UNIRATIONAL QUASI-ELLiptIC SURFACES
IN CHARACTERISTIC 3

Dedicated to the memory of Taira Honda

MASAYOSHI MIYANISHI

(Received September, 1, 1975)

0. A non-singular projective surface X is called a \textit{quasi-elliptic} surface if there exists a morphism $f : X \to C$, a curve, with almost all fibres irreducible singular rational curves E with $p_a(E) = 1$ (cf. [4]). According to Tate [5], such surfaces can occur only in the case where the characteristic p of the ground field k is either 2 or 3, and almost all fibres E have single ordinary cusps. Let \mathfrak{f} be the function field of C. Then the generic fibre of f with the unique singular point taken off is an elliptic \mathfrak{f}-form of the affine line \mathbb{A}^1 (cf. [2], [3]); if this form has a \mathfrak{f}-rational point(*) it is birational over \mathfrak{f} to one of the following affine plane curves:

(i) If $p=3$, $t^2=x^3+\gamma$ with $\gamma \in \mathfrak{f}-\mathfrak{f}^*.$
(ii) If $p=2$, $t^2=x^3+\beta x+\gamma$ with $\beta, \gamma \in \mathfrak{f}$ and $\beta \in \mathfrak{f}^*$ or $\gamma \in \mathfrak{f}^*.$

On the other hand, if X is unirational C must be a rational curve. Conversely if C is a rational curve X is unirational. Indeed, $k(X) \otimes_{\mathfrak{f}} \mathfrak{f}^{1/\alpha}$ is rational over k in the first case, and $k(X) \otimes_{\mathfrak{f}} \mathfrak{f}^{1/\alpha}$ is rational over k in the second case. In this article we consider a unirational quasi-elliptic surface with a rational cross-section only in characteristic 3. Thus X is birational to a hypersurface $t^2=x^3+\phi(y)$ in the affine 3-space \mathbb{A}^3, where $\phi(y) \in \mathfrak{f}=k(y)$. If $\phi(y)$ is not a polynomial, write $\phi(y)=a(y)/b(y)$ with $a(y), b(y) \in k[y]$. Substituting t, x by $b(y)^{\alpha}t, b(y)^{\alpha}x$ respectively and replacing $\phi(y)$ with $b(y)^{\alpha}a(y)$ we may assume that $\phi(y) \in k[y]$. Moreover, after making suitable birational transformations we may assume that $\phi(y)$ has no monomial terms whose degree are congruent to 0 modulo 3; especially that $d=\deg \phi$ is prime to 3. It is easy to see that under this assumption $f(x, y)=x^3+\phi(y)$ is irreducible.

A main result of this article is:

\textbf{Theorem.} \textit{Let k be an algebraically closed field of characteristic 3. Then}

(*) This is equivalent to saying that f has a rational cross-section which is different from the section formed by the (movable) singular points of the fibres.
any unirational quasi-elliptic surface with a rational cross-section defined over k is birational to a hypersurface in \(A^3 : t^2 = x^3 + \phi(y) \) with \(\phi(y) \in k[y] \). Let \(K = k(t, x, y) \) be an algebraic function field of dimension 2 generated by \(t, x, y \) over \(k \) such that \(t^2 = x^3 + \phi(y) \) with \(\phi(y) \in k[y] \) and \(d = \deg_y \phi \) prime to 3. Let \(m \) be the quotient of \(d \) divided by 6, and let \(H_0 \) be the (non-singular) minimal model of \(K \) when \(K \) is not rational over \(k \). Moreover if \(d \geq 7 \) assume that the following conditions hold**:

1. For every root \(\alpha \) of \(\phi'(y) = 0 \), \(v_a(\phi(y) - \phi(\alpha)) \leq 5 \), where \(v_a \) is the \((y-\alpha)\)-adic valuation of \(k[y] \) with \(v_a(y - \alpha) = 1 \).

2. If, moreover, \(\phi(y) - \phi(\alpha) = a(y - \alpha)^3 \) plus terms of higher degree in \(y - \alpha \) for some root \(\alpha \) of \(\phi'(y) = 0 \) and \(a \in k - (0) \) then \(v_a(\phi(y) - \phi(\alpha) - a(y - \alpha)^3) \leq 5 \).

Then we have the following:

(i) If \(m = 0 \), i.e., \(d \leq 5 \), then \(K \) is rational over \(k \). If \(d \geq 7 \), \(K \) is not rational over \(k \), and the minimal model \(H_0 \) exists.

(ii) If \(m = 1 \), i.e., \(7 \leq d \leq 11 \), then \(H_0 \) is a K3-surface.

(iii) If \(m > 1 \), i.e., \(d \geq 13 \), then \(p_a(H_0) = p_g(H_0) = m, q = \dim H^1(H_0, O_{H_0}) = 0, \) the \(r \)-genus \(P_r(H_0) = r(m - 1) + 1 \) for every positive integer \(r \), and \(\kappa(H_0) = 1 \).

