<table>
<thead>
<tr>
<th>Title</th>
<th>An isolated umbilical point of a Willmore surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ando, Naoya</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 41(4) P.865-P.876</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-12</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/12782</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/12782</td>
</tr>
</tbody>
</table>
AN ISOLATED UMBILICAL POINT OF A WILLMORE SURFACE

NAOYA ANDO

(Received April 9, 2003)

1. Introduction

Let S be a surface in \mathbb{R}^3. Then it is known that if S is a surface with constant mean curvature, then the index of an isolated umbilical point on S is negative ([16]). If S is special Weingarten, then the same result is obtained ([15]). In the present paper, we shall prove that the index of an isolated umbilical point on a Willmore surface does not exceed $1/2$.

We say that S is a Willmore surface if S is a stationary surface of the Willmore functional \mathcal{W}, where the Willmore functional is defined by the integral of the square of the mean curvature. It is known that S is a Willmore surface if and only if S satisfies the following partial differential equation ([12]):

$$\left\{ \Delta + 2(H^2 - K) \right\}H = 0,$$

where Δ is the Laplace operator on S and K, H are the Gaussian and the mean curvatures of S, respectively. Equation (1) is the Euler-Lagrange equation for Willmore surfaces.

Willmore proved that $\mathcal{W} \geq 4\pi$ for any compact surface in \mathbb{R}^3 and that the equality holds if and only if the surface is a round sphere ([36], [37]). In addition, he and Shiohama-Takagi proved that $\mathcal{W} \geq 2\pi^2 (> 4\pi)$ for a torus represented as the boundary of a tubular neighborhood of a closed curve in \mathbb{R}^3 and that the equality holds if and only if the torus is a $\sqrt{2}$-anchor ring, i.e., the boundary of the tubular neighborhood with radius $a > 0$ of a circle with radius $\sqrt{2}a$ ([38], [27]). Willmore conjectured $\mathcal{W} \geq 2\pi^2$ for any torus in \mathbb{R}^3 ([36]). Since White showed that if the surface is compact and orientable, then \mathcal{W} is invariant under any conformal transformation of $\overline{\mathbb{R}^3} := \mathbb{R}^3 \cup \{ \infty \}$ ([35]), it has been expected that the equality in Willmore’s conjecture holds if and only if the torus is conformally equivalent in $\overline{\mathbb{R}^3}$ to a $\sqrt{2}$-anchor ring. Li-Yau showed that Willmore’s conjecture is true for tori with certain conformal structures close to the conformal structure of a $\sqrt{2}$-anchor ring ([21]); Montiel-Ros showed that Willmore’s conjecture is also true for tori with more conformal structures ([22]). Simon proved that there exists an embedded torus in \mathbb{R}^3 at which \mathcal{W} attains the infimum on all the immersed tori ([28], [29]). Recently, the author has had paper [26] by Schmidt the main theorem of which states that Willmore’s conjecture is
true for any torus immersed in \mathbb{R}^3.

Weiner proved that the image of any minimal surface in S^3 by a stereographic projection is a Willmore surface in \mathbb{R}^3 ([34]). Any compact two-dimensional manifold other than the projective plane may be realized in S^3 as a minimal surface ([20]), while the projective plane may not be realized in S^3 as any minimal surface ([1], [20]). Therefore we see that any compact two-dimensional manifold distinct from the projective plane may be realized in \mathbb{R}^3 as a Willmore surface. Pinkall showed that there exists a Hopf torus in S^3 which is not conformally equivalent in S^3 to any minimal surface and the image of which by a stereographic projection is a Willmore surface in \mathbb{R}^3 ([24]). In addition, Kusner found an example of a Willmore surface in \mathbb{R}^3 which is homeomorphic to the projective plane ([18], [19]). At this example, \mathcal{W} attains 12π, the infimum on all the projective planes immersed in \mathbb{R}^3. Bryant described the moduli space of the Willmore projective planes in \mathbb{R}^3 for each of which \mathcal{W} is equal to 12π ([11]).

By Hopf-Poincaré’s theorem together with Kusner’s example of a Willmore projective plane, we see that our estimate of the index of an isolated umbilical point on a Willmore surface is sharp.

