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ON THE HOMOTOPY GROUP 1, ,,(U(n)) FOR nx6

Hipeakt OSHIMA
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The homotopy groups 7,,,;(U(n)) of the unitary group U(n) for 0<: <8,
1=10 and 12 were determined by Borel and Hirzebruch |2], Bott [3], Kervaire
[7], Toda [22, 23], Matsunaga [8-12], Mimura and Toda [13], Mosher [14, 15],
and Imanishi [6]. For #=5 and =9, 11 or 13 the odd components were
determined by [12] and [6], but the 2-component had not been completely
determined. Indeed Mosher [15] has not determined some group extensions
which appear in case of =9 only if =2, 4 or 6 mod (8) and #=6. In this
note we shall determine these group extensions for i=9. ,,,o(U(n)) for
n<5 was determined by [6], [13], [15] and [23]. Therefore we shall com-
plete the computation of 7,,,(U(n)). While the group z,,,4(U(n)) has been
computed by Vastersavendts [24] for n=0 mod (4), 6 mod (8) or 2 mod (16),
her results contradict Mosher’s [15] and ours for =0 mod (16) and
n=6 mod (8) respectively.

We shall prove

Theorem. The 2-component cf m,,.o(U(n)) for n=2,4 or 6 mod (8) and
n=6 is given by the following table:

mmod () Zonto U())
2(16) ZZ@Z:i@ZZ
10(32) Z,DZ,DZ,
26(64) Z,DZ,DZ,
58(64) Z,DZDZs
4(8) Z,DZ,DZs
6(8) Z,®Z,

where Z,,=Z|mZ is the cyclic group of order m.

We shall use the notations and terminologies defined in [20] or the book
of Toda [23] without any reference.

Supported by Grant-in-Aid for Scienitfic Research, No. 454017



496 H. OsHiMA

1. Method of computation

By Theorem 4.3 of Toda [22] we know that m,,,U(n)) is isomorphic
to the stable homotopy group 73,.9(P,.s¢) Of the stunted complex projective
space P,.s¢=P,.s/P, if n=5. We shall compute 73,.9(Pprs)-

Consider the canonical cofibration

Lk i Q-
sminy—3 Prth-1k-1 1 k-1 Qornik)-2
Sk > Pn+k—1,k—1" >L gy — NSl

and the associated exact sequence

i
(S)k: e > Gi—zk+z'p—*’ ﬂin-ui(Pﬁk—l,k—x) 2,

9« P«

7l'§n—1+i(Pn+k,k) E— Gi—2k+1 —_—>

We set the two steps of computation:
(1) determine the G y-module structure of w3 (Pyis-1r-1)»
(2) describe pyp—1 41 E T3 nsk)=3(Prir-1,4-1) explicitly.
If these two are possible, we know 73, 1.:(P,:,4) up to group extension

0 — Cokernel of py —> #3,_14:(Pyis) — Kernel of py, — 0.

To determine this group extension, we prepare a lemma.

Lemma 1 (cf. Theorem 2.1 of [13]). Let A—f—>X—l> C(f) be a cofibra-

tion and

i A 3
oo (X)) <2 o (A) L i (X) >

an associated stable exact sequence. Assume that acr;,_,(A) satisfies fy(c)=0,
and the order of o is k. For an arbitrary element (3 of {f, a, ke) Cny(X), there
exists an element [a]lEn(C(f)) such that

Ala]) =a and ix(B) = —Hla].
Proof. By definition of Toda bracket, there exists a commutative stable
diagram with B=aob:
S’l
b
(44 . &
Sn-l___, A— C(a)———) S —>FEA

=All Jif;lc LR ‘é<lf) ——»=blA

ke

Then we may put [a]=—a’.
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For the above (2), we consider (S), for i=2k—2:

9x Px
”;(n+k)-2(Pn+k,k) — Go B 7f§(n+k)—3(Pn+k-1,k—1) .

The exactness of this shows that

#Dnri-1,6-1 = $(Cokernel of qy) .
On the other hand by (4.5) of [20] we know that
#(Cokernel of q5) = Q*{n+k, k}
= C{yM(C)—n—Fk, k}  for largej

and this number was determined for £<8 in (3.1) of [20]. We shall need the
2-component of this number for k=5 and 6. Let v,(m) be the exponent of 2
in the factorization of an integer m into the prime powers.

