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0. Introduction

In this paper we consider the following one-dimensional two-phase Stefan
problem with the unilateral boundary condition on the fixed boundary: Given
the initial data, / and ¢, find a critical time 7'*, and the two functions s=s(¢)
and u=u(x, t) defined on [0, T*] such that

0.1) s0)=1 0<s(t)<1 (0=t<T¥),
02) w—cgs =0  (0<x<s(t), 0<t<T*),
0.3) wy—ca =0  (s()<x<1, 0<t<T*),
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04) (a) u 0, t)yes v (u(0, t)) (0<t<T™*)

(S) (b) —u(l, Hen@l y)  (O0<t<T¥,

(@) (s 0)=¢(x) (0<x<D),

(b) u(x, 0)=g(x)  (I<x<1),

(0.6) u(s(2), ) =0 0<t=T™),

(0.7)  b8(t) = —uz (s(2), t)+ui(s(?), ) (0<t<T™).

(0.5)

The critical time T'*, 0<<T*< oo, is defined to be the first time that the free
boundary x=s(t) touches the fixed boundary x=0 or x=1. The quantities
¢y ¢ and b are positive physical parameters of the problem. The assumption
for the boundary condition (0.4) at the fixed boundary is that ¥, and 7, are
maximal monotone graphs in R? such that both v5'(0)N[0, o[ and ¥7'(0)N
]— o0, 0] are not empty sets. We put this assumption from the physical reason-
ing, that is, there are a kind of heater at x=0 and a kind of freezer at x=1.
(0.4) are the unilateral boundary conditions. (0.7) is the so-called Stefan’s con-
dition. The superscripts * and ~ indicate the limits from right and left re-
spectively for the space variable x.

The system (0.1)-(0.7) is a simple model of a heat-conduction system
consisting of two phases (e.g. liquid and solid) of the same substance which
are in perfect thermal contact at an interfcae. u(x, ) represents the tempera-
ture distribution in the system, and the curve s(¢) represents the position of
the intreface which varies with time # as solid melts or liquid freezes. The
unilateral boundary conditions (0.4) model several phyiscal situations, includ-
ing the temperature control through the boundary [9, Ch. 1] and the heat flow
subject to the nonlinear cooling by the radiation on the boundary [14, Ch. 7].
The boundary conditions at the interface ((0.6), (0.7)) reflect respectively the
facts that the temperature at the interface must be equal to the melting tem-
perature (taken to be zero) and that the rate of melting is proportional to the
rate of absorption of the heat energy at the interface. In formulating (0.7),
we have assumed, without loss of generality, that the thermal conductivity in
both phases is 1.

The problem of this type with the linear boundary condition on the fixed
boundary have been considered by many authors (Rubinstein [27], Kameno-
mostskaja [18], Friedman [13, 14], Brézis [2], Cannon & Primicerio [5, 6], Can-
non—Henry—Kotlow [7], Nogi [25], Damlamian [8] e.t.c.). On the other
hand Bénilan [1] has treated this type’s Stefan problem of n-dimensional case
using the theory of nonlinear contraction semigroups in Banach space L'. He
got an intgeral solution. However we do not know the differentiability of the
Benilan’s integral solution. Also Cannon & DiBenedetto [37], Visintin [38], and
Niezgodka—Pawlow—Visintin [39] have considered the different type of weak
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solutions of the similar problems. One-phase problem of this type was recently
studiesd by Yotsutani [34].

The purpose of this paper is to prove the global existence and uniqueness
of the classical solution of the two-phase Stefan problem (S). We put some
assumptions of signs of the data ¢ from the physical reasoning that it is posi-
tive in the liquid region and negative in the solid region. The following two
points are the main difficulties of this problem (S). One is the fact s(t) is
unknown and the other is how we deal with the unilateral boundary condition.

We establish the existence of a local solution of (S) using the Schauder’s
fixed point theorem. For this we employ an approach used by Evans [10] to
treat the flow of two immiscible fluids in one-dimensional porous medium.
Then we show a global a priori estimate on u(x, t), s(¢), and we get a global solu-
tion of (S). Uniqueness is based upon the maximum principle, its strong form
[24], a parabolic version of Hopf’s lemma [14] and the comparison theorem for
the unilateral problem. Here we must note that our proof of the uniqueness is
closely related to the existence of solutions of auxiliary Stefan problems.

The plan of this paper is as follows. In §1 we state main theorems. §2
collects some elementary results. § 3 introduces the moving boundary problem
(M) which is auxiliary for the original one and useful in the proof of the main
theorems. §4-87 are devoted to prove the existence of a solution of (M)
using the finite difference method. In §4 we introduce a difference scheme.
In 85 and § 6 we derive the estimates for solutions of the difference scheme.
These are used in § 7 to prove the convergence of the difference scheme and
the properties of the solutions of (M). §8 gives several comparison theorems
concerning the moving boundary problem (M). In §9 we reform the Stefan’s
condition to an integral form. In § 10 we prove the existence of a local solution
of (S) without assuming signs of ¢(x). In §11 we prepare propositions which
we use in the study of the continuation of solutions. In §12 we give global
a priori estimates. In §13 we show the global existence of a solution of (S)
under the slightly stringent conditions on the data. In § 14 we prove the ex-
istence of a global solution of (S) for the general data. In § 15 we show a com-
parison theorem and the uniqueness of the solutions of the Stefan problem (S).

We will investigate the behavior of the solution in detail in [36].

The author would like to express his gratitude to Professor H. Tanabe
for his useful suggestions and encouragements.

1. Statements of main results

As for the definition of maximal monotone graphs in R? see Brézis [4] or

Yotsutani [34, §3]. The assumptions required on the Stefan data {/, ¢} are
following (A).
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{ 0<I<1. P(x)=0 (0<x<l), p(x)=0 (I<x<1).
¢(x) is bounded, and continuous for a.e. x[0, 1].

(A4)

ReMARK 1.1. We put this assumption of signs for the data ¢, because the
interest of ours is in the two-phase problem.

We shall prepare some notations which will be used later.

(1.1) Or = {(x, 2); 0<x<1, 0<2< T},

(1.2) Or= {(x,t); 0<x=<1,0<t<T},

(13) QG,T = {(x, t); Oéxél’ UétéT} ’

(14) Db = {(x, )€ 0y (—1)(x—s@E))<0} (=0, 1),
(1.5 D, =D}UD;},

(L6)  Dh = {(% HE0ss (—1)(x—s@)=0} (=0, 1),
(1.7) 'r = {® €0 (=)'(x—s(®))=0}  (=0,1),
(1.8) = {(x, 0); x<[0, 1] is a point of discontinuity of ¢}.

Let ICcR?*or ICR. Wedenote by C(I), C**(I) (0<a=1),C"(I)(m=1,2, )
and C=(I) the space of continuous, Holder continuous (exponent ), m times
continuously differentiable, and infinitely differentiable functions on I respec-
tively. Thus C%(I) denotes the space of Lipshitz continuous functions on /.
We denote by L?(I) the usual Lebesgue space of measurable functions with the
norm ||+||2y (1 =p=o0). H?(I) denotse the usual Sobolev space. L. (I)
(resp. H{,(I)) denotes the space of functions which belong to L?(E) (resp. H?(E))
for any compact subset E of 1.

DEFINTION 1.1.  The pair (s, u) is a solution of the Stefan problem (S) on
[0, T'] if

(1) s(0)=/ 0<s(t)<1 for 0=t=T,
19)  sec(qo, THnC=0, T},

(i) u is bounded on Oy, uC(Q,—Z)NC=(SF)NC=(S}),

T, (1
(1.10) ST S ui(, t)2drdt< oo
1v0

for each T, and T, such that 0<T\=T,<T,

(iii) (0.2), (0.3), (0.5), (0.6) and (0.7) hold on [0, T],

(iv) for a.e. t€]0, T, u,(0, t) and u,(1, t) exist and satisfy (a), (b) of (0.4)
on [0, T'] respectively.

In what follows, for example, when T'=o0, [0, T] and 0 <¢=<7T denote
[0, oo[ and 0=¢< o respectively.

DerINITION 1.2. (T*, 5, u) is a solution of the Stefan problem (S) if
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() 0<T*=oo, a pair of function (s, #) denfied on [0, T*] is a solution
of (S) on [0, T'] for any T with 0<T<T*,

(i) if T*<oo, then s&€C([0, T*]), ucC(Q7+—Z), and s(T*)=0 or 1.

Let 0; (=0, 1) be a lower semicontinuous convex function R into ]— oo, oo]
such that ;=0, §,(H;)=0 and 00,=v,;. This is well-defined, since v; (=0, 1)
is a maximal monotone graph in R?® with v,(H;)=0 (see [4, p. 43]). We can
now state the existence and uniqueness theorems.

Theorem 1. Let {I, ¢} satisfy (A). Then there exists the unique solution
(T*, s, u) of (S). Further s and u have the following properties.

(L11)  seC¥([0, T*]) N C*(0, T*]) N C=(]0, T*),
(1.12)  O0=u=max(||pl|r=e,n, Ho) on D%+,

(1.13) min(—”¢HL°°(l,l); H)=u=0 on DIT* ,

(1.14) ngﬂ{szu,(x, 1)+ 8,(u(0, 1))+ O(u(1, t))}

T* (s T*
o

™ s ®© -,
+S¢ N dt+g jo e dxdt+$
(1.15) lu(x', t')—u(x, £)| SCo(|x'—x |24 |t'—1t| %) on Qg 1+,

1
S u,tdxdt<C, ,
s(#)

o

where
(1.16) H, = min {H =20; H=v;'(0)},
(1.17) H, = max {H <0; He=y7'(0)} ,

and C, is a constant depending on <10, T*[ .

We have the following regularity properties, if the data {/, ¢} satisfies some
additional conditions.

Theorem 2. Let {I, ¢} satisfy (4), p=H'(0, 1), $(0)=D(6,), ¢(I1)=0 and
¢(1)eD(6,). Then we have the following properties in addition to the conclusion
of Theorem 1.