It is expected that the index of an isolated umbilical point on a surface does not exceed one. We call this conjecture the index conjecture. In relation to the index conjecture, the following two conjectures are known: Carathéodory’s conjecture and Loewner’s conjecture. Carathéodory’s conjecture asserts that there exist at least two umbilical points on a compact, strictly convex surface in \mathbb{R}^3. If the index conjecture is true, then we see from Hopf-Poincaré’s theorem that there exist at least two umbilical points on a compact, orientable surface of genus zero, and this immediately gives the affirmative answer to Carathéodory’s conjecture. Let F be a real-valued, smooth function of two real variables x_1, y, and set $\partial_x := (\partial/\partial x + \sqrt{-1}\partial/\partial y)/2$. Then Loewner’s conjecture for a positive integer $n \in \mathbb{N}$ asserts that if a vector field $\Re(\partial_x F) (\partial/\partial x) + \Im(\partial_x F) (\partial/\partial y)$ has an isolated zero point, then its index with respect to this vector field does not exceed n ([17], [33]). Loewner’s conjecture for $n = 1$ is affirmatively solved; Loewner’s conjecture for $n = 2$ is equivalent to the index conjecture. We may find [9], [13], [30], [31] and [32] as recent papers in relation to Carathéodory’s and Loewner’s conjectures. We discussed the index of an isolated umbilical point on a surface in [2]–[7], and in [8], we introduced and studied a conjecture in relation to Loewner’s conjecture.

We see from our estimate of the index in the present paper that the index conjecture is true for any isolated umbilical point on a Willmore surface. In the proof of the main theorem, we shall encounter a situation on a surface with an isolated umbilical point which has not appeared in our previous studies.
2. Willmore surfaces

Let M be a connected, orientable two-dimensional manifold and $\iota: M \to \mathbb{R}^3$ an immersion of M into \mathbb{R}^3. Let H be the mean curvature of M with respect to ι and dA the area element of M with respect to the metric g induced by ι. Then the Willmore functional \mathcal{W} is given by

$$ \mathcal{W}(\iota) := \int_M H^2 \, dA. $$

Let K be the Gaussian curvature of M with respect to the metric g and set

$$ \mathcal{W}(\iota) := \int_M (H^2 - K) \, dA. $$

Then we obtain

$$ \mathcal{W}(\iota) = \mathcal{W}(\iota) - \int_M K \, dA. $$

(2)

It is known that for any conformal transformation X of \mathbb{R}^3 such that $X \circ \iota$ is an immersion, the following holds ([35]):

$$ \mathcal{W}(X \circ \iota) = \mathcal{W}(\iota). $$

(3)

If M is compact, then by (2), (3) and Gauss-Bonnet’s theorem, we obtain

$$ \mathcal{W}(X \circ \iota) = \mathcal{W}(\iota). $$

Let M and ι be as above. Let ξ be a unit normal vector field on M with respect to ι and f a smooth function on M with compact support. Let ι_f be a smooth map from $M \times \mathbb{R}$ into \mathbb{R}^3 satisfying $\iota_f(p, 0) = \iota(p)$, $\left(\partial \iota_f / \partial t \right)(p, 0) = f(p) \xi(p)$ for $p \in M$ and the condition that $\iota_f(p, t) = \iota_f(p, 0)$ for any $t \in \mathbb{R}$ and any point p of M outside the support of f. We set $\iota_{f,t}(p) := \iota_f(p, t)$ for $(p, t) \in M \times \mathbb{R}$. Then there exists an open interval I containing 0 such that for each $t \in I$, $\iota_{f,t}$ is an immersion of M into \mathbb{R}^3. We set

$$ w_f(t) := \mathcal{W}(\iota_{f,t}), \quad \tilde{w}_f(t) := \mathcal{W}(\iota_{f,t}). $$