Lemma 2 ((3.1) of [20]). vy(BPy+4e) and vy($p,.ss) are given by the fol-

lowing table:

vilhipuiss) | nmod () | nlpasy) | mmod( )
4 4, 6(8) 4 4, 6(8)
3 0(8), 2(16) 3 0, 2(16)
2 10(16) 2 8(16), 10(32)
1 26(64)
0 58(64)

Considering the above (1) and (2), we shall compute inductively
Z3n—1+i(Pyrr) for k=6 and some 7 <10. Since the suspension EP,, , is 2n-con-
nected and the pair (W, EP,.4,) is (4n-+3)-connected, it follows that
n-14i(Pyrss) 18 isomorphic t0 m,,, (W, ) for i<2n, where W, ,=U(n+k)/
U(n) is the complex Stiefel manifold. Nomura and Furukawa [16] have com-
puted 7y, (W, 4) for k=2, 3 and i<21, 19 respectively. Therefore we already
know 73s-14i(Pyirs) 2=k=3 and /<10. But informations for (1) from [16]
are not sufficient for our purpose. So we shall recompute some 7z5,_14:(Pyis.4)
for k<3,

2. Computation

From now on, n means always an even integer =6, 7%( ) and G, often
denote only the 2-primary component of itself. We work in the stable category
of pointed spaces and stable maps between them.
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Since p,4,,=n7=0, it follows that P, ,,=S*VS**2 Let s: S**—
Dat22 be an inclusion map which is a right inverse of ¢,. Then
(2.1) Lg T8t GioiDGi_3 = m3u_14i(Pyip,) 1s an isomorphism.

By the proof of (1.11), (i) of (1.13) and (1.14) of [20], we have

Purzz = (n[2)ix(v+-a)+s5m: S8 — Py, = SV S¥H2,
Put
_ { 1 if n=0mod (4)
" l2  ifn=2mod(4).
Then by (2.1) and (S), for =28, we have a short exact sequence
0= Zs{izka} = 73ns2(Pra) = Zase, {er} — 0.
We have

Puras s (8le)e> = (n[2)ingv, ev, (8e,)e>+<sx7, e, (8le,)e>
Dil(n[2)v, e,v, (8[e,)e>+54<n, e,v, (8[e,)e>
Dy {(ne,/4)(2]e,)v, ., (8]e,)eD}
50

since <7, e,v, (8/e,)c>CGs=0 and <(2/e,), e, (8/e,) >0 (see e.g. [16]).
Therefore by Lemma 1 the above short exact sequence splits, that is, there
exists [e,] Em3ns7(Pyiss) With gyile,v]=e,» and

(2.2) Tns1(Poiss) = Zsllawa} DZy,, {[er]}

It follows from (S); for /=9 that 7,4 : 73,.8(Pyr2,2) = Zins8(Ppis ) 1s an iso-
morphism. Hence by (2.1) we have

(2.3) inss(Pusss) = Zo{trx€} DZy {1345} DZy liras v’} -
From (2.1) and (S), for =10 it follows that

24)  7inio(Pyis3) = Zisliinsxot OZy{tpen} BZy {124} BZy., {120’} .
Analysing p,., , for k=3, 4 and 5, we consider the followings. Put

I __{1 if m-+k=1mod (2)
"2 ifmtk=0mod (2).

Then, since L,, ,(m+k—1)=0mod(2), g;-1x(Lp 1 Pm+r,1))=Lm 1(m~+k—1)p=0 and
hence ¢14(Ly, 4 Pm+s,1) is not empty for 1<l<m--k, and
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(T) 1 (L e Pt ) = TT4(Lom g Qou 1 P ) D G153 (Lo 4 P s)
and by (1.15) of [20] |

(T)i Qi -2 D18 S (Lm e P 14)
= Gmit-3% Tx(Lom s D)
{ (m+k—2)(v+ay) if m-+k=0mod (2)
{(1/2)(m+k4-1)(r+ay), (1/2)(m+k+1)(r+a))+4v}
if m4+-k=1 mod (2).