(118)  seCo¥([0, T*]),
(1.19) 2 S:u,,(x, T+ 04(u(0, TY)+0y(u(1, T))
21 Sj |$(8) 1 *dt+-c, S: S:u,(x, )edudt
<27 [ g.(xde+ O(BO)+0:(8(1)  for any T [0, T%],
(1.20) lu(x’, t)—u(x, 1) | SC(|x'—x |2+ |t —2 | on Qg ,

where c,=min(c,, ¢;) and C is a constant.
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Theorem 3. Let {I, ¢} satisfy (A). Suppose v; (i=0, 1) is a single valued
maximal monotone function. Then it follows that u,&C(Ds—[0, 1]1x {0}) for any
T with 0<T <T¥*, and
(L.21)  (—1)us, t) = vi(u(, ?)) 0O<t=T™).

We introduce conditions (A.1), (A.2) and (A.3) which will be used in the
proof of the theorems above.

(A.1) 0<iIL1.

(A2)  ¢€HY0, 1), $(0)=D(6,), p(1)ED(6)), ¢()) = 0.

(A.3) P(x)=0 (0=x=)), ()=S0 (I=x<1).

For simplicity (A’) denotes the conditions (A.1), (A.2) and (A.3).

2. Preliminaries

In this section we collect some elementary inequalities which will be useful

later in obtaining necessary estimates.
We use the letter C throughuot this paper to denote various constants de-

pending only on known quantities.

Lemma 2.1. Let Ja, B[ be a finite open interval on the real line.
(1) There exists a constant C,, depending on B—a, such that

(2.1) ]| 2o, = Co( 1+t 2oy |22l 220, 00) 18] | Z3 0

for each us H¥(a, B).
(ii) There exists a constant C[E], depending only on €>0 and B—a, such

that
(2.2) [[264]1Z 2,0 = Elth sl 224, 00+ C[E] 18l 224, »

for each us H¥(a, B).
(iii) There exists a constant C' depending only on B—a such that

(2.3) [1ttel| oo, 00 = C" (12| 220,07+ |28 | 320, )[4l | 220, 9)

for each us H¥a, B).
The constants in (2.1), (2.2) and (2.3) remain bounded as B3—q ranges over

any compact subset of 10, oo[.
Proof. (i). We see from [10, (2.4)] that
(24) lle2]1 2 (a0 = Cl 1l 2, 00) | 1] Y20, »

where the constant C depends only on @—a and remains bounded for 83—« in
any compact subset of ]J0, [. By Young’s inequality
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el |2 oo, 00 < C(1 4|6l B2 ) 16724 ) -

Thus we get (2.1) using the interpolation inequality.
(ii) and (iii). We see from [10, (2.5)] that

235) o, = Cllee |, pol 6] Y9 -
Thus we can get (2.2) and (2.3) easily. q.e.d.

Lemma 2.2. Let v(x, t) be a Lipshitz continuous function on Q=[a,, a,] X
[by, b,].  Then we have

(2.6) lv(x’, 2')—ov(x, t)]
SL[ sup [[vu(+, )l 12,00 +ll0dl2@] X [12' =24 ['—2|]  on Q,
1St
where A=a,—a,, B=b,—b,, L=max(24Y*B~, 2A-*B", 1).
Proof. See [16, Lemma 3.1] or [34, Lemma 16.4]. g.e.d.

Lemma 2.3. Let {F,}).,, {K,}0i1, {R}VZ} and {V }1-0s1 be sequences
of nom-negative numbers such that

(2'7) Vn+Fn§(1+Kn)Fn—l+Rn—l (q<”§N) .

Then we have
(28)  max Fyt-3W.en V,S[F 42005 Ry][1+exp(2 =001 K]
Moreover, if R,=0 (q=n=N—1), then
29 F—F=(maxF)(X-enK,)  (@<n=N)
Proof. We have
(210)  F,S(FA+3Y=iR)exp (e K,)  (g<n=N)
by (2.7) and the induction (see [33, Lemma 4.1]). We see
@11)  V,S(F1—F)+R,+F, K,
from (2.7). Hence we get by (2.10) and (2.11)

Fn+22-'l+1 Vi’
S(F 420001 Ry +H(F, 42327 R,) exp =0 K)(205-041K})

Therefore we obtain (2.8) easily. We can get (2.9) using (2.11). q.e.d.

3. Moving boundary problem

Consider the following moving boundary problem: Given a time 7, a
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data ¢(x) and a function s(¢)eC([0, T']) N Hi(]0, T]) satisfying 0<<s(t) <1
(0=t=T), find a function u=u(x, ) such that

GB.1) wuy—cu; =0 (O<x<s(t), 0<t<T),
3.2) u,—cu=0 (s()<x<1, 0<t<T),
(3.3) (a) u(0, £)s7,(u(0, 1)) 0T,
(M) Vb)) —w(l, Henl, ) (0<IST),
(34) u(s(z),t)=0 (0<t=T),

(@) wu(x, 0) = p(x) (0<x<I=5(0))

(3.5)
(b) u(x, 0) = P(x) (l<x<1).

Here v, and 9, are maximal monotone graphs in R? with v,(Hy)30, v,(H;)=0
for some H, and H,.

Remark 3.1. We do not need any assumption of signs for ¢(x), H, and H,.

DEFINITION 3.1. wu=u(x, ) is a solution of the moving boundary problem
(M) if
(i) wu is bounded on Q,, uC=(D;)NC(0—Z),

T, (1
S S uy(x, tydxdt<Cr r,
T, J0

for each T, and T,, where D;, O and Z are sets defined by (1.5) (1.1) and (1.8)
respectively, and C; ., is a positive constant depending on T} and T, (0<T,=
T,=T).

(i) (3.1), (3.2) (3.4), (3.5) hold,

(i) for a.e. €]0, T, %,(0, ¢) and u,(1, t) exist and satisfy (3.3).

Proposition 3.1. If the data ¢(x) is bounded, and continuous for a.e.
xe[0, 1], then there exists the unique solution u of the moving boundary problem
(M). Further u has the following properties.

(3-6) Iu(x: t)l émax(”ﬁblh“’(o,l)’ | H,l, |H1I) on QT ’
(3.7) g:u(x £Yide+-0,u(0, ) +0u(u(l, S,  (e<t=T),

(3.8) it STr(t)u (%, t)*dxdt —i—cfzSTgl Uyo(x, t)2dxdt < M
s Jo xx ) - s([) xx ) = [
(.9)  u(, t)—u(x, )| SM(|x'—x]| "+ |t'—2[")  on Qo

for any €10, T[, where M, is a constant bounded with 1]a, T, ||$| 2ess,17, 1/d%,
”95”1.2(0,1)- Here

d* = min {min(s(¢), 1—s(¢)); 0= <T}.
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Proposition 3.2. Let s(t) and ¢(x) satisfy the assumptions of Proposition
3.1.  Suppose that 7v; (1=0, 1) is a single valued maximal monotone function. Then
it follows that u,(x, t)C(Df U {i} x]0, T]) and

(=D, £) = vi(u(i, ) (0<t<T).
Proposition 3.3. Let s(t) HY(0, T') and ¢(x) satisfy (A.1), (A.2). Then u
has the following properties in addition to the conclusion of Proposition 3.1.
Tl
(3.10) sup <I)‘—{—CZS S u,(x, t)’dxdt
0St<T 0Jo
<@ {1+ exp [2(2/d*—}—c3)(T-|—ST.S‘(t)zdt)]} ,
0

(3.11) cpfz—cptng(tz—tlJrS'zs'(t)Zdt) 0<t,<t,<T),
]
(3.12)  |u', t)—u(x, )| <K {|x'—x|"2L 't} om Oy,
where K=K(T, ||$],20,1), 1/d*, ®°) is a constant bounded with T, ||$||,20,r), 1/d%,
@°. Here
(3.13) @t =27 Sl w(x, tYidxn+0,(u(0, 1)+0,(u(l, 7)),
0

G4 @ =27 [ (e 0, $(0)+0(1)
(3.15) ¢, = min(cy, ¢;), ¢; = max(c,, ¢;) -

REMARK 3.2. 6; (=0, 1) is a lower semicontinuous convex function g;
from R into ]—oo, o] such that ,=0, §,(H;)=0 and 80,=7; (see § 1 and [4,
p. 43]).

We shall state the results concerning the continuity of a family of solutions
of the moving boundary problem (M) with respect to the moving boundary and
the initial data.

Proposition 3.4. Let s"(t)eHY0, T) and $(x) satisfy (A.1), (A.2). Sup-
pose that

(3.16) gTé"(t)zdt <K,
0
3.17) dssS"(B)=1—d (0=t=T),
(3.18)  lim s"(t) = s(t) O0=t=T),
where K and d are positive constants independent of n. Then we have

(3.19)  limu'(x, ) =u(x,2)  in C(©r),
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where u" (resp. u) is the solution of (M) corresponding to the curve s" (resp. s) and
the initial data ¢.

Proposition 3.5. Let s"({)cHY0, T) and ¢"(x) satisfy (A.1), (A.2). Let

s()eC(0, T) N H1,(]0, T]) and ¢(x) be bounded, continuous for a.e. x<[0, 1].
Suppose that

(3.20) STs”(t)zdt <K,,

(B.21) d=s@®)<1—d (0st=<T),
(322) lms"()=st) (0st<T),

(323) I¢"#ISK  (0=x=1),
(B.24)  Hm 1)~ $(P)lcty-s,.p12,0=0 for ae. pE[0, 1]

(8, is a positive constant depending on p),
where K, (depending on o]0, T']), d and K are constants. Then we have
(3.25)  limu'(x, t) = u(x, )  in C(Q,,r)

for any o]0, T[, where u" (resp. u) is the solution of (M) corresponding to the
curve s” (resp. s) and the initial data ¢" (resp. ¢).

ReMARK 3.3. We can treat the problem (M) in a Hilbert space L? (0, 1)
using the theory of the nonlinear semigroups. The related problems are shown
in Damlamian [8], Kenmochi [20], Yamada [31] and Yotsutani [33].

REMARK 3.4. It is important to construct the solution of (M) by the finite
difference method from the view point of the numerical analysis. A related
work is shown in Jamet [17].

4. Difference scheme

In §4-§ 7 we shall prove the existence of a solution of (M) introduced in
the previous section using the finite difference method. In this section we
introduce a difference scheme and state some simple lemmas.

First we extend s(f) to the interval [0, T4 1] by defining s(¢)=s(T") for
T <t<T+1 in order to clarify the following argument.