An immersion ι is called Willmore if $(dw_f/dt)(0) = 0$ holds for any smooth function f on M with compact support; if ι is a Willmore immersion, then the pair (M, ι) or the image $\iota(M)$ of M by ι is called a Willmore surface. An immersion ι is Willmore if and only if (1) holds, where Δ is the Laplace operator on M with respect to the metric g ([12]). Let D be a domain in M which contains the support of f.
and the boundary of which consists of a finite number of closed curves. Then for \(t \in I \), \(w_f(t) - \tilde{w}_f(t) \) is represented as follows:

\[
(4) \quad w_f(t) - \tilde{w}_f(t) = \int_{M \setminus D} K_t \, dA_t + \int_D K_t \, dA_t,
\]

where \(K_t \) and \(dA_t \) are the Gaussian curvature and the area element of \(M \) with respect to the metric induced by \(t_{f,t} \), respectively. From Gauss-Bonnet’s theorem, we see that the second term of the right hand side of (4) depends only on the boundary of \(D \), which implies that this term does not depend on \(t \in I \). In addition, since \(D \) contains the support of \(f \), the first term of the right hand side of (4) does not depend on \(t \in I \) either. Therefore we see that \(w_f - \tilde{w}_f \) is constant on \(I \). In particular, we obtain

\[
(5) \quad \frac{d\tilde{w}_f}{dt}(0) = \frac{dw_f}{dt}(0).
\]

By (3) together with (5), we obtain

Proposition 2.1. Let \(\iota \) be an immersion of \(M \) into \(\mathbb{R}^3 \) and \(X \) a conformal transformation of \(\mathbb{R}^3 \) such that \(X \circ \iota \) is an immersion. Then \(\iota \) is Willmore if and only if \(X \circ \iota \) is Willmore.

3. The index of an isolated umbilical point

Let \(f \) be a smooth function of two variables \(x, y \) and \(G_f \) the graph of \(f \). We set

\[
p_f := \frac{\partial f}{\partial x}, \quad q_f := \frac{\partial f}{\partial y}, \quad r_f := \frac{\partial^2 f}{\partial x^2}, \quad s_f := \frac{\partial^2 f}{\partial x \partial y}, \quad t_f := \frac{\partial^2 f}{\partial y^2}.
\]

Then the Gaussian curvature \(K_f \) and the mean curvature \(H_f \) of \(G_f \) are represented as follows:

\[
(6) \quad K_f := \frac{r_ft_f - s_f^2}{(1 + p_f^2 + q_f^2)^2}, \quad H_f := \frac{r_f + t_f + p_f^2 q_f - 2 p_f q_f s_f + q_f^2 r_f}{2(1 + p_f^2 + q_f^2)^{3/2}}.
\]

Let \(D_f, N_f, PD_f \) be symmetric tensor fields on \(G_f \) of type \((0, 2)\) represented in terms of the coordinates \((x, y)\) as follows:

\[
D_f := s_f dx^2 + (t_f - r_f) dx \, dy - s_f dy^2,
\]

\[
N_f := (s_f p_f^2 - p_f q_f r_f) dx^2 + (t_f p_f^2 - r_f q_f^2) dx \, dy + (p_f q_f t_f - s_f q_f^2) dy^2,
\]

\[
PD_f := \frac{1}{1 + p_f^2 + q_f^2} (D_f + N_f).
\]
A tangent vector \mathbf{v}_0 to G_F at a point is in a principal direction if and only if $PD_f(\mathbf{v}_0, \mathbf{v}_0) = 0$ holds ([15]). For a tangent vector \mathbf{v}, we set

$$\tilde{D}_f(\mathbf{v}) := D_f(\mathbf{v}, \mathbf{v}), \quad \tilde{N}_f(\mathbf{v}) := N_f(\mathbf{v}, \mathbf{v}), \quad PD_f(\mathbf{v}) := PD_f(\mathbf{v}, \mathbf{v}).$$

For $\phi \in \mathbb{R}$, we set

$$u_\phi := \left(\begin{array}{c} \cos \phi \\ \sin \phi \end{array} \right), \quad U_\phi := \cos \phi \frac{\partial}{\partial x} + \sin \phi \frac{\partial}{\partial y}.$$

We set

$$\text{grad}_f := \left(\begin{array}{c} p_f \\ q_f \end{array} \right), \quad \text{grad}_f := \left(\begin{array}{c} -q_f \\ p_f \end{array} \right), \quad \text{Hess}_f := \left(\begin{array}{cc} r_f & s_f \\ s_f & t_f \end{array} \right).$$