Now ¢4=s%": ”;n+5(P,,+2,2)_;7[;”+5(S2n+2):G3 by (2.1), since gos=1.
Then by (T);
G- 1% 3Tk (Pur3) D ((n+4)[2)s4 (v + ;)
and by (T'),
Pursz = (n1+4)[2)i 155 (v 1))
so that p, 5 ;07=0 and
<Pn+3,3: 7, 2‘>Dll*s*<((n+4)/2)vv 7, 2‘> =0
and by Lemma 1 there exists [7] E7w3,47(P,14q,4) With g4 [7]=2 and
(2-5) 7t§n+7(Pn+4,4) = Zm{ia*o'} @Za/e,, {il*[eny]} @Zz{[’ﬂ} .
We have also the following from (2.3) and (S), for /=9

(2.6) Tonss(Pyiae) = Z, {348} BZ, {1345} @Zzla,, {L24850%} DZ{[n]} .

By the same argument as the proof of (2.2) we know that there exists
e ]1E 72 9(Poss,4) with gs4[[e,»]]=e,» and

(2.7) Tons9(Puiag) = Z 6 {ir45x0} DZ{iss 1} BZo {15416}
@Zz/e,, {1'3*7}3} @28/43,, {[[eny]]} .

To compute z3,49(P,55) we shall prepare four lemmas.

Remember that in [20] we used the notations: HP,,, ,=HP,,,/HP,, the
stunted quaternionic projective space; z: Pyyyp 0 —>HP, 4, the canonical
quotient map;

sz/z)n,k iy
(2'8) S2"+4k_1 —_— HP(n/2)+k,k - HP(n/2)+k+1_k+1
the canonical cofibration.

Lemma 3. We have
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() 7insr(HP, (n/2)+2,2) =Zy {i{{*a } ®Z8/e,, {”*il* [en”]} ’
(ii) 7’5n+8(HP(n/2)+2,2)=Zz {iig*e} DZ, {if*ﬁ} ,
(111) Ton+ Q(HP(n/Z) +2,2) =Z2 {z{{*ﬂ} ®ZZ {1{1*778} GBZZ/e,, {1{1*1}3} ’

e if n=2 mod (8)

. it if n=4 mod (8)
H on —

(V) Pwzy+2.20m i(649) if n=6mod (8)

0 if n=0mod (8).

Proof. Considering the stable homotopy exact sequence associated with
(2.8) for k=1, we obtain (ii) and (iii) immediately since G,=G;=0 and p¢,5,,
=(n/2)(v+a,) and by Lemma 1 we have a split exact sequence:

0— Zlﬁ{i{{*a-} - ”§n+7(HP(n/2)+2,2) — 7 e {en”} —0.
Then the following commutative diagram induces (i):

v
gmr S g

| el l=

S i) P, __11_> P,i3s ’ St
7
= 4 P,y =
v qt
S = HPmy1— HPy 1422 — Nk

Since g1 o pet/m+2.20m=((n/2)+1)(v+a;)n=0, there exists a map f: S**+8— S
with ¥ of=pfmi.0m. It is easily seen that if*: {HP(,/»s0 S '} — {S%,
S =Z,{n} is an isomorphism. Let h& {HP(,/».22 S '} be the element
with hoif=n. It follows from (2.7) of [21] that

& if n=2 mod (8)
u p if n=4 mod (8)
h°P(n/2)+z,z = .
E+p if n=06 mod (8)
0 if n=0mod (8).

Since nof = ho pfo/p1920m and no: Gy— G, is a monomorphism, we obtain (iv).
This completes the proof of Lemma 3.

Lemma 4. For suitably chosen [[e,v]] it holds that [n]n*=(4/e,)[[e]]-
Proof. By Proposition 1.4 of Toda [23]
(2.9) (2] = [1]0<2¢, 7, 2¢)> = {[7], 2¢, 7po2¢ .
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Let Indet {a, B, 7> be an indeterminacy of a Toda bracket <o, B, ¥>. Then
3n19(Puss,e) DIndet {[n], 2¢, 7> = [7]0 {S**, S**7} 475,04 8(Ppraa)on
= Z{[1]7°} +Z,{t54m€} —I_ZZ/e,, {250}
and
g5 Indet {[7], 2¢, 7> = Z,{n*} = Z,{4v} = Indet (n, 2¢, 7>
and, since ¢;4<[7], 2¢, 7> C<gs4[n], 2¢, >=<n, 2¢, 7>, we have
‘J3*<[77], 2"7 77> = <77’ 2‘) 7]> = {21’7 6”} .