We use the following notations: Let \(X \) be a non-singular projective surface. Then \(K_X \) = the canonical divisor class on \(X \), \(p_a(X) = \dim H^0(X, K_X) \) = the geometric genus, \(q = \dim H^1(X, O_X) \) = the irregularity, \(p_a(X) - p_g(X) - q \) = the arithmetic genus, \(\kappa(X) \) = the Kodaira dimension of \(X \), and \(P_r(X) = \dim H^r(X, K_X^r) \) = the \(r \)-genus for a positive integer \(r \). For divisors \(D, D' \) etc. on \(X \), \((D \cdot D') \) or \((D^2) \) is the intersection number. We use sometimes the notation \(D \cdot D' \) or \(D^2 \) to indicate the intersection number if there is no fear of confusion.

1. Let \(k \) be an algebraically closed field of characteristic \(p = 3 \), let \(\phi(y) \) be a polynomial in \(y \) with coefficients in \(k \) of degree \(d > 0 \) and let \(f(x, y) = x^3 + \phi(y) \). Consider a hypersurface \(t^2 = x^3 + \phi(y) \) in the projective 3-space \(P^3 \), which is birational to a double covering** of \(F_0 = P^1 \times P^1 \). After a birational transformation of type \((x, y, t) \rightarrow (x + \rho(y), y, t) \) with \(\rho(y) \in k[y] \) we may assume that \((d, 3) = 1 \) and moreover that \(\phi(y) \) does not contain monomial terms whose degrees are congruent to zero modulo 3. Since \(K \) is apparently rational if \(d = 1 \) or \(2 \) we may assume that \(d > 3 \).

The equation \(x^3 + \phi(y) = 0 \) defines a closed irreducible curve \(C \) in \(F_0 \). First of all, we shall look into singular points of \(C \) and the normalization \(\tilde{C} \) of \(C \). Let \(P : (x, y) = (\beta, \alpha) \) be a singular point of \(C \) lying on the affine part \(A^2 = F_0 - (x = 0) \).

(*) Note that if \(K \) is ruled and unirational then \(K \) is rational. Hence if \(K \) is not rational \(K \) has the minimal model.

(**) If either one of these conditions is violated we can drop the degree \(d \) by 6 by a suitable birational transformation.

(***) A morphism \(f : X' \rightarrow X \) of complete integral algebraic surfaces is called a double covering if \(f \) induces a separable quadratic extension of function fields \(k(X')/k(X) \).
oo) \cup (y=\infty). Then \(\phi'(\alpha)=0 \) and \(\beta^2+\phi(\alpha)=0 \). Conversely every root of \(\phi'(y)=0 \) gives rise to a singular point of \(C \) lying on \(A^2 \). Since \(\phi'(y)=0 \) has at least one root, \(C \) has at least one singular point on \(A^2 \subset F_0 \). The point \(Q \) of \(C \), which is situated outside of \(A^2 \), is given by \((\xi, u)=(0, 0) \), where \(x=1/\xi, y=1/u \) and \(u^d+\xi^2\psi(u)=0 \) with \(\psi(u)=u^d(1/u) \) and \(\psi(0)=0 \). Hence \(Q \) is a cuspidal singular point with multiplicity \((3, 3, \ldots, 3, 1, \ldots, 3) \) if \(d=3n+1 \) and \((3, 3, \ldots, 3, 1, \ldots, 3, 2, 1, \ldots) \) if \(d=3n+2 \).

Here we introduce the following notations: Consider a fibration \(\mathcal{F}=\{l_0: l_0 \text{ is defined by } y=\alpha \} \) on \(F_0 \). We denote by \(l_0 \) the fibre \(y=\infty \), and by \(S_0 \) the cross-section \(x=\infty \). We denote by \(l \) a general fibre of \(\mathcal{F} \).

Let \(\sigma: F \to F_0 \) be the smallest blowings-up of \(F_0 \) with centers at all singular points of \(C \) and their infinitely near singular points, by which the proper transform \(\overline{C}=\sigma' C \) of \(C \) on \(F \) becomes non-singular. Let \(S_0=\sigma S_0 \), and let \(l_0=\sigma l_0 \).

The following figures will indicate the configuration of \(F \) in a neighbourhood of \(\sigma^{-1}(l_0 \cup C \cup S_0) \).

\[\text{Fig. 1} \]

where \(d=3n+1 \) and \((\overline{C} \cdot E_0)=3 \);

\[\text{Fig. 2} \]

where \(d=3n+2 \) and \((\overline{C} \cdot E_{n+1})=2 \).

Since \((f)_{x=0}|_{F_0}=3S_0+dl_0 \), we have

\[
(f)|_{F}=\overline{C}+(3E_1+6E_2+\cdots+3nE_n)+D-3(S_0+E_1+2E_2+\cdots+nE_n)-d(l_0+E_1+\cdots+E_n)
\]

\[(*) \text{ By this notation we mean that } Q \text{ is a point with multiplicity } 3, \text{ the infinitely near point of } C \text{ in the first neighborhood (which is a single point in this case) has multiplicity } 3, \text{ etc.} \]
if \(d=3n+1 \), where \(D \) is a positive divisor with support in the union \(\mathcal{E} \) of exceptional curves which arise from the blowings-up with centers at the singular points and their infinitely near singular points of \(C \) in the affine part \(\mathbb{A}^2 \subset F_0 \); and also

\[
(f) \mid_F = \mathcal{C}+(3\mathbb{E}_1+6\mathbb{E}_2+\cdots+3n\mathbb{E}_n+(3n+2)\mathbb{E}_{n+1})
\]
\[
+D-3(\mathbb{S}_0+\mathbb{E}_1+2\mathbb{E}_2+\cdots+n\mathbb{E}_n+(n+1)\mathbb{E}_{n+1})-d(\mathbb{I}_0+\mathbb{E}_1+\cdots
\]
\[
+\mathbb{E}_n+1) = \mathcal{C}-3\mathbb{S}_0-\mathbb{E}_{n+1}-d(\mathbb{I}_0+\mathbb{E}_1+\cdots+\mathbb{E}_{n+1})+D
\]

if \(d=3n+2 \).