Let $\langle \ , \ \rangle$ be the scalar product in \mathbb{R}^2. Then for any $\phi \in \mathbb{R}$, the following hold ([15]):

$$\tilde{D}_f(U_\phi) = \langle \text{Hess}_f U_\phi, U_{\phi + \pi/2} \rangle,$$

$$\tilde{N}_f(U_\phi) = \langle \text{grad}_f, U_\phi \rangle \langle \text{grad}_f, \text{Hess}_f U_\phi \rangle.$$

For $l \in \mathbb{N} \cup \{\infty\}$, let $C_o^{(\infty, l)}$ be the set of smooth functions defined on a connected neighborhood of $(0, 0)$ in \mathbb{R}^2 such that $(\partial^m F / \partial x^m \partial y^n)(0, 0) = 0$ for each $F \in C_o^{(\infty, l)}$ and non-negative integers m, n satisfying $0 \leq m + n < l$. The following hold:

$$C_o^{(\infty, l)} \supset C_o^{(\infty, l+1)} \supset C_o^{(\infty, \infty)} \neq \{0\},$$

where $l \in \mathbb{N}$. Let F be an element of $C_o^{(\infty, 2)}$ such that $O := (0, 0, 0)$ is an umbilical point of the graph of F, that is, there exists a real number a_F satisfying

$$F(x, y) = \frac{a_F(x^2 + y^2)}{2} + o(x^2 + y^2). \quad (7)$$

Let σ_F be an element of $C_o^{(\infty, 2)}$ defined by

$$\sigma_F := \begin{cases}
0 & \text{if } a_F = 0, \\
1 - \frac{|a_F|}{a_F} \sqrt{\frac{1}{a_F^2} - (x^2 + y^2)} & \text{if } a_F \neq 0.
\end{cases}$$

Then we obtain $F - \sigma_F \in C_o^{(\infty, 3)}$. For an integer $l \geq 2$, let $C_o^{(\infty, l)}$ be the subset of $C_o^{(\infty, l)}$ such that each $F \in C_o^{(\infty, l)}$ satisfies (7) for some $a_F \in \mathbb{R}$ and $F - \sigma_F \notin C_o^{(\infty, \infty)}$. For an integer $k \geq 3$, let P^k be the set of the homogeneous polynomials of degree k. Then for each $F \in C_o^{(\infty, 2)}$, there exist an integer $k_F \geq 3$ and a nonzero element g_F of P^{k_F} satisfying $F - \sigma_F - g_F \in C_o^{(\infty, k_F+1)}$. Let g be an element of P^k.
Then set $\text{Hess}_g(\theta) := \text{Hess}_g(\cos \theta, \sin \theta)$ for $\theta \in \mathbb{R}$ and let η_g be a continuous function on \mathbb{R} such that for any $\theta \in \mathbb{R}$, $u_{\eta_g(\theta)}$ is an eigenvector of $\text{Hess}_g(\theta)$, and let S_g denote the set of the numbers at each of which Hess_g is represented by the unit matrix up to a constant.

Let $C^{\infty, 2}_o$ be the subset of $C^{\infty, 2}_o$ such that on the graph G_F of each $F \in C^{\infty, 2}_o$, o is an isolated umbilical point. For an element F of $C^{\infty, 2}_o$, let ρ_0 be a positive number such that there exists no umbilical point of G_F on $\{0 < x^2 + y^2 < \rho_0^2\}$ and ϕ_F a continuous function on $(0, \rho_0) \times \mathbb{R}$ such that for each $(\rho, \theta) \in (0, \rho_0) \times \mathbb{R}$, a tangent vector $\cos \phi_F(\rho, \theta) \partial / \partial x + \sin \phi_F(\rho, \theta) \partial / \partial y$ of G_F at $(\rho \cos \theta, \rho \sin \theta)$ is in a principal direction. Then the following (a)–(c) hold ([5], [6]):

(a) For any $\theta_0 \in \mathbb{R} \setminus S_{Gr}$, there exists a number $\phi_{F, o}(\theta_0)$ satisfying the following:

(i) $\lim_{\rho \to 0} \phi_F(\rho, \theta_0) = \phi_{F, o}(\theta_0)$,

(ii) $u_{\phi_{F, o}(\theta_0)}$ is an eigenvector of $\text{Hess}_{gr}(\theta_0)$;

(b) For any $\theta_0 \in \mathbb{R}$, there exist numbers $\phi_{F, o}(\theta_0 + 0)$, $\phi_{F, o}(\theta_0 - 0)$ satisfying the following:

(i) $\lim_{\theta \to \theta_0} \phi_{F, o}(\theta) = \phi_{F, o}(\theta_0 \pm 0)$,

(ii) $\Gamma_{F, o}(\theta_0) := \phi_{F, o}(\theta_0 + 0) - \phi_{F, o}(\theta_0 - 0)$ is an element of $\{n\pi/2\}_{n \in \mathbb{Z}}$;

(c) The index $\text{ind}_o(G_F)$ of o on G_F is represented as follows:

$$\text{ind}_o(G_F) = \frac{\eta_{gr}(\theta + 2\pi) - \eta_{gr}(\theta)}{2\pi} + \frac{1}{2\pi} \sum_{\theta_0 \in S_{Gr} \cap \{\theta + n\pi/2\}} \Gamma_{F, o}(\theta_0).$$

For an integer $k \geq 3$, set $\mathcal{P}^k := \mathcal{P}^k \cap C^{\infty, 2}_o$. Then for any $g \in \mathcal{P}^k$, the following hold: $\Gamma_{g, o}(\theta_0) = -\pi/2$ for any $\theta_0 \in S_g$ ([4]); $\text{ind}_o(G_g) \in \{1 - k/2 + i\} \cap \mathbb{Z}$ ([2]). Let $C^{\infty, 2}_o$ be the subset of $C^{\infty, 2}_o$ such that for each $F \in C^{\infty, 2}_o$, o is an isolated umbilical point on each of G_F and G_{gr}. If F is an element of $C^{\infty, 2}_o$ satisfying $S_{gr} = \emptyset$, then $F \in C^{\infty, 2}_o$ holds ([5], [6]). We see that if $F \in C^{\infty, 2}_o$ satisfies $S_{gr} = \emptyset$, then the following hold:

$$\text{ind}_o(G_F) = \text{ind}_o(G_{gr}) = \frac{\eta_{gr}(\theta + 2\pi) - \eta_{gr}(\theta)}{2\pi}.$$
we set \(\text{grad}_g(\theta) := \text{grad}_g(\cos \theta, \sin \theta) \). Then the following holds:

\[
(10) \quad (k - 1) \text{grad}_g(\theta) = \text{Hess}_g(\theta)u_{\theta^*}.
\]

From (10), we obtain

\[
(11) \quad \langle \text{Hess}_g(\theta)u_{\theta^*}, u_{\theta + \pi/2} \rangle = (k - 1) \frac{dg}{d\theta} (\theta^*).
\]

Therefore we obtain \(S_g \subset R_g \) and \(R(\text{Hess}_g) \subset R_g \). Suppose \(R_g = \mathbb{R} \). Then \(k \) is even and \(g \) is represented by \((x^2 + y^2)^{k/2}\) up to a constant. By direct computations, we obtain \(S_g = \emptyset \). Therefore \(\theta \) is an isolated umbilical point of \(G_g \). By (11), we see that \(R(\text{Hess}_g) = \mathbb{R} \), i.e., there exists a number \(\zeta_0 \in \{ n\pi/2 \}_{n \in \mathbb{Z}} \) satisfying \(\eta_g(\theta) = \theta + \zeta_0 \) for any \(\theta \in \mathbb{R} \). Therefore by (9), we obtain

\[
\text{ind}_g(G_g) = \frac{\eta_g(\theta + 2\pi) - \eta_g(\theta)}{2\pi} = 1.
\]

In the following, suppose \(R_g \neq \mathbb{R} \). Then for each \(\theta_0 \in R_g \), there exists a positive integer \(\mu \) satisfying \((d^{\mu+1}g/d\theta^{\mu+1})(\theta_0) \neq 0 \). The minimum of such integers is denoted by \(\mu_g(\theta_0) \). A root \(\theta_0 \in R_g \) is said to be

(a) related if \(\theta_0 \) satisfies \(\tilde{g}(\theta_0) = 0 \) or if \(\mu_g(\theta_0) \) is odd;

(b) non-related if \(\theta_0 \) satisfies \(\tilde{g}(\theta_0) \neq 0 \) and if \(\mu_g(\theta_0) \) is even.