Hence there exists an element in <{[7], 2¢, 7> which is mapped to 2v by g,.
By (2.7) this element has a form as (2/e,)[[e,¥]]471xx for some xE x5y, 9(P,433),
and from (2.9) it follows that 47,,x=0. Then by (2.7) 2i,,x is divisible by
8, that is, 27,,x=8i,y for some yEn3,49(P,+33). Then

[n]7* = 2{(2/en)[er]]+71x}
= (4/e.)([[er]]+2114 ) -

Since gs«([[e.#]1]42¢,%15%y)=e,» and the order of [[e,v]]+2e,7,4y is 8/e,, we may
change [[e,v]] for [[e,v]142e,7,4y. So the conclusion follows.

Appointment: From now on we assume that [|e,w]] satisfies [7]7*=
(4/ex)[[ew]]-
Since g30f'y+4 4=(n+3)n=1, by (2.5) we can put
Prias = Aulsno 0,015 e,v]+[n]4-0dd torsion
for some integers a, and b,. By Lemma 2 and (2.5) we have

(2.10) nz{ 1 mod (2) if n=4 or 6 mod (8)

0 mod (2) if n=0 or 2 mod (8).
By (T)s, and (T);, for any p’ €q,_1417(2Pn+4) Cins1(Pyis5) We have
ti0p’ = 2puisq and  GQop’ = (n+2)(v+ay).

Then p’'=2a,i,so+2b,[e,v]+odd torsion. Applying g, to this equation we
know that 2b,e,=n-+2 mod (8), and

@.11) b ={ 1mod(2)  if n=0mod (4) or 2mod (8)

0 mod (2) if n=6 mod (8) .

Lemma 5. We have
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2] — { 1.2*8 . zf n=2 mod (8) ’
1p%E€ OF Ty D if n=6 mod (8)
[v]n = (n/4)ipE+i1454v® if n=0mod (4).

and

Proof. By Lemma 1 we can easily construct a commutative diagram:

S2n+8
b 7

€

vV —e,v
S 2n+6 > §2n+3 > C(e,,v) > §2n+7 g > G2n+d
S o I
2n+3 5
S » > Pyiss ; P33 —> St
n+2,2 1

Then aocbe{p,,,, e,v, 7> and this Toda backet is a coset of

Tons a(Pn+2,z)/7l'§n+7(Pn+2,2)°’7

= [Z,{i146} DZ, {1155} /{0, 1,4 (E+9)} 1D Z, {s5*} .
We have

<Pn+2,2) ey, 7)> - <(7l/2)ll*l/, ey, 77>—|—<S*7], eV, 77>
Dy {(ne,/4)(2/en)v, ev, 1D} +54<n, e, 1D
D (re,/4)i xE+e,s5V*

since <{(2/e,), e, 7)=E+G,on and {7, e,v, n)=e,p* by Toda [23]. Hence

(2.12)  [ew]n = i14(aobd)
= (ne,[4)iyE+ e, 45507 or ((ne,[4)+1)irE+1oyP+e,0, 45407 .

Thus Lemma 5 follows if #=6 mod(8). By Lemma 4
(2.13) Pn+4,4°’72 = a,t35(nE+1%)+-b, 114 [e,v]77+(4/es)[[ev]]

and by (iii) of Lemma 3, the fact 4/e,=0mod (2) and the commutativity of
the diagram in the proof of Lemma 3 it follows that

sz/z)+z,2°"12 = 7"°Pn+4,4°’72
= (l,‘i{{*(ﬂe-"V3)+b,,7l'*l.1*[€n1/]7]2 .

Then the conclusions for #z3=6 mod (8) follow from (iii) and (iv) of Lemma 3,
(2.10), (2.11) and (2.12). This completes the proof of Lemma 5.

Lemma 6. We have
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13%mE+2|[20]] if n=2mod (4)
(n[4)izv*+4{[v]] if n=0mod (4).

Proof. The conclusion follows from (2.7), (2.10), (2.11), Lemma 5 and
(2.13).