We use a net of rectangular meshes with uniform space width %4 and vari-
able time step &, (n=1, 2, ---). Here & varies in such a way that 1/A=M is an
integer. Let us introduce discrete coordinates.

xl=]h (]=0) 1, -, M);
tn = 2;-1 kp (n - 1) 2’ "') .
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We shall give the definition of &, and J,. We put
Jo = max {j EN; jh<<i+h[2} , t,=0.
For n==1, 2, .+ successively, we define

t, = min {t=t,;; s(t) = (J,-i— Dk or (J,-1-+1)A},

; _{ th if th—t, ,<2h¥?,
" t, R Af t—t,_ >2h,

[ s(th)h if t—t, \<2hV?,
J"ﬂ Jaa1 if 1,1, ,>2h2

k,=t,—t, (>0).
ReMARK 4.1. It follows from the definition above that
(Jo— Dh<s(t)<(J+ Dk (120).

REMARK 4.2. We continue computing until ¢,=7T for some m. We put
N=min {neN; t,=T}.

Thus we get the following lemmas.

Lemma 4.1. We have
(4.1) z:;_.,“hz/k,,gS:§(x)zdt+t,h q=1).
Moreover, if Jo=I/h and s HY0, T), then we have
*2)  SUoKlk,< S: $(tydi+,h .

Proof. Let p=2. We shall show that |s(2,)—s(t,-,)|=h if k,<h?. If
k,<h':, then we see that tj—¢, ;<22 t,=t;, s(t,)=]Jh (=(J,-1—1)k or
(J,-1+1)k) by the definition of k,. Thus it must hold that #;_,—t, ,<2h"2
In fact, suppose t;_,—t,_,>2h"% then k,.,=h"? and t,_,=t; (=t,). Hence
Upoy—tyy=t,—t, ,=k,+k, ;<<2h'?, which is a contradiction. Therefore we
have ¢,_,=t},_, and s(¢,-;)=],-h. Hence s(¢t,)—s(t,-))=-+h. Consequently we
see

$(tp) —5(t-1)
t,—t,

x, gS"’ sepdt  (k,<h),
(hik,)k, ‘-1
| <(hhyR, =Rk, (k2.

Therefore we obtain (4.1).
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Let Jo=Ih. We get |s(t;)—s(t,)| =h if ky<<h'?.. Hence we gte (4.2) using
(4.1). qed.
Lemma 4.2. lhigl si(t) = s(2) n C([0, T')),
where s,(t) is a piecewise linear function such that s(t,)=]h.
Proof. We see that |s,(f)—s(¢)| =2k noting Remark 4.1. q.e.d.

Let us introduce a net function «} which corresponds to u(xj, t,). Further
we use usual divided differences.

43) { ufe = (Ui —ui)fh, ufz = (Wj—uj,)/k,
' Wiz = (Wi —2uj+uj) K, whi = (Wi—u ')k, etc.

In our scheme the heat equations are replaced by pure implicit difference
equations,

(44 ws—ah =0 (1=j=],—1),
(45)  wa—cui=0 (], FISjSM-1).

The boundary and initial conditions are put in the following forms,

(a) uoE ()

(b) —uizEYi(uk),

(a) uj=¢;=d(x;) (O=j=/—1),
(b) uj= d;=d(x;) (Jotl=sj=M),
(4.8) uy,=0.

(4.6)

(4.7)

Now we state the difference scheme.
0° Determine k, (1=<#=<N) and J, (0=z=<N).
We determine #} as follows.
I w=¢;, (0=j<M,j*]p), u5,=0.
For n=1, 2, -++, N successively,
2° solve the system of difference equations (4.4) and (4.5) for {u}}; under
the boundary conditions (4.6) and (4.8) with the initial condition

w1,
ReEMARK 4.3. Step 2° is well-defined by [34, Lemma 4.1].
REMARK 4.4. We define uj =0 leaving the value of ¢(x;) out of con-

sideration. It holds that 33/ ul. =310 p(x;),h when ¢(x;)=0. We use
this fact in the proof of Lemma 6.1.
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5. L*estimates of the solutions

In this section we get the L’-estimates of the differnece solutions. We
employ the idea of the nonlinear semigroups (see Brézis [3,4] and Yotsutani
[33,34] e.t.c.).

The following inequalities are so-called variational inequalities.

Lemma 5.1. Let uj satisfy (4.4)—(4.8). Then we have

() T o () Os) ],
_E iy u,,,x(w"-— ?)h')

(52) 27 S (i — -+ 6 (w)— Oofud) —uy e,
= =28 wia(wi—uh,

(5.3) 7], Wi (W — )R+ 0y (wir) — Oy(uh) 'y ',
= XU s,

(5.4) 27057, (Wi E— B+ Oy (why) — 0y(uhe)+uy 'y,
E,-/ w1 Wi(wi—uhh
(5.3) 20050 wihAOy(wh) + Oy(wie) + (— ) - uny W,
- {2 20050 TR+ O4(ub)+ 04(14in)}
= co 227" wis(ui—wihtc, 33570 wi(ui—w)h
for w’} such that wie D(0,), wysD(0,).

Proof. We get (5.1), (5.2), (5.3) and (5.4) by the proof analogous to that
of [34, Lemma 7.1]. Adding (5.2) and (5.3), we have (5.5) by (4.4) and (4.5).
q.e.d.

For simplicity we put

@ - 2 121-0 uszh'i—ao(ug)—"_el(uﬁ'l) [}
&, = max {®,; m—1=<p=<N}.

We give a simple lemma.

Lemma 5.2. Let u} satisfy (4.4)-(4.8). Then we have
(5.6) b S0 ulithk, <4 SV S ulithk, 12, SV, (BIR,)R, .
for any m and n with m=n.

Proof. We see that

(57) uo; = ( uo,h+uukp+uo"1 h)Zk—
< 3udP - 3(ub 2+ ub YRR
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We get also
(5.8) W S 3w P+ 3(uha b )RR
Hence we have

(uhs*+uba)hk,

<3 (Wl b1 )k, +3(2DP 200k !
<3 W wlhithk, 120, (hik, )k, .

Therefore we obtain (5.6) easily. q.e.d.

In what follows we assume that the uniform space width % is sufficiently small.
We shall give the several estimates for ;. We have the following lemma by the
proof of [34, Lemma 5.1].

Lemma 5.3.
(59) || = max, (llgl] =00 | Hol, | Hil) -
Let us fix the auxiliary function v(x).
H,(1—x/D,) 0=x=D)),
v(x) =10 (Dy=x=<D,)
H\(1—(1—x)/(1—Dy)) (Dy=x=1),

where D,=d*/2 and D,=1—d*/2. The next lemma is useful for further
estimates.

Lemma 5.4. There exists a constant M= M(l/d*, T, llplli20,n) bounded
with 1/d*, T and ||p|| 2¢,1) such that

(5.10) SW., ®k =M.
Proof. Substitute v;=v(x;) for @7} in (5.5). Now we observe that
(11)  wh(ui—o k= [w]—v))— @] —o;)]J#]—v))
227N uj—v;)* =27 (u; T —,)"
Multiplying (5.5) by %, and noting (5.11), we have
2,_0 ‘Z)szhk —'Z(D k
2o 23/87 (Wj—v))htc, 23T] 00 (Wi—v;)’h
—[eo 23777 (uj ™" — 0,40, 2357 0 (W —0,)%h]
Zco 287 (w5 —v,)h+c, 2357 (u’,‘— v;)h
—[eo far! (Wi —v Yo 2T, o ()T —0,)%h]
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by 0y(ve)=0,(vs)=0, v;,=v,;,_ =u7j;. =0. Therefore we get

(512)  BBur Oy 2, SU (1 —o,)h
<2 lEpg 2;-0 'v,,,zhkp—i-Z'l C3 1]}{-—11 (u(}—vj)zh

by summing up. Hence we obtain (5.10) easily. q.e.d.

Now we define a new net function #;~' from uj™".
according to the relation between J,_; and T

Case J,=J,-,—1.

We give the definition

P {((1 (D Hrusdl(l—r)  (0=7=],)
’ w (JA1SiEM),
where r=1/],_,.
Casejn=.]n—l-

Case J,=/J,,+1.

_— { W (0=j=/].-1)
’ (M—j)r'wiZi+-(1—(M—j+1)r )i [(1—7")
(r=j=M)
where r'=1/(M—],-1).
We prepare some useful lemmas which are essential in obtaining necessary
estimates.

Lemma 5.5.

(5.13) a;—l =u, W =0, @ =i,
(5.14) 27 WM grml zp - WSl e 2
éMI(kn+h2/kn)¢u -1

(5.15)  27%¢s[(Dfar' + 20057, )@ — i ik 'y PRk,
éca(hz/kn)q)n—l ’

where M,=2/dy.

Proof. We get (5.13) easily by the definition of #}~"* We shall show (5.14)
and (5.15). If J,=],-,, they are obvious from the deﬁnition of @;~'. Letus
consider the case J,=],.,—1. For simplicity #;, u;, | denote @77, u}", J,_,
respectively. We shall get (5.14). We have
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M-—_ ~1x2h E{=0ﬁ:x2h+2§l=:ll,,+lujx2k
= EJ"O ﬁ;f}H—E;-J u.rz
= (1—7)—% - 2]=0 [(] +1)r(u1+2 J+1)
A=) —u) P+ 2305 uji’h
<(1 r) 22{ 02[(]+1)ru1+1 x2+(1 (]+1)r)u1x2]h+2;=1 ujz
=(1—r)" 205 u; PR < (14-2r) 200 u;,°h

by r=1/J =1/2. Hence we have
Ejﬂo ﬁ]zzh 2- 121-—'0 u;x

<2( Jh)hky R W 0 2h)
éMl(hz/kn+kn)(Dn—l'

We shall get (5.15). It follows from u’ =u’;' =0 that
uy 7hk, = (Wlk)u;_y.h
Hence we obtain

(2];*1_}_2] ]”+1)(ﬂn—l n I)th——l_'_u] chk
- (l_r) 2]=1 []r(urﬂ J)]th; +u7},, zhkn
S2(RP[k,)(27 2250 uyh) < 2(R R, D, -

We can treat the case J,=J,-,;+1 in the same way. q.e.d.

