [3] D. Eisenbud and J.C. Robson: Hereditary noetherian prime rings, J. Algebra 16 (1970), 86-104.
- [4] K.R. Goodearl and R.B. Warfield, Jr: Simple modules over Hereditary noetherian prime rings, J. Algebra 57 (1979), 91-117.
- [5] I. Kaplansky: Dual modules over a valuation ring I, Proc. Amer. Math. Soc. 4 (1953), 212-219.
- [6] J. Kuzmanovich: Localizations of HNP rings, Trans. Amer. Math. Soc. 173 (1972), 137-157.
- [7] H. Marubayashi: Modules over Dedekind prime rings III, Osaka J. Math. 11 (1974), 547-558.
- [8] H. Marubayashi: Completions of hereditary noetherian prime rings, Osaka J. Math. 17 (1980), 391-406.
- [9] H. Marubayashi: Pure injective modules over hereditary noetherian prime rings with enougn invertible ideals, Osaka J. Math. 18 (1981), 95-107.
- [10] H. Marubayashi: Completion of overrings of HNP rings and its application (unpublished).

- [11] H. Marubayashi: Linearly compact modules over HNP rings, Proceedings of the 4th Symposium on Semigroup held at Yamaguchi University, Japan, 1980.
- [12] S. Singh: Modules over hereditary noetherian prime rings, Canad. J. Math. XXVII (1975), 867-883.
- [13] S. Singh: Some decomposition theorems in abelian groups and their generalizations, Ring Theory, Proceedings of Ohio Univ. Conference, Lecture Notes in Math., Marcel Dekker, 25 (1976), 183–189.
- [14] S. Singh: Some decomposition theorems in abelian groups and their generalizations II, Osaka J. Math. 16 (1979), 45-55.
- [15] S. Singh and S. Talwar: Pure submodules of modules over bounded (hnp)-rings, Arch. Math. 30 (1978), 570-577.
- [16] B.O. Stenström: On the completion of modules in an additive topology, J. Algebra 16 (1970), 523-540.
- [17] B.O. Stenström: Rings of quotients, Berlin-Heidelberg-New York, 1975.
- [18] S. Talwar: Modules over hereditary noetherian prime rings, Ph. D. Thesis, Guru Nanak Dev Univ., India ,1979.
- [19] R.B. Warfield: Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699-719.
- [20] D. Zelinsky: Linearly compact modules and rings, Amer. J. Math. 75 (1953), 79-90.

Department of Mathematics College of General Education Osaka University Toyonaka, Osaka 560, Japan