Pn+4,4°"72 = {

Now we compute 73,.9(P,s5). Since p,.q 0m=[7n]n-(other term) is non-
zero, it follows from (2.7), Lemma 6 and (S); for =10 that

(2.14) inso(Pyss ) = Ziglisasxo} @2, {isxp} OH,
where
Z{i,x[[20]]} with the relations i,,nE = 2i,4[|2v]] and iyv® =0
if n=2mod (4)
H, =7 Z,{isxnE} D Z,{issr’} DZ {i 1 [[v]]} if n=0mod (8)
Zo{145mE} D Ze {114 [[v]]} with the relation i, v*= 43 4 [[v]]
if n=4 mod (8).
By (T)s

ok Gn-15iTx(Prss) = {(n+6)[2)(v+ 1), ((n+6)/2)(v+a;)+4v}

and hence we can choose a map pE¢,_ 14 114( Duts) Conso( Py q) With

. { (n+6)2)(v+a)+4v  if n=2mod (16)
e = (n46)/2)(v+ay) otherwise
and then by (T)s
ioh = Puiss

By (2.7) we can put

(2.15) D = ahipySxot+brisyptc iz nE+drizgr®+d,[[e,v]]4-0dd torsion
for some integers a, by, ¢4, dy and d,. Remark that 7;,,°=0 if #=2 mod (4).
We have
d,e,v+odd torsion = g;o p
{ (((n+6)/2)+4)v+odd torsion if n=2 mod (16)

((n+6)/2)v+o0dd toision otherwise
and
1 mod (2 if n=0mod (4) or 6 mod (8)
(2.16) d,,E{ @ f B
0 mod (4) if n=2mod (8) .
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Put p,,ss5=a11345x0+brisepu+p. Then the 2-primary part of p is contained in
H,. Hence by Lemma 2 and (2.14) we have

a,=1mod (2) if n=4 or 6 mod (8).
Then by (2.14), (2.16) and (S); for =10 we have
(2.17)  #inso( Pyros) = Zsse, tasSxo} B2y lisx 1} D2y, if n=4 or 6 mod (8)
where if n=4 mod (8), Z,,, =Z, is generated by 5,7€.

Next suppose that #=2mod (8). Let / be the odd component of the
order of . Of course / is an odd integer. Put p=lajseo+briwp+c,i €.
Then by (2.15) and (2.16)

lﬁ = iz*ﬁ

and we have a commutative diagram in which the each horizontal sequences
are cofibrations and / denotes a multiplication by /:

N pﬁsi P,ss > Pn+6,6
= 5 i A
gamve & o Py —> C(p)
= . | I
§ 289 b > P ) > C £
n+4,4 ( ?)
= 7 7,

S 2n+9 ﬁA P C(4
n+2,2 (P)
- e

mop

° ] 4 A
S#49 ——=> HP(,p41,~—> C(mop)
We calculate the Adams’ ¢; and e, invariants of zo pEG,,.

Lemma 7. We have

(i) ec(mop)=0 and b,=0mod (2),

(i) eR(7t°f>)={ 1 if n=2 mod (16) .
) ) 0 if n=10 mod (16)
_{ 1 mod (2) if n=2mod (16)
"7 L 0mod (2) f n=10 mod (16) .

nd

Proof. Applying K to the above diagram, we can show the first part of (i)
by the similar method as the proof of (1.12) of [20]. Then the second part of
(i) follows, since mos=n* or 0, ex(7’c)=ec(n€)=0 and e(x)=+0 by [1].



HomoTory GROUP 7z, +o(U(n)) 505

Put n=8m+-2. Applying KO™*to the above diagram, we have the following
commutative diagram in which the horizontal sequences are exact:

diagram (2.18)

00— ;{\6_4(133 n+7’5) — -E6—4(P8m+s,s) — -’[<\6—4(S16m+14) ¢ 0

i iF =
~ y —_ —

0 «— KO 4 (Pyp15.4) <—— KO™C(D))< KO4(S1m+14) < 0
l I* =

0 «— KO 4(Py,,154) «— KO C(Ip)) «— KO~4(S*n*14) « 0
it i =

0e— KO—4(P8‘,,.+4,2) «—— KO C(p)) «—— KO 4(S™*m+1) 0
L 7* =

0 «—H _E6—4(S16m+4) (.]__. 1?0'—4(0(”013))‘___ 1?0/_4(5 16m+l4) ) 0
By Theorem 2 of Fujii [4] it is easily seen that

———~—

KO ™4(Pyyis5) = Z {238", 230", 230" 2} D Z, {220}
A —

KO_4(P8m+7,5) = Z{zzz}‘,’”, zzzgm“, 2%3"’”}

—~—

KO ™ Y(Pypi6,4) = Z {2,20", 2,26}

o~

KO_4(P8m+4,2) = Z{zzzém} @Zz{zzzgm“} .