Lemma 5.6.
(5.16) 272 W= (@ F—uh P+ Oo(us )+ Oy(ir ) — Oo(ue) — 0, (uls)
=27, DWW bk,
2 (S ) — Bk - k]

Proof. Taking #7~' as w7} in (5.5), we have

(517 270 S O+ )~ 04d) 6,
6 SV il 57"+ @~
+a EIJM_/] +lu7;t[(u1‘—u1 N+ —as ")k
= o 2]27" witthk, 40 23/ u,,(k RY2(ky ) oy — )
+¢ ;=/ Huﬂhk 6 245= ,nHu,-,(k ;,)1/2( lh)m(un ‘—ay 1)
=272y 2V aT  withk,—27 ¢y D) a7 k"h(u“ /I
+27e, 25 o withk,—27 e 20T} o kR — T )?

by (5.13). Hence we obtain (5.16) easily. q.e.d.
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We derive the recurrent estimates from Lemma 5.5 and 5.6.

Lemma 5.7.
(518) 2—162 ZI;I:II (tn—-l'—tq—1)(“?7)2hkn+(ln—l_tqﬂ)@n
g(l+M2kn+M2hz/kn)(tn-2—tq—l)q)n—l
+(14Mok, 4 M| (8] 2004, 19)(Ra 2D -1) (n>q=1),
where M2:M1+C3.
Proof. Using (5.14) and (5.15) in (5.16), we have
(5.19)  27'¢, 2V wiihk,+ D,
S(1+Mpk,+ MR [k,)D,, .
Multiplying (5.19) fyoy=t,-1—1,-;, We have
2- 1("3 1 tn 1(u,t)2hk”—f—t” l(p
é(l +M2kn+M2h2/kn)(tn—2q)n—l)+(1 +M2kn+M2h2/kn)(kn—l¢n—l)
by #,.,=%,-,+k,.;. We obtain (5.17) using Lemma 4.1. q-e.d.
Now we state the most important L?-estimates.
Lemma. 5.8. Let q=1. Then we have
(520) (ot -)®=M()  (g<n=N),
(5:21)  3eqnr 2T (81—t ) (e RR, < M'(2,)
where M'(t,)= {2+M2“3”L2(1q,1)} {l+exp [ZMZ(T—I"1+”S.HL2(t¢,T))]}M'
Proof. We put
Vn - 2_162 ffu:ll (tn—lﬁtq—l)(u.'h)zhkn ) Fn = (tn—l_tq-l)@n ’
K, = Myk,+Hk,), R,= (2+DM,lSll2¢,1)k:P, -
We note that F,=0,
22"_4+1 KpéMZ(T+ 1 ‘|‘||§“L3(t,,r)) ,
i?v:ql Rp§(2+M2”§”L2(tq,T))M,

from Lemma 4.1 and 5.4. Hence we obtain the conclusion by Lemma 5.7 and
2.3. q.e.d.

Lemma 5.9. Assume that lim t,=o for arbitrary fixed o with 0<<o<<T.
Then we have e

(5.22) max {E’,”‘f w2+ 0,(ul) -+ 6, (uin)} <M,

mgng

(5.23) W, SV, ulithk, <1,
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where M,=M(1/o, T, |Isll2emm» 1/3%, l|lli20,0) i a constant bounded with
1/0') T) ”s”Lz(a'/s,Th l/d*: ”¢|”L2(0.l)-
Proof. We have frem (5.20) and (5.21), if m>q+-1,
(5.24) &, = max {®@,; m—1<p<N} S M'(t,)/(tn-2—1,-1) »
(5.25) 200w 25wk, S M'(2)/(En-1—15-1) -
Now we take z,=1,(,) such that
(5.26) o/8=t,.1=c/4 (Za2=5t,-,) -
Hence we have by (5.24), (5.25) and (5.26)
@25 buSM(o),
(5.28)  300-m 2T uir'hk, < M'(c/8)/(a/4) .
Therefore it follows from (5.27), (5.28), Lemma 4.1 and Lemma 5.2 that

Epnm 21—0 “ th =4 2p=m 21=1 u‘};’hkp—f_ 12&)": EIPLM (hz/kp)
=<16M'(c/8)/c+48M' (a‘/8)(”§“,_2(,/8'7-)—{—1)/0’ . q.e.d.

6. Estimates of the solutions under some additional conditions

In this section we give several estimates under some additional conditions in
order to use these results in the proof of Proposition 3.2 and Theorem 2. We
state an L-estimate.

Lemma 6.1. Let s(t)HY0, T) and ¢(x)HY0,1) with $(0)D(8,),
$(1)ED(6,) and P(x;)=0. Then

(6.1) ,max D, +c, DIy 20 withk, < D°[1+exp (2L))],
(6.2) q>,,—c1>°
<{max O} (Ml 180 M +2])  (0Sn=N),

0SSN

where

L = MZ[T+S0T | $(2) |%dt+(T-+ 1)h]

Proof. It follows from (5.19) that
(63) Vn+Fn§(l+Kn)Fn—l (O<n§N) ’
where

= Cz EJ 1 ultzhkn ’ Fn = q)n ’ Kn = MZ(kn+h2/kn) .

ﬂ
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We see that
tn
64) XK, M+ 150) e teh)

by Lemma 4.1. Hence we obtain the conclusion by Lemma 2.3, (6.3), (6.4)

and the inequality @,<P°. q.e.d.

We shall use the next result in the proof of Proposition 3.2.

Lemma 6.2. Let ¢(x)=C* ([0, 1]) with ¢(0)D(v,), ¢(1)ED(7,), then
there exists a constant L, such that
65)  lunlSL,  (0=x5d*2),
(6.5) luz| =L, (1—d*2=x;<1).

Proof. We shall show (6.5). It is easily seen from the assumption and
the proof of [34, Lemma 6.1] that

(6.7) lut:| <Ly,

where L, is a constant. Hence we get (6.5) by Lemma 5.3, (6.7), ¢(x)E
C*Y([0, 1]) and the proof of [34, Lemma 16.1]. We can get (6.6) in the same
way. q.e.d.

7. Convergence of the difference scheme

In this section we prove the convergence of the difference scheme under

the assumption of Proposition 3.1. Further we give the proof of Proposition
3.1-3.5.

We shall show that the net functions #} can be extended to the region Oy in
such a way that the family of the extended function {u,(x, £)}, will be uniformly
bounded and equicontinuous on Q, ;. 'To begin with, we divide each rectangle
[, %;41]1 X [tns t441] into triangles by a straight line connecting

(%, ty) and (41, tyt1) forn st. J,,=J,or J,+1,

(%j41 2y) Dnd (%, tyt1) forn st. Joo=J,—1.
We define u,(x, t) as a piecewise linear function which equals to the value of a
net function u} at the corner of triangles. It is easy to see that the function
u,(x, t) constructed in this way is continuous on Oy, and it has the maximum

at a mesh point. Hence we get the following result by Lemma 5.3, 2.2, 5.9 and
the proof of [34, Lemma 8.1].

Lemma 7.1.

(7.1 lwx, ) =max(||gllieop, | Hol, |1Hil)  onOr,
(72)  lw(', ) —w(x, )| SKo(|o'—x P+ |t'—2|")  on Qqr,
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where K, is a constant depending on o.

It follows from Lemma 7.1 and Ascoli-Arzeld’s theorme that a subsequence
of {u,(x, t)} convergse to a function u(x, )€C(Q, ;) uniformly on Q, r, for
any o with 0<o<<T. We denote by {s,(2)} and {u,(x, £)} the subsequence of
{s4(®)} and {u,(x, £)} respectively again. We collect some properties of s(£) and
#(x, t) in the next lemma.

Lemma 7.2.
(i) #=C(Q;— {t=0})N C=(Dy), u satisfies (3.1) and (3.2).

(i) lu(x, t)| =max(llgll=o,0, |Hol, |Hil),
lu(x', t)—u(x, )| SK (|a'—x |+ [t/ —2|")  onQ,, 1,

[, paoguo, ) +0u1, )SH, (et
ST S: u(x, t)?’dx<M,,

(iii) For a.e. t€]0, T, u(0, t) and u,(1, t) exists and u,(0, t), u.(1, t)
L2(10, T)).

(iv) u satisfies (3.3).

(v) u satisfies (3.4) and u is continuous at (x, 0)[0, 1]x {0} —Z.

(vi) u satisfies (3.5).

Proof. We have (i) using the proof of [34, Lemma 8.2 (i)]. We get (ii)
using Lemma 7.1, (5.22) and (5.23) respectively. We get (iii) from (i), (ii) and
the proof of [34, Lemma 8.3]. We have (iv) using the proof of [34, Lemma
8.4]. We have (v) using the Petrovskii’s technique [26, p. 357-358]. We
obtain (vi) using u,(s,(¢), 1)=0. q.ed.

Now we give the proof of Proposition 3.1-3.5.

Proof of Proposition 3.1. We see the existence of the solution, (3.6), (3.7),
(3.8) and (3.9) by Lemma 7.2. We get the uniqueness by Proposition 8.1 which
we prove later. q.e.d.

RemMARk 7.1. The full sequence of {u,(x, £)}, converges to u(x, t) in view
of the uniqueness of the solution of (S).

Proof of Proposition 3.2. We note that u is constructed as the limit of the
sequence {u,;}, of the solution of the difference equations. We may assume
that ¢ satisfies the condition stated in Lemma 6.2, since u satisfies (3.3) and
(3.8).

We shall show u,(0, £)="7,(«(0, )). Since 7, is a single valued maximal
monotone graph in R? D(7,) is an open inver interval and 7,(+) is a continuous
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function on D(v,) by [34, Lemma 14.1]. Hence for any #&]0, T'] and >0,
there exists 6 >0 and 4,>0 such that

(7.3) | 7o(21(0, $))—7o(#(0, 2))| <&

for |s—t| <8 and A=<h, in view of (7.2), and u,—u in C(Q;) as k—0. Set
2j=uj,. It follow follows that 2},;:—c,27:=0 and 2j=7,(u;). More over 27} is
uniformly bounded near x=0 by Lemma 6.2. Combining these with (7.3) and
applying the Petrovskii technique [26, p. 364-368] we observe that u, is con-
tinuous to the boundary x=0 and u,(0, t)=7,(»(0, t)). We can get —u,(1, t)=
7:(#(1, t)) and the continuity to the boundary x=1 in the same way. q.e.d.

Proof of Proposition 3.3. Consider the two cases: (i) /is a rational number,
(ii) Z is an irrational number.