On the other hand since \(K_F \sim -2\mathbb{S}_0-2\mathbb{I}_0 \), we have

\[
K_F \sim -2(\mathbb{S}_0+\mathbb{E}_1+2\mathbb{E}_2+\cdots+n\mathbb{E}_n)-2(\mathbb{I}_0+\mathbb{E}_1+\cdots+\mathbb{E}_n)
\]
\[
+\mathbb{E}_1+2\mathbb{E}_2+\cdots+n\mathbb{E}_n+D \quad \text{if } d=3n+1;
\]

and

\[
K_F \sim -2(\mathbb{S}_0+\mathbb{E}_1+\cdots+(n+1)\mathbb{E}_{n+1})-2(\mathbb{I}_0+\mathbb{E}_1+\cdots+\mathbb{E}_n+D)
\]
\[
+\mathbb{E}_1+2\mathbb{E}_2+\cdots+n\mathbb{E}_n+(n+1)\mathbb{E}_{n+1}+D_3 \quad \text{if } d=3n+2,
\]

where \(D_3 \) is a positive divisor with support in \(\mathcal{E} \).

We are now going to consider four cases separately.

(I) If \(d=6m+1 \) then \(d=3n+1 \) with \(n=2m \). Let \(B=\mathcal{C}+\mathbb{S}_0+(\mathbb{I}_0+\mathbb{E}_1+\cdots+\mathbb{E}_n)+D_1 \) and let \(Z=2\mathbb{S}_0+(3m+1)(\mathbb{I}_0+\mathbb{E}_1+\cdots+\mathbb{E}_n)-D_2 \), where \(D_1 \) and \(D_2 \) are the divisors uniquely determined by the conditions that \(D_1 \geq 0 \), every irreducible component of \(D_1 \) has multiplicity 1, \(D_2 \geq 0 \), \(D_1+D_2=D \), and \(\text{Supp}(D_1) \cup \text{Supp}(D_2) \subset \mathcal{E} \). Then \(f=B-2Z \), and \(K_F \sim Z \sim (3m-1)(\mathbb{I}_0+\mathbb{E}_1+\cdots+\mathbb{E}_n)
\]
\[
-(\mathbb{E}_1+2\mathbb{E}_2+\cdots+n\mathbb{E}_n)+(D_3-D_2) \sim (3m-1)\sigma^{-1}(1)-(\mathbb{E}_1+2\mathbb{E}_2+
\]
\[
\cdots+n\mathbb{E}_n+(D_3-D_2). \quad \text{Hence } Z \cdot (K_F+Z) \sim 2(3m-1)-2n+2D_2 \cdot (D_2-D_3), \quad \text{and } p_d(Z)=m+D_2 \cdot (D_2-D_3)/2.
\]

(II) If \(d=6m+2 \) then \(d=3n+2 \) with \(n=2m \). Let \(B=\mathcal{C}+\mathbb{S}_0+\mathbb{E}_{n+1}+D_1 \), and let \(Z=2\mathbb{S}_0+(3m+1)(\mathbb{I}_0+\mathbb{E}_1+\cdots+\mathbb{E}_n)+D_1 \), where \(D_1 \) and \(D_2 \) are divisors chosen as in the case (I). Then \(f=B-2Z \), and \(K_F \sim Z \sim (3m-1)(\mathbb{I}_0+\mathbb{E}_1+\cdots+\mathbb{E}_n)
\]
\[
-(\mathbb{E}_1+2\mathbb{E}_2+\cdots+n\mathbb{E}_n)+(D_3-D_2) \sim (3m-1)\sigma^{-1}(1)-(\mathbb{E}_1+2\mathbb{E}_2+
\]
\[
\cdots+n\mathbb{E}_n+(D_3-D_2). \quad \text{Hence } Z \cdot (K_F+Z) \sim 2(3m-1)-2n+n+D_2 \cdot (D_2-D_3)+2m-2D_2 \cdot (D_2-D_3), \quad \text{and } p_d(Z)=m+D_2 \cdot (D_2-D_3)/2.
\]

(III) If \(d=6m+4 \) then \(d=3n+1 \) with \(n=2m+1 \). Let \(B=\mathcal{C}+\mathbb{S}_0+D_1 \) and let \(Z=2\mathbb{S}_0+(3m+2)(\mathbb{I}_0+\mathbb{E}_1+\cdots+\mathbb{E}_n)-D_1 \), where \(D_1 \) and \(D_2 \) are divisors chosen as above. Then \(f=B-2Z \), and \(K_F \sim Z \sim 3m\sigma^{-1}(1)-(\mathbb{E}_1+\cdots+n\mathbb{E}_n)+D_2 \). \quad \text{Hence } Z \cdot (K_F+Z) \sim 6m-2n+2D_2 \cdot (D_2-D_3)+2m-2D_2 \cdot (D_2-D_3), \quad \text{and } p_d(Z)=m+D_2 \cdot (D_2-D_3)/2.