Also note that a generator d of I}\O’“‘(S 16m+4) — 7 satisfies

7¥*d = 2,24 x2,z4m !

for some integer x. We shall not need the explicit value of x. Here we re-

gard I?é"‘(X/A) as a subgroup of 1?6‘4()() if the quotient map X —X/4 in-
duces a monomorphism. Similar remarks shall hold in the forthcoming proof
of (4). By chasing diagram, we know that there exist elements [2,25"] and

[2,24"*1] in KO~(C(1p)) such that
I¥[2,24"] = Lifz2™  and  T¥[z8"+'] = Lzt .
Put a'=[2,20"]+x[2,2"*']. Then there exists an element aEIZb"“(C(nqS))
such that
z*a =1ifa’ and j*a=4d.
Let bEEé‘%C{nof))) and b’ek\é"‘(C(lﬁ)) be the images of the generator of

[?6-4(S16m+14)=ZZ.
Now we assume the followings which shall be proved later:
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(A) Hmatrima, Y,
(B) the order of 15[2,24™*"] is 2. )
Remark that e,,=1 if m=0mod (2), or 2 if m=1mod (2), and I*b’ is the gen-

erator of the 2-torsion of IE'E“(C( b)). We have

‘I’Sa — 38m+4a+7\'b

for some AEZ,, and

ex(mop) =\
and
7¥Pla = ¥ (3 Haab) = iF (3 e’ +0b).
On the other hand
z¥Pla = YPz*a = Yiifa’ = ifya’
and
(2.19) (3G ) = iy

Since the order of 7¥2,2"*3 is 2 and #¥2,24"**—e,, I*b’ by (4), we have
i*ﬂrsa’ — 11,3[* a’

= PP {lF (2,20 + x220" )}

= lFy(2,%0" 22,30 ")

— ]l‘;l‘ {38m+422z3m+((8m+2)38m+3+x38m+6)zzzém+1
+((4m—+1)(8m+-1)38m+2 4 x(8m+-4)38m+5) 2,2™ 2
+((4m+1)(8m—- 1)8m38m+x(4m+2)(8m—|— 3)38m+4)zzzgm+3}

= T* {39+ [2,28"] - ((8m+2)3m 3+ 2387 %) 2,28 * ] +-€5,0'} -

Then, since I* is a monomorphism,
Pla’ = 382,20+ ((8m—+2) 38734 %38 +6) (2,25 1] - €,
and by (B)
1¥la’ = 33 HrF (2,20 xeF 2,3 ] e, 15D’
also by (2.19) this equals to

THEH AD) = 7 {35 [z, 42,28 )+ 0B
= 32,26 wtF [2,20™ 1] gD

and, since 7§b’ is non-zero,
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and this implies the first part of (ii). Since zos=0 or 7% and a,=0mod (2)
by Lemma 2, it follows that by the second part of (i) we have
mop = ¢,
and the above proof of the first part of (ii) shows that
. ={ 1 mod (2) if n=2mod (16)
"l 0mod(2)  if n=10 mod (16).
This implies the second part of (ii). |

We shall give the proofs of (4) and (B).
The proof of (A): We have the following commutative diagram:

6m+13 —— —_——> Q16m+14
S " P8m+7 5 S

P8m+8 6

S ST S
i ® Paws v ) —r Smqu
§tom 13 —— Py ——— |— Papiss S 1om 14
VAR
S P Cgel) s
We have
KO Y(Pypiag) = Z {558} B Z, (224"}
q*z 24m+2 — 2.’ z4m+2

) .
It suffices for our _purpose to compute 172,26"*2, since i¥z,24"*? is contained

in the image of KO~ {Sm+14)and g¥ induces an isomorphism between the

images of 1?6‘4(8 16m+14)  We have chosen p such that g;op=(m+1)a,. Let u,,
be the order of g;op. Then u,=1 or 3. Applying 7ism+14( ) to the above
diagram, we know easily that there exists uniquely an element ¥ E7ism .+ 14(Pamrs 3)
such that gyou=u, s, TOOTEOVer there exists # € misms14(C (g30P)) such that
qzou u,e and u——zlou where ¢ is the identity map of S Since §f:

KO- S 1"""J'“)—>KO“‘(C(q3o D)) is an isomorphism, and #*@¥ is the multiplica-
tion by u,, which is the identity homomorphism of KO~%S*"**)=Z,, it follows
that #*: I’{\O,“(C(%o ﬁ))»]?é(S 16m+14) is the inverse of ¢¥. Thus