(i). We can take a subsequence {A} of the space widths such that ¢(x;)=0
for any A since / is a rational number. We get (3.10) and (3.12) using (6.1),
Lemma 2.2 and the proof of Proposition 3.1. We shall show (3.11). It fol-
folws from (6.1) and (6.2) that

(74) D' —D<D[1+exp(2B)]M,[t+- S: | 8(2) 1 2d1]

T
where B:Mz[T+S | $(t)|%dt]. 'Therefore, taking ¢, as the initial time and
0

u(+, 1)) as the initial data and repeating the same argument in § 5 and § 6, we
obtain

(7.5)  ®2—dL<D[1+exp (2B)]M, [tz_tl+g"| $(t)1%dt]
t

1

< ®[1-+exp 2B M. 1.+ | *15(0) 1701
ty

by noting (7.4) and (3.10). Thus we get (3.11).
(i)). We may repeat the argmuents used in the case (i) by defining ¢,=
¢*(x;) in (4.7), where ¢"(x) is a function introduced in the following lemma.
q.e.d.

Lemma 7.3. Let {l, p(x)} satisfy (A.1) and (A.2). Then there exists
{I", ¢p"(x)}, such that {I", p"} satisfies (A.1), (A.2),

lim/* =1 (I" is a rational number) ,
h->0

$"(0) = ¢(0), ¢"(1) = (1),
lim ¢*(x) = ¢(x)  in C([0, 1]),
lim S:gbﬁ(x)zdx = S: ¢.(x)’dx

h-»0
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Proof. Let a(x) be a cut-off function such that a(x)eC=([0, 1]), a=1
(2=x=1-12), a=0 (0=x=1/4, 1-1/4=x<1), We define {I*, "} by

$'(%) = a(X)p(x—&)+(1—a@))px), I"=I+é&,

where {€,}, are numbers such that /4-&, is a rational number and &,—0 as
h—0. q.e.d.

Proof of Proposition 3.4. It follows from (3.16) and (3.18) that s"(#)— s(¢)
eC([0, T]) uniformly on [0, T'] as #—>co. On the other hand we see from
(3.10), (3.12), (3.16) and (3.17) that

(7.6) | (x', t')—u"(x, t)| SK'(|x'—x |2+ |t'—t]| ¥4 on Q,,
T
0

1 1
(77)  sup {S u(x, t)zdx}—f—czg S wli(x, tydxdt <K'
0sStsST 0 0

where K’ is a constant. We get
(7.8) |u'(x, 8)| Smax (| H,|, |Hil, ll$llr=0,p)  on Or,

by Proposition 8.2 which we prove later. Therefore it follows from (7.6), (7.8)
and the Ascoli-Arzeld’s theorem that there exist subsequence of {¥"} (which
we denote again by the same symbol), and a function w(x, £)€C(Q;) such that
u"(x, £)—>u(x, t) in C(Q;) as n—>oco. We shall examine that u is the solution of
(M) corresponding to the curve s(f) and the data ¢(x). We get (3.4) using
u'(s"(t), 1)=0 (0=t=T) and s"—s in C([0, T']) as n—>co. We note u},—coui=0
(0<x<s"(t), 0<t=T) and ui,—cui=0 (s"(t)<x<1, 0<¢<T). Thus it is
easily seen that u,,—cw,=0 in D} and u,,—cu,=0 in D% in the distribution
sense. Hence we have uC=(D;) N C(Q;) and (3.1), (3.2) by the well-known
result concerning the heat equation. We will show (3.3). It follows from
Lemma 5.1 and the proof of [34, Lemma 8.4] that

ty (™) t, t,
g S uZ(w—u"),dxdt—i—St 00(17)dt—S 8,(*(0, 2))dt
1 Y

4

ty £s™(t)
g—g S l(w—u")dxdt ,
0

f
where € D(0,), d'=d[2,
2(1—x/d") for 0=x=<d’,
0 for x=d’.

w(x) = {

Hence it is easily seen from u},=cyu}, u"—u in C(Q;) as n— oo, s"—s in C([0, T)
as n—>oo, and (7.7) that
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ty (s(t) ty t,
S S u,(w—u),dxdt—}—s 00(-;;)dt——S 0,((0, #))dt
4 Jo t t.

ty (Fs(2)
= —S S U, (w—u)dxdt .
0

t

Therefore we get (3.3) (a) by the arguments used in the last part of the proof
of [34, Lemma 8.4]. We obtain (3.3) (b) in the same way. We get (3.5) using
u"(x, 0)=e¢(x) and w"—>u in C(Q;) as n—>oo. Consequently we obtain (3.19),
since the solution of (M) corresponding to the curve s(¢) and the data ¢(x) is
unique by Proposition 8.1 which we prove later. q.e.d.

Proof of Proposition 3.5. It follows from (3.20), (3.21), (3.22), (3.23),
Proposition 3.1, Lemma 2.2 and the proof of Proposition 3.4 that there exists
a subsequence of {#"} (which we denote again by the same symbol) and a func-
tion u(x, £)€C(Q,— {t=0}) satisfying «"—u in C(Q, ) as n—>oo for any
a€]0, T[. We shall show that

(7.9)  ulx )—>$(p) as(x)—(p,0)

for a.e. p€[0, 1]. We use the tool of barriers (see [14, p. 70]). We introduce
a barrier

w(x, t) = (x—p)*+3cz't
at (p, 0). We note that
(710)  |w(x, )| Smax(|Hy|, |H;|,K)=K, onO;

by (3.23) and Proposition 8.2 which we prove later. Let & denote any arbitrary
small positive number. We see from (3.24) that

(7.11) | (®)—p(p)| <&  on[p—38, p+3,]=I,

for sufficiently large #n. Therefore it is easily seen from the maximum principle,

(7.10) and (7.11) that

(%, )—(p)| SKao(w, )+€&  on I,x[0, T],
where K,=28;'K,. Taking n— oo, we have

|u(x, t)—p(p) | = K,w(x, t)+E on I,x]0, TT.
Hence we obtain (7.9) easily. Consequently « is a solution of (M) correspond-
ing to the curve s(¢) and the data ¢(x). Thus we get (3.25) using the uniqueness
of the solution of (M). q.e.d.

8. Comparison theorems for the moving boundary problem

We shall show the comparison theorems for the moving boundary problem
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(M) stated in §3. The following results are obtained using the proof of [34,
Lemma 10.1, Proplsition 10.1 and Proposition 10.2].

Lemma 8.1. For a given function r(t)€ C([0, T])NH(]0, T']) and
110, 1}, let p(x, t) and q(x, t) be functions satisfying
8.1)  p, qEC(Dr)NC(DF—Z§)NL(DY)
(8.2) SS  (pPtgddxdi<oco  for each o€10, T1,
w0 {t=a)

T
(83) Dex—Cipr = 0 in D%r Qux—Ciqs = 0 in D7,
(84)  p(x, 0)Zq(x, 0) for all v {EE0, 1]; (—1)(E—x) <0} ,
(8.5) p(r(t), )y=q(r(t), t)  for all t€]0, T,
(8.6)  (—1)(g:(5, )—psG, )9, )—p(G, ))720  ae 2€]0, T],
where Dy, D% are sets defined by (1.5) and (1.6) with r(¢) instead of s(t) respectively,
at = max(a, 0), 0<r(0)=«<1,
Zi = Zix {0} [0, 1% {0} ,
and Z} is a set of zero measure in R'. Then we have p(x, t)=q(x, t) on Df.
Proposition 8.1. Let u, and u, be solution of (M) under the assumptions of
Proposition 3.1 corresponding, respectively, to the pairs of the moving boundary and
the initial data {s,(t), Pp,(x)} and {s)(t), ,(x)}. Suppose that
s(0)Es(t)  for allte[0, T,
di(x)=p(x)  for all x<[0, 5,(0)] U [55(0), 1],
uy(s:(2), )Suy(sy(2), t)  for allt€]0, T,
wy(so(t), )Suy(s,(2),2)  for all t€]0, T .
Then we have

uy(x, t) Suy(x, 1) on {(x, £)E0,; x=<s,(t) or x=s,(2)} .

RemMARK 8.1. Proposition 8.1 implies the uniqueness of the solution of
the moving boundary problem (M).

Propositoin 8.2. Let u be a solution of (M) under the assumption of Pro-
position 3.1.  Then we have

lu(x, t)| Smax (| Hyl, |H,l, ”4’”1.'”(0,1)) on QT .

Proposition 8.3. Let u be a solution of (M) under the assumption of Pro-
position 3.1.  Suppose that
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Hogor Hléo )
o(x)=0 (0=x<1), d(x)=0 (I<x=1).
Then we have

Oéu(x: t)émax (HO) ”4)“1.“(0,1)) on Dg‘ ]
0=u(x, t)=min (H,, —||p||r=qu,») on Dt .

9. Reformation of the Stefan’s condition

We shall state a useful result concerning the reformation of the Stefan’s
condition (0.7) in this section. To begin with, we refer to the following results
concerning the behavior of the derivative of a solution of the heat equation

which vanishes on a non-smooth boundary curve due to Cannon-Henry-Kotlow
[7, Theorem 2.2] (see also [30, p. 10]).

Lemma 9.1. Let s(t) be such that s(t)=8>0 (T\=<t=<T,) and s€C**([T,,
T,)), where a>1/2. Let v(x, t) be the solution of the moving boundary problem

v,—0,=0 (0<x<s(t), T\<t<T),),
v0,)=f) (Ti=t=T),
v(x, T) = () O=x=s(T1)),
o(s(t), ) =0 (I\=t<T)),
where f(1) € C([Ty, ), v(®) € COX(0, S(T2)]) and f(T)=(0), Y(s(T)=0. Then

v,(x, t) converges to a limit v, (s(t)—0, t) uniformly on [v, T;] for any >0 as
x—>s(t), and v ,(s(t)—0, £)eL=(1T,, T,]) N C(T,, T)).

ReEMARK 9.1. If a=1, Geverey [15] has given this result.
Now we state the proposition.

Proposition 9.1. Let s(t)C([0, T]) N Hi,(]0, T]) N C**(J0, T']) with a>
1/2, and d <(s(t)<1—d (0=t<T) for some d =0, and u(x. t) be a solution of the
moving boundary problem (M). Then the following two conditions are equivalent.
(i) s(2)eC=([10, T']) and it satisfies the Stefan’s condition

bs(t) = —uz (s(2), t)+ui(s(t), t) 0<t<T).
(ii)  bs(z,)—bs(t,)
= Siz[—ux(d, )+u,(1—d, )]dt—c, g;('z)u(x, t;)dx

1-d s(t)
_CIS u(x, t,)dx—+c, s u(x, t)dx
s(t2) d

1-d
+c1S ( )u(x, h)dx  for any 0<t,<t,<T.
sty
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Proof. We put
D = {(x, t); dSx=<s(t), HL=<t=t},
D' = {(x, t); s(t)<x=1—d, t,<t<t}} .