(IV) If \(d=6m+5 \) then \(d=3n+2 \) with \(n=2m+1 \). Let \(B=\mathcal{C}+\mathbb{S}_0+(\mathbb{I}_0+\mathbb{E}_1+\cdots+\mathbb{E}_n)+D_1 \) and let \(Z=2\mathbb{S}_0+(3m+3)(\mathbb{I}_0+\mathbb{E}_1+\cdots+\mathbb{E}_n)-D_1 \), where \(D_1 \) and \(D_2 \) are divisors chosen as above. Then \(f=B-2Z \), and \(K_F \sim Z \sim (3m+1)\sigma^{-1}(1)-(\mathbb{E}_1+\cdots+n\mathbb{E}_n+(n+1)\mathbb{E}_{n+1})+(D_3-D_2) \). \quad \text{Hence } Z \cdot (K_F+Z) \sim 2(3m+1)\sigma^{-1}(1)-(\mathbb{E}_1+\cdots+n\mathbb{E}_n+(n+1)\mathbb{E}_{n+1})+(D_3-D_2) \).
UNIRATIONAL QUASI-ELLIPTIC SURFACES

\[-2(n+1)+D_z=(D_z-D_3)-2m-2+D_z,(D_z-D_3), \text{ and } p_a(Z)=m+D_z,(D_z-D_3)/2. \]

In each case, \(p_a(Z)=m+D_z,(D_z-D_3)/2 \). Let \(F \to F \) be the smallest blowings-up which make the branch locus of the double covering on \(F \) non-singular, let \(H \) be the normalization of \(F \) in the function field \(K=k(t, x, y) \) and let \(\pi: H \to F \) be the canonical morphism. Then \(H \) is a non-singular projective surface called the canonical model of \(K \), which is a double covering of \(F \) with branch locus \(B^{(*)} \) in each of the above four cases (cf. Artin [1]). Let \(K_H \) be the canonical divisor of \(H \). By Artin [1], we know that \(K_H \sim \pi^{-1}(K_F+Z) \) and \(p_a(H)=2p_a(F)+p_a(Z) \), since the singular points on the branch locus \(B \) on \(F \) are all negligible singularities(***) and since \(p_a(F)=0 \).

Thus we proved:

Lemma 1. Let \(m \) be the quotient of \(d \) divided by 6. Then \(p_a(H)=m+D_z,(D_z-D_3)/2 \).

Now we show:

Lemma 2. With the notations and assumptions as above, \(H \) is a rational surface if \(d \leq 5 \).

Proof. First of all, we may assume that \(d \leq 4 \). In effect, if \(d=5 \) we may assume that \(\phi(y) \) has no constant and degree 1 terms after a suitable change of variables \(x \) and \(y \). Then by a change of variables: \(t'=t/y^3, x'=x/y^2, y'=1/y \), we have

\[t'^2 = x'^3 + \phi(y') \quad \text{with } \deg_{x'}\phi(y') \leq 4. \]

Now assuming that \(d \leq 4 \) and \(\phi(y) \) has no monomial terms whose degrees are congruent to zero modulo 3, we are going to compute \(D_z-D_3 \) and \(K_H \) explicitly. Let \(v \) be the number of distinct roots of \(\phi'(y)=0 \). If \(v=1 \), we may assume that \(\phi(y)=y^d \) after a suitable change of variables. Let \(P: (x, y)=(0, 0) \). \(P \) is a singular point of \(C \) with multiplicity \((2, 1, \cdots) \) if \(d=2; (3,1,\cdots) \) if \(d=4 \). Then \(D=2E \) with \(E=\sigma^{-1}(P) \) if \(d=2; D=3E \) if \(d=4 \). Then \(D_z=0, D_z=D_3=E \) if \(d=2; D_z=D_3=D_3=E \) if \(d=4 \). In each case \(D_z-D_3=0 \). If \(v=2 \), let \(\alpha_1 \) and \(\alpha_2 \) be distinct roots. We have two possible cases: (i) Both \(\alpha_1 \) and \(\alpha_2 \) are simple roots; (ii) One of \(\alpha_1 \) and \(\alpha_2 \) is a double root and the other one is a simple root.