Suppose that \(\theta_0 \in R_g \) is related. Then it is said that the critical sign of \(\theta_0 \) is positive (respectively, negative) if the following holds:

\[
\tilde{g}(\theta_0) \frac{d^{\mu_g(\theta_0)+1} \tilde{g}}{d\theta^{\mu_g(\theta_0)+1}} (\theta_0) \leq 0 \quad (\text{respectively, } > 0).
\]

The critical sign of \(\theta_0 \) is denoted by \(c\text{-sign}_g(\theta_0) \). The set \(R_g \setminus R(\text{Hess}_g) \) consists of the numbers at each of which \(\text{Hess}_g \) is represented by the unit matrix up to a nonzero constant; in addition, an element \(\theta_0 \in R_g \setminus R(\text{Hess}_g) \) is related and satisfies \(c\text{-sign}_g(\theta_0) = - (5) \). It is said that the sign of \(\theta_0 \in R(\text{Hess}_g) \) is positive (respectively, negative) if there exists a neighborhood \(U_{\theta_0} \) of \(\theta_0 \) in \(\mathbb{R} \) satisfying

\[
\{ \theta - \eta_g(\theta) - (\theta_0 - \eta_g(\theta_0)) \mid \theta - \theta_0 > 0 \} \quad (\text{respectively, } < 0)
\]

for any \(\theta \in U_{\theta_0} \setminus \{ \theta_0 \} \). For \(\theta_0 \in R(\text{Hess}_g) \), \(\theta_0 \) is related if and only if the sign of \(\theta_0 \) is positive or negative \((5)\). If \(\theta_0 \in R(\text{Hess}_g) \) is related, then the sign of \(\theta_0 \) is denoted by \(\text{sign}_g(\theta_0) \). For a related root \(\theta_0 \) of \(g \) satisfying \(c\text{-sign}_g(\theta_0) = +, \theta_0 \in R(\text{Hess}_g) \) and \(\text{sign}_g(\theta_0) = + \) hold \((5)\). Referring to \([3]\), we see that if \(\theta_0 \) is a related element of \(R(\text{Hess}_g) \) satisfying \(c\text{-sign}_g(\theta_0) = - \), then the condition \(\text{sign}_g(\theta_0) = + \) (respectively, \(- \)) is equivalent to the following:

\[
\frac{1}{\tilde{g}(\theta_0)} \frac{d^2 \tilde{g}}{d\theta^2}(\theta_0) \in (k(k - 2), \infty) \quad (\text{respectively, } [0, k(k - 2))\).
\]
Let \(n_{g^+} \) (respectively, \(n_{g^−} \)) denote the number of the related elements of \(R(\text{Hess}_g) \) in \([θ, θ+ π)\) with positive (respectively, negative) sign. Then for any \(θ ∈ \mathbb{R} \), the following holds ([15]):

\[
\frac{η_{g}(θ + 2\pi) - η_{g}(θ)}{2\pi} = 1 - \frac{n_{g^+} - n_{g^−}}{2}.
\]

4. The main theorem

We shall prove

Theorem 4.1. Let \(F \) be an element of \(C_{\partial}^{(∞,2)} \) satisfying (7) for some \(a_F ∈ \mathbb{R} \) and suppose that the graph \(G_F \) of \(F \) is a Willmore surface such that there exists no totally umbilical neighborhood of \(θ \) in \(G_F \). Then the following hold:

(a) \(F ∈ C_{\partial}^{(∞,2)} \);
(b) If \(θ \) is an isolated umbilical point of \(G_F \), then \(\text{ind}_θ(G_F) ≤ 1/2 \).

Remark. Noticing Proposition 2.1 and that whether a one-dimensional subspace of the tangent plane at a point of a surface is a principal direction is invariant under any conformal transformation of \(\mathbb{R}^3 \), we may suppose \(F ∈ C_{\partial}^{(∞,3)} \) in Theorem 4.1.