It follows from the definition of the solution of (M) that

sz S’w u,rdxdt+ g‘z Sl u,2dxdt < oo

t/2J)o /2 J s(t)

Therefore we see that there exists a time #{ satisfying #,/2<#{<t, and u(+, t])E
C*Y([0, 1]). Therefore we get u,(x, £)C(D°)NC(D") by sC"*([t;, t;]) and
Lemma 9.1. Hence we can apply the Green’s theorem to u,,—cu,=0 in D by
virtue of s€ H'(t,, t,) (see e.g. [22, p. 144]). We get

©1) 0= S Sbo(u,,——cou,)dxdt — Sgwocoudx—f—u,dt ,
92 0= ”Dl(u,,-clu,)dxa’t — Ssablcludx+u,dt.
Hence we obtain by using u(s(?), £)=0

03 [ e, turo, e

=" - Ma—a | u(x, s
' 1-d s(ty) 1-d
—c Ss(’z)u(x, t,)dx+-c, Sd u(x, tl)dx—i—clss(tl)u(x, t)dx .
Now it is obvious from (9.3) that (i) implies (ii). We shall show that (ii)
implies (1). We have
t
Bls(ts)—s(e)] = | "T—uz(s(e), 8-+ (s(e), 1]
by (ii) and (9.3). Hence we get
b3(t) = —uz (s(z), t)+uz(s(2), t)eC(0, TT)
using Lemma 9.1 and arbitrariness of ¢, £, Moreover it can be shown that
s()eC=(]0, T]) by virtue of Schaeffer [28]. q.e.d.
10. Existence of a local solution of (S)

In this section we show the existence of a local solution of (S) under the
conditions of (A.1) and (A.2).

Proposition 10.1. Let {I, ¢} satisfy (A.1) and (A.2). Then there exists a
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solution (s, u) of (S) on [0, T'] such that $(t)€ L0, T), where

(10.1) 0<T = min (& 167%°C|[&,]'Cz"),
8 =2"min(/, 1-1),
C[é€] is is the function of & from Lemma 2.1 (ii) (with §=B—a=1),
& = 47 (¢4} 'CF,
C, = @{1-+exp [42/5+cr)]}

ReEMARK 10.1. T is restricted to be small from the following two reasons.
For one, we assure that the curve s(¢) starting at / does not hit the side x=0
or x=1 for 0=<¢<7T. For the other, we guarantee that the mapping H (de-
fined below) preserves the unit ball in L*0, T).

We shall prove the proposition above using several lemmas. We employ
the method which is analogous to that of Evans [10, §3]. We discover a curve
s(¢) for which the function u(x, ) provided by Proposition 3.3 satisfies not only
(0.1)—(0.6) but also (0.7).

Let us denote by B the closed unit ball in the space L*0, T'). Notice that
if s(0)=1/ and $€B, then 0<8=<s(#)<1—8<1. This fact follows immediately
from the definition of 8 and the estimate

|s(t)—1| =<=tm”~§||z.2<o,r)§Tl/2=~<_3 .
DrriNiTION 10.1. For r(¢) B, define

H(r)(8) = b~ (—uz (s(¢), H)+ui(s(t), £)  for ae. t[0, TT,

t

where s(t):l—{—s r(7)d and u is the solution of the moving boundary problem
0

(M) considered in Proposition 3.3.

Lemma 10.1.
(1) H(r)(+) is measurable on [0, T'].
(i) H(B)cB.

Proof. (i) It follows from Proposition 3.3 that ue C'=(D;) and (3.8) holds.
Hence the map t—u,(s(¢)4-1/n, ¢) is continuous and u,(s(2)41/n, t)—uF(s(t), £)
as n—oo for a.e. t&€[0, T']. Therefore H(r)(+) is measurable.

(i) Choose r&B and set s(t)=z+g'r(f)d7. Then
)

([ 100 a2 [} Custste), )17+ Lt (sta), 19

T
<2b? So (I Z oo, sten 18l Z oo s00,17)dE
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T
=2b74¢&, go (224 Fe20, syt~ TC[Eo]oglllgT 12200, 50

T
—I—é‘oS (2,411 22, 0dt+ TC[E] sup |l [22s0,0)
0 0<t<sT
T
§2b_2€o("02+512) So “ut"sz(o,l)dt+4b—2TC[50]021'15PT Hux“iz(o,l)
= 2b“250(co?+c12)c;202+ 862 TC[&,C,
=<1/241/21,

by Lemma 2.1 (ii), (0.2), (0.3), Proposition 3.3 and (10.1). q.e.d.

We shall examine the hypotheses of Schauder’s fixed point theorem for
the mapping H: B—B.

Lemma 10.2. H: B—B is continuous and H(B)CB is precompact in
L¥0, T).
Proof. We prove the continuity and compactness at the same time.
Suppose 7(t)€B (n=1, 2, -+-) and define s”(t):l—&—gt r"(t)dT, then 0<d=
0

s"(()<1—06<1 for 0=¢t<T and each n. Let #" be the unique solutions of (M)
associated with the curve s"(¢). By Proposition 3.3 there are bounds, indepen-
dent of #, on the following quantities,

(10.2)  [lu"ll2em
T
(10.3) So et ] 20, 7ol -

Since L*0, T') is a Hilbert space, there exists a sequence (which we also
denote by r") such that 7"(¢#) converges weakly to some r(¢)eB. Set s(f)=

l +Str(-r)d~r. It holds that s” — s unifomly on [0, T'] by Ascoli-Arzela’s theorem.
0

Thus we see that «"—u uniformly on Q, by Propositon 3.4, where u is the

solution of (M) associated with the curve s(z).
We now prove H(r")—H(r) in L*0, T'). For a.e. fixed 0=¢<T there are

following three cases.
(a) s"()<<s(t). We get
| H(r")()—H(r)(t)|*
< b2~ (5'(2), B)Ful(E), £~ (), B)-+us(s(t), 1)
Fuz (5(2), O)—u(s"(2), £)F-ui™ (s"(2), £)—ui(s(2), D)|*
S 47| — ]| Zowco, e+ [ — el | 2o s00,0)
] [
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éc(l+Hu”_u“%“(o,s"(t))'F—”uzx—uxxnzl.z(o,s"(t))
+Hu”—um%m,l)—l-|Iui‘x—-unllfnz(s(:),l))(oi?gTHu"*ulli/i(om)
s(t)
C(sup [s"(8)—s(t S w2 +ut,)dx
+C(sup, 1) —sON([ i +utd)
=C(1+lu"—ul I%w<o,x>+Ilu?—utlli%o,n)(o;yspT (" —ul| %36, 1)

+C(sup, 15'(0)—s(0) 007+ )

by Lemma 2.1 (i), (0.2) and (0.3). Hence we obtain
(104)  [HE)O)—H)(®)I*
= C(1- 20,0+l 220, 0) (1" — ]| 0+ 11" — 8] 1ot0,1)

by (10.2).
(b) s(8)<<s"(t). We can get (10.4) in the same way.
(c) s(t)=s"(¢). We get
| H(r")(t)—H(r)(2) I*
b7 —ui(s"(2), t)+uz(s(2), t)—ui(s(), t)+u"t(s"(2), t)|*
= 267" (llwz — 2o, s0n + i — 0l Zocetr ) -

Thus we get (10.4) by the argument used in the case (a).
Consequently it follows (10.3) and (10.4) that
T
[ 16" ) —HE@) 2t
= C(llu"—ullZe@m+1Is"— sl L=w,m) -

Therefore we complete the proof, since " —u in C(Qy), s"—s in C([0, T']) as
n—>oo, q.e.d.

By Lemma 10.2 and Schauder’s fixed point thoerem, H: B— B has at least
one fixed point 7. We shall show that (s(t), u(x, t)) is a solution of (S) on [0, T,

where s(t)=l—{—str('r)d'r and u(x, t) is the solution of (M) associated with the
0

curve s(¢). We may examine the Stefan’s condition (0.7).

Lemma 10.3. s(f) & C*¥4([0, T])n C=(J0, T]), $(t) € L*©, T), u(x, t) €
C(Q;)NC=(SP)NC>(S+) and the Stefan’s condition (0.7) is satisfied.
Proof. We get
T T (1
[(sorascas | | wravay <,
0 0.J0o

by (0.7), Lemma 2.1 (iii), (0.2), (0.3) and (3.10). Thus we have $(¢)L*0, T')
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and so s(£)€C*¥([0, T]). Therefore it follows from Lemma 9.1 that u;(s(z), ¢),
ui(s(t), 1) €C([0, T]), since there exists #, such that (-, t,) C*Y([0, 1]) and
0<t,<¢ for any £<]0, T'] by (3.8). Hence we see from H(r)=r that s(t)E
C'(]0, T']) and b$(2)=—u; (s(t), £)+ui(s(t), t) (0<¢=T). Consequently we see
that s(£)eC=(]0, T]) using the result of Schaeffer [28]. q.e.d.

Thus we complete the proof of Proposition 10.1.

11. Continuation of solutions
We prepare fundamental propositions which are useful in the study of the
continuation of solutions.
Proposition 11.1. Let (s,u) be a solution of (M) on [0, T'] satisfying
bs(t) = —uz(s(2), t)+ui(s(2), ) ae te[0, T].
Then (s, u) ts a solution of (S) on [0, T].
Proof. It is obvious from Propositoin 3.1 and the proof of Lemma 10.3.

q.e.d.

Proposition 11.2. Let (s,, u,) be a solution of (S) on [0, T}], and (s,, u,) be
a solution of (S) on [Ty, T,] with the initial time T\ and the initial data {s(T)),
w(+, T)}. Assume that s,(t)eH .10, T))) and s(t)c H T\, T,). Then (s, u) is
a solution of (S) on [0, T),], where

5i() (0=t=T),

S (hi=t=T),

wy(x, t) 0=x=<1, 0=t=T)
uy(x, 1) 0=x=<1, T'=t=T)).

s(t) = {

u(x, t) = {

Proof. We see from Proposition 3.1, 3.3 and the assumption s(¢)e
H}.(]0, T']) that (s, ) is a solution of (M) on [0, T,]. Hence (s,x) is a solution
of (S) on [0, T,] by Proposition 11.1. q.e.d.