However neither case can occur. Indeed, \(d=3 \) in the first case, and the second case is impossible. If \(v=3 \), let \(\alpha_1, \alpha_2, \alpha_3 \) be distinct roots. Then \(d=4 \), and

\[(*) \text{ A point } P \text{ of } F \text{ is a branch point, i.e., } P \in B \text{ if the normalization of } \mathcal{O}_{F,B} \text{ in } K \text{ is a local ring.} \]

\[(**) \text{ A point } P \text{ of } B \text{ has negligible singularity if and only if it is of one of the following types: (i) a simple point of } B, \text{ (ii) a double point of } B, \text{ (iii) a triple point of } B \text{ with at most a double point (not necessarily ordinary) infinitely near (cf. Artin [1]). For the arithmetic genus formula, see also [B. Iversen: Numerical invariants and multiple planes, Amer. J. Math., 92 (1970), 968–996].} \]
\(\alpha_1, \alpha_2\) and \(\alpha_3\) are all simple roots. Let \(P_i (i=1, 2, 3)\) be the singular point of \(C\) with \(y\)-coordinate \(\alpha_i\). The multiplicity of \(P_i\) is \((2, 1, \ldots)\). Hence \(D=2\sigma^{-1}(P_1)+\sigma^{-1}(P_2)+\sigma^{-1}(P_3)\), \(D_1=0\) and \(D_2-D_3=\sigma^{-1}(P_1)+\sigma^{-1}(P_2)+\sigma^{-1}(P_3)\). Thus \(D_2-D_3=0\). Therefore \(p_a(H)=0\).

On the other hand, since \(K_H \sim \pi^{-1}(K_F+Z)\), we see from the above observations on \(K_F+Z\) that \(K_F+Z<0\) if \(d\leq 4\). Hence \(K_H<0\) and \(p_a(H)=0\). Therefore \(H\) is rational by virtue of Castelnuovo's criterion of rationality. Q.E.D.

2. Let us consider the following conditions on \(\phi(y)\):

1. For every root \(\alpha\) of \(\phi'(y)=0\), \(v_\alpha(\phi(y)-\phi(\alpha))\leq 5\), where \(v_\alpha\) is the \((y-\alpha)\)-adic valuation of \(k[y]\) with \(v_\alpha(y-\alpha)=1\).

2. If, moreover, \(\phi(y)-\phi(\alpha)\sim \alpha(y-\alpha)^3+\text{(terms of higher degree in } y-\alpha)\) for some root \(\alpha\) of \(\phi'(y)=0\) and \(\alpha(k-0)\) then \(v_\alpha(\phi(y)-\phi(\alpha)-\alpha(y-\alpha)^3)\leq 5\).

Assume that \(v_\alpha(\phi(y)-\phi(\alpha))\geq 6\) for some root \(\alpha\) of \(\phi'(y)=0\). Since \(d>0\), this assumption implies \(d \geq 6\). Then by a birational transformation \((t, x, y) \mapsto (t_1=t/(y-\alpha), x_1=(x+\phi(\alpha)^{1/3})/(y-\alpha)^2, y_1=y-\alpha)\), we have

\[
t=t_1^2+\phi_1(y_1) \quad \text{with} \quad \deg_\phi \phi_1 = \deg_\phi \phi - 6.
\]

Assume next that \(\phi(y)-\phi(\alpha)\sim \alpha(y-\alpha)^3+\text{(terms of higher degree in } y-\alpha)\) for some root \(\alpha\) of \(\phi'(y)=0\) and that \(v_\alpha(\phi(y)-\phi(\alpha)-\alpha(y-\alpha)^3)\geq 6\). Then by a birational transformation \((t, x, y) \mapsto (t_1=t, x_1=x+a^{1/3}(y-\alpha), y_1=y)\) we have

\[
t_1^2 = x_1^3+\phi_1(y_1) \quad \text{with} \quad \deg_\phi \phi_1 = d \quad \text{and} \quad v_\alpha(\phi_1(y_1)-\phi_i(\alpha))\geq 6.
\]

Therefore the argument in the former case applies, and we can drop the degree of \(\phi_i\) by 6. Therefore we may assume that \(d \geq 7\) and that the conditions (1) and (2) hold. Hereafter we assume these conditions for \(\phi(y)\). Then we have:

Lemma 3. With the notations as above, \(D_2=D_1\).

Proof. Let \(\alpha\) be a root of \(\phi'(y)=0\), and let \(P=(x, y)=(-\phi(\alpha)^{1/3}, \alpha)\) be the corresponding singular point of \(C\). Let \(e=v_\alpha(\phi(y)-\phi(\alpha))\). Since the conditions (1) and (2) hold, we may assume that \(e=2, 4\) or 5. In fact, the case where \(e=3\) can be reduced to the case where \(e=4\) or 5 by a birational transformation \((t, x, y) \mapsto (t, x+a^{1/3}(y-\alpha), y)\), which is biregular at \(P\). \(P\) is then a cuspidal singular point with multiplicity \((2, 1, \cdots)\) if \(e=2\); \((3, 1, \cdots)\) if \(e=4\); \((3, 2, 1, \cdots)\) if \(e=5\). Hence \(\sigma^{-1}(P)=E_1\) (irreducible) if \(e=2\) or \(4\); \(\sigma^{-1}(P)=E_1+E_2\) (\(E_1\) and \(E_2\) are irreducible) if \(e=5\). Then \(D_2=D_3=E_1\) if \(e=2\) or \(4\); \(D_2=D_3=E_1+2E_2\) if \(e=5\).