Remark. Although \(F \) is an element of \(C_{\partial}^{(∞,2)} \) such that \(θ \) is an isolated umbilical point of \(G_F \), \(F ∈ C_{\partial}^{(∞,2)} \) does not always hold. Let \(f \) be a smooth function on a neighborhood of \((0, 0)\) in \(\mathbb{R}^2 \) satisfying \(f(0, 0) = 0 \) and \(f > 0 \) on a punctured neighborhood of \((0, 0)\). Then \(\exp(-1/f) \) is a smooth function defined on a punctured neighborhood of \((0, 0)\) and smoothly extended to \((0, 0)\) so that all the partial derivatives of \(\exp(-1/f) \) at \((0, 0)\) are equal to zero. Then we obtain \(\exp(-1/f) ∈ C_{\partial}^{(∞,∞)} \).

Suppose that for each positive number \(c > 0 \), there exists a punctured neighborhood of \((0, 0)\) on which the norm of the gradient vector field of \(\log f \) is bounded from below by the number \(c \). Then \(\theta \) is an isolated umbilical point on the graph of \(\exp(-1/f) \) ([17]). However, since \(\exp(-1/f) ∈ C_{\partial}^{(∞,∞)} \), we obtain \(\exp(-1/f) \notin C_{\partial}^{(∞,2)} \). (a) of Theorem 4.1 is crucial to the proof of (b) of Theorem 4.1.

Proof of (a) of Theorem 4.1. Let \(Δ_F \) be the Laplace operator on \(G_F \), and \(K_F \), \(H_F \) the Gaussian and the mean curvatures of \(G_F \), respectively. Then \(H_F \) satisfies the following elliptic partial differential equation:

\[
\{Δ_F + 2(H_F^2 - K_F)\}H_F = 0.
\]

If \(H_F ≡ 0 \), then \(G_F \) is a minimal surface and \(F \) is real-analytic. Since \(G_F \) is not totally umbilical, we obtain \(F ≠ 0 \) and this implies \(F ∈ C_{\partial}^{(∞,3)} \). If \(H_F ≠ 0 \), then \(H_F \) is a non-trivial solution of (13) and referring to [14] as in [15], we see that not all the partial derivatives of \(H_F \) at \((0, 0)\) are equal to zero. This implies \(F ∈ C_{\partial}^{(∞,3)} \).
Hence we obtain (a) of Theorem 4.1.

Proof of (b) of Theorem 4.1. Let F be an element of $C^{(\infty,3)}_o$ such that the graph G_F of F is a Willmore surface. Then there exist an integer $k_F \geq 3$ and a nonzero homogeneous polynomial $g_F \in \mathcal{T}_{k_F}$ satisfying $F - g_F \in C^{(\infty,k_F+1)}_o$, and noticing (6) and (13), we see that g_F satisfies $\Delta^2_{\alpha}g_F \equiv 0$, where $\Delta_0 := (\partial/\partial x)^2 + (\partial/\partial y)^2$. Therefore there exist spherical harmonic functions h_{k_F}, h_{k_F-2} of degree k_F, $k_F - 2$, respectively such that g_F is represented as

$$g_F = h_{k_F} + (x^2 + y^2)h_{k_F-2}.$$

Suppose $S_{g_F} = \emptyset$. Then $F \in C^{\infty,2}_o$ holds. Noticing that the number of the zero points of \tilde{g}_F in $[\theta, \theta + \pi)$ is more than or equal to $k_F - 2$, we obtain

$$k_F - 2 \leq \sharp\{S_{g_F} \cap [\theta, \theta + \pi)\} \leq k_F$$

and

$$(n_{g_F,+}, n_{g_F,-}) \in \{(k_F - 2, 0), (k_F - 1, 1), (k_F, 0)\}.$$

Therefore by (9), (12) and $k_F \geq 3$, we obtain

$$\text{ind}_o(G_F) \leq 1 - \frac{k_F - 2}{2} = 2 - \frac{k_F}{2} \leq \frac{1}{2}.$$