12. A priori estimates

We shall get a priori estimates to show the existence of a global solution
of (S).

Proposition 12.1.  Let (s, u) be a solution of (S) on [0, T'] with s(t)c HY0, T)
corresponding to the data {l, ¢} satisfying the conditions (A'). Then we have

(12.1) 27 S:u,,(x, 1)dx+0,w(0, T))+ 0y(u(1, T))
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T T (1
+2"‘b’$ I&(t)ladt—}—czs S ui(, t)dxdt
0 0Jo
1
=27 [ g.(adn-+ 040D+ 06(1)
Proposition 12.2. Under the assumptions of Proposition 12.1, we have

(12.2) Z‘ITSlu,(x, t)2dx+ T 0,(u(0, T))-+T6y(u(1, T))

T T r1
+279 (1) 8(0) e+, S S tudxdt
Jo 0JO
T (1 T T
=27 (s, tydde + | 04u(, 1))dt+j O,(u(1, #))d .
0Jo 0 0
RemARk 12.1. We shall use (12.1) and (12.2) in the proof of Theorem 2

and Theorem 1 respectively.

We prepare several lemmas to prove the propositions above. We suppose
the assumptions in Proposition 12.1 throughout this section. We can regard u
as the solution of the moving boundary problem (M) associated with the curve
s(#). We note that we can use Proposition 3.3.

Lemma 12.1. &' and td' are differentiable at a.e. t<[0, T'], integrable on
[0, T] and

T
0

(12.3) @T-qﬂgg dddtdt
(12.4) TcpTgSTtdcpf/dtdt+STq>fdt.
0 0
Proof. 'Three exists a constant K such that

(12.5) <I>’2—<I>’1§K(t2-tl+Stzé(t)zdt) 0=H=4,<T),
t
by (3.11). Hence we have
(12.6) 1,0t —t M<K’ (t,—1, +S"s(t)2dt) ,
t

where K'=TK+ sup CD’(§<I>°+K(2T+ST§(t)2dt)). It follows from (12.5) and
o0gssT 0

(12.6) that @’—th(l—{—&('r)z)d'r and tCI>‘~K’St(1+§(T))2dT are bounded and
0 0

nonincreasing on [0, T']. Consequently we have (12.3) and (12.4) using the

wellknown theorems concerning Lebesgue’s integral. q.e.d.

We shall calculate d®‘/dt. We put a=2"'min {min(s(z), 1—s(?));
0=<:<T},
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(127) @ — 2‘ISl—au,,(x, tyd
(128) @f = 27K Su(x t)de+§l (%, 2)'d%) -0 (u(0, 1))+ 6:(u(1, 1)) .
0 1-a
Lemma 12.2. ®!=CY(]0, T), ®; is differentiable at a.e. t<[0, T and it
holds that

(12.9)  d®'|dt = dD![dt+dDijdt  ae. t[0, T].

Proof. We get ®!=C(]0, T']) by the following lemma. Hence we get the
conclusion from Lemma 12.1. q.e.d.

Lemma 12.3. ®{=C'(]0, T]) and
(12.10)  dl/dt
< 2B 3(8) ' — (o S:“’u,zdx Fe, S:;ufdx)
—u,(a, tyula, t)+u,(l—a, thu(l—a, t).

Proof. We see that usC=(S7) N C=(S+) and s&C=(]0, T']) by Definition
1.1. Thus we get ®!=C*(]0, T']). We note that

(12.11)  u(s(2), ) =0 O=:<T),
(12.12) w7 (s(2), t), uz (s(2), £)=<0 0<t=T)
(12.13)  b8(2) = —uz (s(2). t)+u;(s(2), t) (0<t=T),

where we used Proposition 8.3 to have (12.12). Thus we get

(12.14)  us(s(2), t) = —ui(s(t), 1)$(2) (0<t=T),
(12.15)  —b|8(2)| Zuz(s(2), t)+ui(s(?), t) 0<t=T).
We have

aoijas =2-d( | u(x, t)zdx+sl(_:u,,(x, t)dx)]dt
a s(¢
— 27wz (s(2), £)8(t)+-2 SS(I)u,u,tdx—u;‘(s(t), 1723(8)+2 Sl(—:u,u,,dx)
a s(t
s(t)
— 2uz(s(2), £2$(8)—u (s(2), t)zs(t))+[u,u,]:::<”—°—$ w0, u,d
1-a
_I_[uxul]:::i(—f‘)‘-*o_s (t)uxxutdx

— 273(ut (s(2), 17—z (5(2), 1) $()—co SS(t)u,de——cl Sl(‘:u,zdx
a s(t

—u,(a, thua, t)+u,(l—a, hu(l—a, 2)

by (0.2), (0.3) and (12.14). Consequently we obtain (12.10), since we have
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(2 (s(2), £ —0z(s(8), )32
= (E(s(2), )~z (5(8), D)@ (), O-+uz(s(8), )3()
< RIS

by (0.7) and (12.15). q.e.d.
We shall calculate d ®j/dt. We prepare a simple lemma.

Lemma 12.4. It holds that for a.e. t<[0, T']
1
limS [(u(x, t)—u(x, t—h))/h—uy(x, t)fdx = 0.
k>0 JO
Proof. We see from Proposition 3.3 that
Tl
(12.16) | S uy(x, tYdxdt< oo .
0 Jo

We define u(#): [0, 11— L*0, 1) by wu()=u(-, t). It follows from [29, Proposi-
tion 8.3] and [4, Proposition A.7] that u(¢) is absolutely continuous as a

L0, 1)-valued function. Thus we get the conclusion easily. q.e.d.

Lemma 12.5. It holds that for a.e. t<[0, T]

a 1
(12.17)  ddljdt<—c, Sou,zdx—cl Sl_ uldx

+u,(a, tyua, t)—u,(l—a, tyu(l—a,t).

Proof. For a.e. t&[0, T], we have
(12.18) 2 Sau,,(x, t—hY du+0,u(0, t—h))—(2"! Su(x #Ydx+0,u(0, 1))
0 0

= S:ux(x, ) (u (%, t—h)—u,(x, t))dx—+0o(u(0, t —h))—O,(u(0, t))

a

—Sou,,,(x, £)(u(x, t—h)—u(x, £))dx-+ua f)u(a, t—h)—u(a, 1))
—u (0, £)(u(0, 1—h)—u(0, £))--B(w(0, t—h))—B,(u(0, 7))

— ]:u,(x, 1)(u(x, £)—u(x, t—h))dx—u(a, t)(u(a, )—u(a, t—h))
—u(0, £)(@(0, t—E)—1(0, £))+6u(u(0, t—h))— 0,0, £))

= gau,(x, t)(u(x, t)—u(x, t—h))dx—u,(a, t)(u(a, t)—u(a, t—h))

by (0.2), (0.4) (a) and 96,=",. We have also

(12.19) 2-181_ w(x, t—hYdx-t0,(u(1, t—h))— (2" Si w.(x, O)%dx--0,(u(1, 1))
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=¢ S:_au,(x, 1)(u(x, t)—u(x, t—h))dx
+u,(1—a, t)(u(1—a, t)—u(l—a, t—h))
for a.e. 1[0, T]in the same way. Consequently we obtain (12.17) using
(12.18), (12.19), Lemma 12.2, Lemma 12.4 and uC=(SF)NC=(St) q.e.d.
We get the following result by Lemma 12.2, 12.3 and 12.5.

Lemma 12.6.
(1220) dDYdr<—27|3(1)—c, gl u(x, tydx .
0

Proof of Proposition 12.1. It is obvious from (12.3) and (12.20). q.e.d.
Proof of Proposition 12.2. It is obvious from (12.4) and (12.20). q.e.d.

13. Proof of Theorem 2

We show the global existence of a solution of (S) corresponding to the
data {/, ¢} satisfying (A’).

Proposition 13.1. Let {l, ¢} satisfy (A’). Then there exists a solution
(T*, s, u) of (S) satisfying (1.18), (1.19) and (1.20).

Proof. According to Proposition 10.1 a solution (s, #) of (S) on [0, T'] exists
for some 70, and therefore on a maximal interval [0, T*[. If T*=oo, there
is no problem.

If T*< oo, it follows from the a priori estimate (12.1) that s(f)—>s* as t—T*
for some s*. If 0<<s*<1, then the a priori estimate (12.1) and Proposition 10.1
and 11.2 allow us to extend the solution still. This contradicts the maximality
of the time interval [0, T*[. Hence ltlgl* s(f)=0or 1. Moreover we get (1.18),

(1.19) and (1.20) by (12.1) and Lemma 2.2. q.e.d.

Proof of Theorem 2. It is obvious from Proposition 13.1 and Theorem 1
which we prove later. q.ed.

14. Proof of Theorem 1

In this section we shall show the local existence of the solution of (S) under
the condition (A), and give the proof of Theorem 1 and Theorem 3.
We approximate the given data satisfying (A) by the data satisfying (A)’.

Lemma 14.1. Let the data {I, ¢} satisfy the condition (A). Then there
exists a sequence of the data {l, ¢"},z, satisfying (4’),



STEFAN ProOBLEMS ON THE FIXep Bounpary II 837

(14.1)  0=¢"(x)=max (||l et Ho) »
(142)  min(—|I$llz=un, H)=¢"(x)=0,
(143)  lim[|$*(*)=¢(P)llctr-sp, 0450 =0 for ace. p€[0, 1]

(8, is a positive constant depending on p).

Proof. Let {x}osisss (=1, 2, -++) be a family of sets such that each x!
is a point of continuity of ¢(x), 0=xj<xT <+ <ap_ <ap=Il<ap,, <+ <31 <
x3,=1, lim( max |xj—x7_,|)=0, and {xj};C {x?};C---. Define ¢"(x) as a pi-

Apoo 15ig2M

ecewise linear function such that

(14.4) { $'(0)=H, ¢"()=0, ¢"(1)=H,,
‘ () = $=D)  (i%0,n 2n).

q.e.d.

Let (T, s", n") be the unique solution of the Stefan problem (S) corres-
ponding to the data {/, ¢"}. This is well-defined, since {/, ¢"} satisfies (4’) and
we have Proposition 12.1. We shall show the several estimates which are in-
dependent of #.