Corollary. Let \(m\) be the quotient of \(d\) divided by 6. If one assumes the conditions (1) and (2) on \(\phi(y)\), \(p_a(H)=m\).
The canonical model H of K might contain the exceptional curves of the first kind. When $p_a(H) = m > 0$ (i.e., $d \geq 7$), let H_0 be the minimal non-singular model of K, which is, needless to say, obtained from H by contracting all exceptional curves of the first kind. We shall describe the canonical divisor K_{H_0} of H_0.

Lemma 4. Assume that $d = 6m + 1$ with $m > 0$. Then we have:

(i) $\pi^{-1}(I_\infty \cap E_i) = L_0^i$, $\pi^{-1}(E_i \cap E_i') = L_1^i$, $\pi^{-1}(E_i \cap E_{i-1}) = L_{i-1}^i$, where L_i^i $(0 \leq i \leq n-1)$ is an irreducible non-singular rational curve with $(L_i^i)^2 = -2$ and $n = 2m$.

(ii) $\pi^{-1}(I_\infty) = 2L_0 + L_0'$, $\pi^{-1}(E_i) = L_{i-1}^i + 2L_i + L_i'$ $(1 \leq i \leq n-1)$, where L_i $(0 \leq i \leq n-1)$ is an irreducible non-singular rational curve such that $(L_0^i) = -1$, $(L_1^i) = -2$ $(1 \leq i \leq n-1)$.

(iii) $K_H \sim \pi^{-1}(K_F + Z) - (m-1)\pi^{-1}(\sigma^{-1}(l)) + 4mL_0 + (4m-1)L_0 + (4m-2)L_1 + (4m-3)L_1 + \cdots + 3L_{2m-2} + 2L_{2m-1} + L_{2m-1}$.

(iv) $W := L_0 + L_0' + L_1 + \cdots + L_{2m-1}$ is contractible. Let $\tau: H \to H_0$ be the contraction of W. Then H_0 is a minimal model of K. Hence $K_{H_0} \sim (m-1)\pi^{-1}(\sigma^{-1}(l))$.

(v) For every positive integer r the r-genus $P_r(H_{\sigma})$ of H_0 is $r(m-1)+1$. In particular, $p_g(H_0) = p_a(H_0) = m$ and $q = 0$.

(vi) If $m = 1$, i.e., $d = 7$, H_0 is a K3-surface. If $m > 1$, $\kappa(H_0) = 1$.

Proof. First of all note that $B = \{E_0 + E_1 + \cdots + E_n\} + D_1$ and $K_F + Z \sim (m-1)\pi^{-1}(l) + (2mL_0 + (2m-1)E_1 + \cdots + E_{2m-1})$. Let $\sigma_1: F_1 \to F$ be the blowings-up with centers at $E_0 \cup E_1 \cup \cdots \cup E_n$. Then $\pi: H \to F$ factors as $\pi = \pi_1 \circ \sigma_1$, $\pi = \pi_1 \circ \sigma_1$, i.e., $\pi = \pi_1 \circ \sigma_1$. Since the branch locus B_1 on F_1 is of the form $B_1 = \sigma_1(l_0) + \sigma_1(E_1) + \cdots + \sigma_1(E_{2m-1}) + B'$ with B' having no intersections with $\sigma_1(E_0 + E_1 + \cdots + E_n)$, π_1 coincides with $\pi: H \to F$, which is the canonical normalization morphism, on a small open neighbourhood of $\sigma_1^{-1}(I_\infty \cup E_0 \cup \cdots \cup E_{2m-1})$. Now writing locally the equations of $\pi^{-1}(I_\infty \cap E_i) = \pi_1^{-1}(\sigma_1^{-1}(I_\infty \cap E_i))$, $\pi^{-1}(E_i \cap E_j)$, $\pi^{-1}(E_{i-1} \cap E_n)$, it is not hard to show that L_0, \cdots, L_{2m-1} are irreducible non-singular rational curves. For $0 \leq i \leq n-1$, $(L_i^i)^2 = 2(\sigma_1^{-1}(E_i \cap E_{i+1}))^2 = -2$. This proves the assertion (i).

To show the assertion (ii), note that I_∞, E_0, \cdots, E_{2m-1} are components of the branch locus B. Therefore $\pi^{-1}(I_\infty) = 2L_0 + L_0'$ and $\pi^{-1}(E_0) = L_{i-1}^i + 2L_i + L_i'$ $(1 \leq i \leq n-1)$ with non-singular irreducible rational curves L_i $(0 \leq i \leq n-1)$. Since $(\sigma_1(l_0)^2) = -2$ and $\pi^{-1}(\sigma_1(l_\infty)) = 2L_0$, we have $4(L_0^2) = -4$. Hence $(L_0^2) = -1$.

(Fig. 3)
Similarly, \((\sigma(E_i)^3) = -4 \) and \(\pi^{-1}(\sigma(E_i)) = iL_i \) for \(1 \leq i \leq n-1 \). Hence \((L^2_i) = -2 \) for \(1 \leq i \leq n-1 \).