Suppose $S_{g_F} \neq \emptyset$ and $F \in C^{\infty,2}_o$. Then we obtain $\sharp\{S_{g_F} \cap [\theta, \theta + \pi)\} = 1, (n_{g_F,+}, n_{g_F,-}) = (k_F - 1, 0)$ and $-\pi/2 \leq \Gamma_{F,o}(\theta_0) \leq \pi/2$ for any $\theta_0 \in S_{g_F}$. Therefore by (8), (12) and $k_F \geq 3$, we obtain

$$\text{ind}_o(G_F) \leq 1 - \frac{k_F - 1}{2} + \frac{1}{2} = 2 - \frac{k_F}{2} \leq \frac{1}{2}.$$

Suppose $S_{g_F} \neq \emptyset, F \in C^{\infty,2}_o$ and $F \notin C^{\infty,2}_o$. Then there exists an element $\theta_0 \in S_{g_F}$ satisfying $\tilde{g}_F(\theta_0) = 0$ and $\mu_{g_F}(\theta_0) = 2$. We obtain $\sharp\{S_{g_F} \cap [\theta, \theta + \pi)\} = 1$ and $(n_{g_F,+}, n_{g_F,-}) = (k_F - 1, 0)$. We shall prove $-\pi/2 \leq \Gamma_{F,o}(\theta_0) \leq \pi/2$, which implies $\text{ind}_o(G_F) \leq 1/2$. We may suppose $\theta_0 = 0$ and represent g_F as

$$g_F(x, y) = g_0(x, y)y^3,$$

where g_0 is a homogeneous polynomial of degree $k_F - 3$ satisfying $g_0(x, 0) \neq 0$ for any $x \in \mathbb{R} \setminus \{0\}$. We set

$$a_F := s_F + s_Fp_F^2 - p_Fq_Fr_F,$$
$$2b_F := t_F - r_F + t_Fp_F^2 - r_Fq_F^2,$$
\[c_F := -s_F - s_F q_F^2 + p_F q_F 1_F. \]

Then the following holds:
\[(1 + p_F^2 + q_F^2) PD_F = a_F dx^2 + 2b_F dx dy + c_F dy^2. \]

We set
\[\bar{b}_F(\rho, \theta) := b_F(\rho \cos \theta, \rho \sin \theta) \]
for \((\rho, \theta) \in (-\rho_0, \rho_0) \times \mathbb{R}\), where \(\rho_0 > 0\) is a positive number such that there exists no umbilical point of \(G_F\) on \(\{0 < x^2 + y^2 < \rho_0^2\}\). There exists a smooth function \(\bar{b}_F^{(k_F-2)}\) on \(\mathbb{R}\) satisfying
\[\bar{b}_F(\rho, \theta) - \rho^{k_F-2} \bar{b}_F^{(k_F-2)}(\theta) = o(\rho^{k_F-2}), \]

From (14), we obtain \(d\bar{b}_F^{(k_F-2)}/d\theta(0) \neq 0\). Therefore by the implicit function theorem, we see that there exist a neighborhood \(V_0\) of \((0, 0)\) in \(\mathbb{R}^2\) and a curve \(C_0\) in \(V_0\) through \((0, 0)\) satisfying
(a) \(C_0 = \{(\rho, \theta) \in V_0; \bar{b}_F(\rho, \theta)/\rho^{k_F-2} = 0\}; \)
(b) \(C_0 \) is not tangent to the \(\theta\)-axis at \((0, 0)\).

Then noticing the behavior of the two continuous distributions around \(o\) defined by
\[b_F dx^2 + (c_F - a_F) dx dy - b_F dy^2 = 0, \]
we obtain \(-\pi/2 \leq \Gamma_{F,0}(\theta_0) \leq \pi/2. \)

\[\square \]

\textbf{References}

B. Smyth and F. Xavier: Real solvability of the equation $\Delta \omega = \rho g$ and the topology of isolated umbilics, J. Geom. Anal. 8 (1998), 655–671.

Department of Mathematics
Faculty of Science
Kumamoto University
2-39-1 Kurokami, Kumamoto 860-8555, Japan
e-mail: ando@math.sci.kumamoto-u.ac.jp