The following lemma is useful for further estimates.

Lemma 14.2. There exist positive constants T and d independent of n such
that

(14.5) T¥=T,
(14.6) d=s"(t)=s1—d (0=:=T).
Proof. We put m=max (||p|| =00, Hp —H,). Let (s, v) and (s, w) be
the solutions of the following one-phase Stefan problem respectively,
[V — 0, =0 O<x<sy(2), t>0),
2,0, )Ev(v(0, t))  (¢>0),
o 0)=m  (0Sx=(+1)2), 50) = (+1)2,
o(s(8), )=0  (t>0)
b(t) = —vr(s(, 1) (2>0),
w,,—cw, =0 () <x<1, t>0),
—ul, DeEr(, ) (E>0),
wx, 0)=—m  ([[2=5x=1), 5(0)= /2,
w(s (), ) =0  (¢>0),
bSy(t) = wi (sy(f), t) (t>0).

These are well-defined by [34, Theorem 1]. It is easily seen from (14.1), (14.2)
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and the proof of Lemma 15.1 that
S(B) =s5"(2) <s5,(2) 0=t=T¥H
for all n. Hence we get the conclusion easily. q.e.d.
We shall show several estimates for {s"}a and {u"}.

Lemma 14.3.
() O0=w'=max(ll$pll.~on, H) on D%,

min (— |l¢llz=q,p, H)Su"<0  on D7,

(ii) for any compact subset of ”Fjl{(x, t); 0<w<<1, x=s,(t), >0}, derivatives
of u" of all orders are uniformly bounded with respect to n,

(iii) S:.s‘(t)zdthG,

(iv) |5"(t)—s"(#) | <K |t,—1, |3 0=4,=t,<7T),

V) |$"(t)—s"(t) | <K, | t,—t,|%? (e=4,=t,<T),

for any o]0, T'[, where K, (depending on ¢ €]0, T'[) and K are constants.

Proof. We have (i) using Proposition 8.3, (14.1) and (14.2). We get (ii)
from (i) and the Bernstein’s technique [21, p. 415]. It is easily seen from (14.1),
(14.2), (14.6) and Lemma 5.4 that

T (1 R
7)1 ur, opan a0, g)+o0, a1,
where M is a constant independent of 7. Hence we have

Srtl.s‘”(t) |*d1<262M,

0

using Proposition 12.2 and (14.7). Consequently we obtain (iii), (iv) and (v)
easily. q.e.d.

It follows from (14.6), Lemma 14.3 that there exist subsequence of {s"}
(which we denote again by the same symbol) and a function s&C*3([0, T'])N
C*%3(]0, T]) N H,([10, T']) such that s"—s in C([0, T']) as n—>oo, and d <s(t) <
1—d (0=t=T). Hence we see from Proposition 3.5, (14.6) and Lemma 14.3
(iii) that #"—u in C(Q, 1) as n—co for any 0<<o<<T, where u is a solution of the
moving boundary problem (M) corresponding to the curve s(z) and the data ¢(x).

We shall investigate the Stefan’s condition.
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Lemma 14.4. 2=C>(S7)NC=(S?), s€C=(]0, T]) and (0.7) is satisfied.

Proof. Since each u” satisfies (0.7), we have by Proposition 9.1
(14.8)  bs"(t,)—bs"(2)
t s"
=S *(—ua, O)+u(l—a, t))dt——cos i (x, t)dx
2t

a
s"(ty)

1-a
—cls e tz)dx—}—cos (%, t)dx
s™ t2

a

l-a
+c‘S ( )u”(x, t,)dx for any 0<#, <, =T,
s™ t

where a=d/2. Hence noting that u(a, t)—>u/a, t), ¥i(1—a, t)—>u,(l—a,t)
uniformly on [#,, #,] by Lemma 14.3 (ii), and letting #z— o in (14.8), we have an
equality similar to (14.8) as to (s, #). Hence we get the conclusion from Proposi-

tion 9.1, since s(£) € C*¥([0, T1) N C*#3(]0, T]) N H L]0, T). q.ed.

Consequently we have proved the existence of a solution (s, #) of (S) on
[0, T1.

We shall show the global existence of a solution of (S). We note that
{s(2), u(+, t)} satisfies the condition (A’) for all t&]0, T, since Proposition 3.1
and 8.3 hold. Hence {s(T'), u(+, T)} satisfies the condition (A"). Let (T'¥, s,, uy)
be the solution of the Stefan problem (S) corresponding to the data {s(T), u(x, T)}.
This is well-defined by Proposition 13.1. We put

(8 (O=i<T),

8= { s(t—T) (TstsT¥)
Wz, t)  (0St<T),

ul, 1) = { w(x, t—T) (T<t<T%),

where T¥=T%+T. It follows from Proposition 11.2 that (7%, s,, 4,) is a solu-
tion of (S). We have (1.11) by Lemma 14.3 (iv) and Proposition 12.1. We
get (1.12) and (1.13) by Proposition 8.3. We have (1.14) and (1.15) from Pro-
position 12.1, Lemma 2.2 and the fact that there exists a time ¢’ with 0<¢'<o
such that u(x, o) satisfies the condition (A’).

We can see the uniqueness of the solution of (S) by Proposition 15.1 which
we prove later.

Thus we complete the proof of Theorem 1.

Proof of Theorem 3. It is obvious from Proposition 3.2 and Theorem 1.
q.e.d.
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15. Uniqueness of the solution of (S)

In this section we show the uniqueness of the solution of the Stefan pro-
blem (S) under the condition (A). We state a comparison theorem.

Proposition 15.1. Let (T¥, s,, w,) and (T¥, s,, u,) be the solutions of (S)
corresponding to the data {l,, $,} and {l,, .} satisfying the condition (A) respec-
tively. Suppose that [, <1, and ¢, <¢,. Then we have

(15.1)  s@®)<s) on[0, T#,
(15.2)  wy(x, )Suy(x, )  on Qg+,

where T*=min (T¥, T¥).
We prepare a lemma to prove the proposition above.

Lemma 15.1. Under the assumptions of Proposition 15.1, let |, <l, and
61=¢,. Then we have

5(8) <s5(2) on [0, T*].

Proof. Assuming the contrary, set f,=min {t&[0, T*]; s5,(¢) = s,(¢)}.
Clearly $,(2,) = $,(%,) and £,>0. We may have that u,(s,(2), 2)>>0 and wu,(s,(t), t)<0
(0<t<t,) by virtue of Proposition 8.1, Proposition 8.3 and the strong maximum
principle [24], ruling out the exceptional case #,=0 (0=x=s,(¢), 0=t=1,) or
=0 (5;(1)=x=1, 0=t=4¢,). In fact, (S) is reduced to a one-phase problem
in the exceptional case, so we can derive a contradiction from the proof of [34,
Lemma 12.1]. Now we have u,—u;>0 in {(x, #); 0 <x<<s,(?), s;())<x <1,
0<t=<t,} by Proposition 8.1 and the strong maximum principle. Since u,—u,
vanishes at the point (s,(%,), %,); it follows from the parabolic version of Hopf’s
lemma [14] that

uz,2(52(%0), to)—ut <(s:(to), 2)<O0,
3, 2(S2(to)s to)—ui +(8x(%0), 20)>0 .
Hence we have by s,(2,)=s,(t,),
b$y(to) = uz «(sx(Lo), to)—uz,«(52(2o), to)
>b§1(to) = ui,<(81(f0), to)—ut,<(51(%0), %o) »
which is a contradiction. q.e.d.

Proof of Proposition 15.1.  We shall show (15.1). If /,<</,, then we have
(15.1) by Lemma 15.1. Hence we may treat the case /,=/. For simplicity
we denote L, ¢,, 5, 4, by I, ¢, s, u respectively. We put I”=I+a,
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o(x) O=x<], I"<x=1),

153 4w ={ ! (Ssam

for sufficiently small @>0. Each {I%, ¢*} satisfies (A). Therefore there exists
a solution (T %, s%, u®) of (S) corresponding to the data {I®, $*} by the result in
§14. We see from Lemma 15.1 that

(154)  s()<s%(?)  on [0, min(T¥, T%)].

Now (s, %) and (s%, »”), being the solutions of (S), must satisfy their versions
of Proposition 9.1 (ii) respectively. Substracting them and noting that #*—x =0
by Proposition 8.1, we obtain

(15.5)  b(s*(®)—(s(®)
= b(s*(a)—5(a))

~ (L@, n—u0 mar+ | @, H—u, nr
sy s%(t) "
—e So (=, t)—u(x, £))dx—c, Ssm (=, t)dx

! o d ) i
—a Ss‘”(t)(u (x’ t)—u(x’ t)) x+cl S (1) u(x, t) X

S
LI 5()
u*(x, o)dx—c, g u(x, o)dx
0

+cos

0
1 ® 1
+CIS oy (%, o)dx—c, S . u(x, o)dx
= I4+II4+IIT+IV4+ V4 VI VII4 VIITHIX 4+ X4-XT,

for any o and ¢ with 0<o<t<min(T¥, T¥) for sufficiently small @. II and
III are non-positive by the argument used in the proof of [34, Lemma 12.1],
and moreover IV, V, VI and VII are non-positive since #*—u=0 and s*=s.
Hence letting o tend to zero, we obtain

(15.6)  b(s”(t)—s(2))=b(I"—1)
I " 1 : o 1
Feo So & dx——soqsdx)—i—cl( Sz¢¢ dx——glcpdx)
éba+01a”¢nl_‘“(l,1)EIm on [0, min(T}", Tf)] .
Therefore we see from (15.4) and (15.6) that
§) <) <sy(t)+67,  on [0, min(T¥, T¥ T%)].
Letting a—0, we have (15.1). We get (15.2) by Proposition 8.1. q.e.d.

Proof of Theorem 1 (Uniqueness). Let (T¥, s, ) and (T'%, s,, u,) be solu-
tions of (S). Assume that T¥<T¥. If T¥<T¥, then we can see from Pro-
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position 15.1 that s;(t)=s,(¢) (0=¢<T¥). Hence s;(T¥)=s,(T¥). This is a
contradiction since §(7¥)=0 or 1, and 0<<s,(T¥)<<1 by T¥<T¥. Therefore
T¥=T%. Thus we have s,=s, on [0, T'¥] and u,=u, on Qs by Proposition
15.1 and 8.1. q.e.d.
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