By virtue of the assertions (i) and (ii), \(K_H \sim \pi^{-1}(K_F + Z) \sim (m-1)\pi^{-1}(l) + \pi^{-1}(2mL_0 + (2m-1)E_1 + \cdots + E_{2m-1}) = (m-1)\pi^{-1}(l) + 4mL_0 + (4m-1)L_0 + (4m-2)L_1 + \cdots + 3L_{2m-2} + 2L_{2m-1} + L_{2m-1}. \) Since \(L_i \)'s and \(L_i' \)'s \((0 \leq i \leq 2m-1 \) have the configuration as indicated in the Fig. 3, it is easy to show that \(W \) is contractible, and \((m-1)\pi^{-1}(l) \) is the moving part of \(|K_H| \). Let \(\tau : H \rightarrow H_0 \) be the contraction of \(W \). Then \(K_{H_0} = \tau((m-1)\pi^{-1}(l)) \). Hence \(\dim |K_{H_0}| \geq 0 \) and \(|K_{H_0}| \) has no fixed components if \(m \geq 1 \). This implies that \(H_0 \) is a minimal model of \(K \). Thus the assertions (iii) and (iv) are proven.

Let us show that \(P_r(H_0) = (m-1)r + 1 \) for every positive integer \(r \). There exists a non-singular irreducible rational curve \(S_\omega \) on \(H \) such that \(\pi(S_\omega) = S_\omega, \pi^{-1}(S_\omega) > 2S_\omega \) and \(S_\omega \cap \text{Supp}(W) = \phi \). Let \(\hat{S}_\omega = \pi(S_\omega) \). Then \(\hat{S}_\omega \) is a non-singular irreducible rational curve. Since \(\dim |rK_{H_0}| = \dim Tr_{S_\omega} |rK_{H_0}| + \dim |rK_{H_0} - \hat{S}_\omega| + 1 \), we compute \(\dim Tr_{S_\omega} |rK_{H_0}| \) and \(\dim |rK_{H_0} - \hat{S}_\omega| \) as follows. Suppose that \(|rK_{H_0} - \hat{S}_\omega| \neq \phi \), and let \(M \in |rK_{H_0}| \) be such that \(M > \hat{S}_\omega \). Then \(\pi^{-1}M > \pi^{-1}\hat{S}_\omega = \hat{S}_\omega, \) so \(\pi^{-1}M \sim r(m-1)\pi^{-1}(l) \). Then \(\sigma \pi(\pi^{-1}M) > \sigma \pi\hat{S}_\omega = S_\omega, \) and \(\sigma \pi(\pi^{-1}M) \sim 2r(m-1)l \). This is a contradiction since no members of \(|2r(m-1)l| \) on \(F_0 = \mathbb{P}^1 \times \mathbb{P}^1 \) contain \(S_\omega \). Thus \(\dim |rK_{H_0} - \hat{S}_\omega| = -1 \). On the other hand, since \(\hat{S}_\omega \simeq \mathbb{P}^1 \) and \(\deg Tr_{\hat{S}_\omega} |rK_{H_0}| = r(m-1)(*) \) and \(Tr_{\hat{S}_\omega} |rK_{H_0}| \) is apparently complete we have \(\dim Tr_{\hat{S}_\omega} |rK_{H_0}| = r(m-1) \). Therefore \(P_r(H_0) = r(m-1) + 1 \). In particular, \(p_g(H_0) = p_g(H_0) = m = p_a(H_0) \). Hence \(q = \dim H^1(H_0, \mathcal{O}_{H_0}) = p_g(H_0) - p_a(H_0) = 0 \). Thus \(H_0 \) is a regular surface. If \(m = 1, H_0 \) is a K3-surface. If \(m > 1, \kappa(H_0) = 1 \) since \(P_r(H_0) \) is a linear polynomial in \(r \). This completes the proof of the assertions (v) and (vi).

Q.E.D.

In a similar fashion we can show:

Lemma 5. Assume that \(d = 6m + 2 \) with \(m > 0 \). Then we have:

1. \(\pi^{-1}(L_0) = L_0 + L_0, \pi^{-1}(E_i) = L_i + L_i \) (1 \(\leq i \leq 2m-1 \) where \(L_i \)'s and \(L_i' \)'s are irreducible non-singular rational curves such that \((L^2_0) = (L^2_i) = -1 \) and \((L^2_i) = -2 \) (1 \(\leq i \leq 2m-1 \). They have the following configuration:

```
  \[ \begin{array}{ccccccccc}
  L_0 & L_0 & L_0 & \cdots & L_{2m-1} \\
  -2 & -2 & -2 & \cdots & -2 \\
  \end{array} \]
```

(Fig. 4)

(*) Cf. 2(\(\pi^{-1}(l) \)) = 2(\(\pi^{-1}(l) \)) = (\(2\pi^{-1}(l) \)) = 2(\(\pi^{-1}(l) \)) = 2.
(ii) $K_H \sim \pi^{-1}(K_F + Z) \sim (m-1)\pi^{-1}q^{-1}(l) + 2mL_0 + (2m-1)L_1 + \cdots + L_{2m-1} + 2mL_0 + (2m-1)L_1 + \cdots + L_{2m-1}$.

(iii) Let $W := L_0 + L_1 + \cdots + L_{2m-1} + L_0' + L_1' + \cdots + L_{2m}'$. Then W is contractible, and if $\tau : H \to H_0$ is the contraction of W, H_0 is a minimal model of K. Hence $K_{H_0} \sim (m-1)\pi^{-1}q^{-1}(l)$.

(iv) For every positive integer r, $P_r(H_0) = r(m-1) + 1$. In particular, $p_a(H_0) = p_a(H_0) = m$ and $q = 0$.

(v) If $m = 1$, i.e., $d = 8$, H_0 is a $K3$-surface. If $m > 1$, $\kappa(H_0) = 1$.

Lemma 6. Assume that $d = 6m + 4$ with $m > 0$. Then we have:

(i) $\pi^{-1}(\text{I}_0) = L_0 + L_0', \pi^{-1}(\text{I}_i) = L_i + L_i' (1 \leq i \leq 2m)$, where L_i's and L_i''s are irreducible non-singular rational curves such that $(L_0^2) = (L_0'^2) = -1$, $(L_i^2) = (L_i'^2) = -2$ ($1 \leq i \leq 2m$). They have the following configuration:

(ii) $K_H \sim \pi^{-1}(K_F + Z) \sim (m-1)\pi^{-1}q^{-1}(l) + (2m+1)L_0 + 2mL_1 + \cdots + L_{2m}$

(iii) Let $W := L_0 + L_1 + \cdots + L_{2m} + L_0' + L_1' + \cdots + L_{2m}'$. Then W is contractible, and if $\tau : H \to H_0$ is the contraction of W, H_0 is a minimal model of K. Hence $K_{H_0} \sim (m-1)\pi^{-1}q^{-1}(l)$.

(iv) For every positive integer r, $P_r(H_0) = r(m-1) + 1$. In particular, $p_a(H_0) = p_a(H_0) = m$ and $q = 0$.

(v) If $m = 1$, i.e., $d = 10$, H_0 is a $K3$-surface. If $m > 1$, $\kappa(H_0) = 1$.

Lemma 7. Assume that $d = 6m + 5$ with $m > 0$. Then we have:

(i) $\pi^{-1}(\text{I}_0) = L_0 + L_0', \pi^{-1}(\text{E}_i) = L_i + L_i' (1 \leq i \leq 2m)$, where $n = 2m+1$ and $L_i' (0 \leq i \leq n)$ is an irreducible non-singular rational curve with $(L_i'^2) = -2$.

(ii) $\pi^{-1}(\text{I}_0) = 2L_0 + L_0'$ and $\pi^{-1}(\text{E}_i) = L_{i-1} + 2L_i + L_i' (1 \leq i \leq n)$, where L_i $(0 \leq i \leq n)$ is an irreducible non-singular rational curve such that $(L_0^2) = -1$ and $(L_i^2) = -2$ $(0 < i \leq n)$. L_i's and L_i''s have the following configuration:

(Fig. 6)
(iii) \(K_H \sim \pi^{-1}(K_F + Z) \sim (m-1)\pi^{-1}\sigma^{-1}(l) + (4m+4)L_0 + (4m+3)L_0' + \cdots + 2L_{2m+1} + L'_{2m+1}. \)

(iv) Let \(W := L_0 + L_0' + \cdots + L_{2m+1} + L'_{2m+1}. \) Then \(W \) is contractible. If \(\tau: H \to H_0 \) is the contraction of \(W, H_0 \) is the minimal model of \(K. \) Hence \(K_{H_0} \sim \pi^{-1}(m-1)\tau\pi^{-1}\sigma^{-1}(l) \).

(v) For every positive integer \(r, P_r(H_0) = r(m-1) + 1. \) In particular, \(p_g(H_0) = p_g(H_0) - m \) and \(g = 0. \)

(vi) If \(m = 1, \) i.e., \(d = 11, \) \(H_0 \) is a \(K3 \)-surface. If \(m > 1, \) \(\kappa(H_0) = 1. \)

Combining the above results, we have our main theorem.

REMARK. If \(m > 1, \) \(H_0 \) is not birational to an elliptic surface. Assume the contrary, and let \(\rho: H' \to H_0 \) be a birational morphism with a non-singular projective surface \(H' \) endowed with an elliptic pencil \(\mathcal{L} = \{ C_{\alpha}; \alpha \in \mathbb{P} \}. \) Then \(K_{H'} \sim (m-1)\rho^{-1}\tau\pi^{-1}\sigma^{-1}(l) + E, \) where \(E \geq 0 \) with \(\text{Supp}(E) \) the union of exceptional curves arising from \(\rho. \) For a general member \(C \) of \(\mathcal{L} \) we have \((C^2) = 0, \) and \(C \cdot K_{H'} \geq 0 \) because \(C \) is a non-singular irreducible curve distinct from components of \(E. \) Since \(1 = p_a(C) = (C^2 + C \cdot K_{H'})/2 + 1 \) we have \(C \cdot K_{H'} = 0. \) Hence \(C \) coincides with a component of a member of \(|(m-1)\rho^{-1}\tau\pi^{-1}\sigma^{-1}(l)|, \) i.e., \(C = \rho^{-1}\tau\pi^{-1}\sigma^{-1}(l) = \tau\pi^{-1}\sigma^{-1}(l) \) for some \(l. \) This is absurd because \(\tau\pi^{-1}\sigma^{-1}(l) \) is rational.

OSAKA UNIVERSITY

References