(2.20) *2’ z4m+2 _ qz u* *zzz4m+2 _ q*u*z z4m+2

Next we determine #*z,25"*2. Consider the commutative diagram:
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_ u¥*
K(P8m+8,3) - K(S16m+14)

o~ =

*
R4 Py ) — R (5700119

r r
*

KO (Pyprs5) —> KO- 4(S1om+14)

Recall that K(Py,, 5 5)=Z {2*"*5, 2+, 53747} and the real restriction homomor-
phism 7 in the right hand side is an epimorphism. We can prove the followings:

r(gZCsz+5) — 2224m+3—|—(8m+5)2‘223m+2

(2.21) r(ge2tmt) = 22" 04 22,2"
P(ghat™7) = 2,2t

(2.22) 1(g2(2*" 5 — (4m+-2) 235 287 +7)) = 2,282,
u*2t+s = (1/3)(8m+-5)(3m+-2)u,.B

(2.23) u*2m — (4m+-3)u,

u*z8m+7 — umB

where B K(S®"14)—=7 is the generator such that gf8=32*"". (2.23) follows
from the relation ?u* =u*y?  For (2.21) we consider the following com-
mutative diagram:

8 q* o
R YPapiss) R Y (Pynss) —— K HPopis)
r e r * r
KO ™(Pgp+s,3) < KO™(Pypss) — KO™(Pyp+)
Since Eé“(Psm+9)=Z {z2, 22, ***, 2,36™*3} is torsion free (see [4]), by the aid
of the complexification homomorphism we can describe 7 in the right hand side
explicitly. In particular we have

7(g%2*"+%) = (1/3)(8m~+5)(8m?+ 10m~+3)2,26™ **+ (8m-+5)=,25™ 2,
r(g%szHi) — (4_m‘_*_3)22223m+3+2222,6m+2,
r(ge2**7) = (8m+7)z,25™ 2.

Hence 7 in the left hand side satisfies (2.21). Then (2.22) follows from (2.21).
By (2.22) and (2.23)

wrz,zimt? — r(g'éu*(zsm%__(4,m_|_2)z8m+6_|_28m+7))
= 'v,,,r(gzc,B)
where 'z;,,,=((1/3)(8m+5)(3m—|—2)—(41n+2)(4m+3)+l)u,,,.
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Now

where the third equality follows from (2.20). Therefore (A4) follows since
V= ey, mod (2).

The proof of (B): It suffices to show that the second short exact sequence
from the bottom on the diagram (2.18) splits. Naturally we have a commuta-
tive diagram in which the horizontal sequences are exact:

0 4—1?0"4(P8m+4’2) <—-_[2\0’-4(C(ﬁ)) -— E6—4(Slﬁm+l4) ¢ 0
* c—
— q1 — ~ =
0«— KO—4(P8m+4,1) «—— KO~ 4(C(g,0p)) +— KO~4(S10m+14) ¢ 0

It is easily seen that ¢¥ is a monomorphism. By Propositions 3.3 and 7.1 of
Adams [1] we have a homomorphism

e: G7 —_— 7’16m+13(816"‘+6) — Ext! (k\O’ﬂ(Sleﬂi)’ _[’(5—4(S16m+14)) =Z

Since ¢,0 f=laso, and a;=0mod (2) by Lemma 2, it follows that g,05 is divisible
by 2, and ¢(g,0p)=0. This implies that the above lower sequence splits (see
[1]), and also the upper one does. Then (B) follows and the proof of Lemma 7
is completed.

Now we proceed the computation of 73,.9(P,.66) for n=2mod (8). By
(2.15), (2.16) and Lemma 7

Puts,s = 110D = @izySxa+C,isxnE+o0dd torsion.

Then we obtain the following table by Lemma 2

nmod () Vo(BDurs,5) a,

2(16) 3 2(4)

10(32) 2 43)
26(64) 1 8(16)
58(64) 0 0(16)
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Put

H. OsHiMA

2 if n=2mod (16)
22 {f n=10mod (32)
22 if n=26 mod (64)
24 if n=>58 mod (64) .

Then from (2.14) and (S)s for i=10 it follows

(2.24)

Tin+o(Pyrse) = Ze;@Zz{is*#} DZ i [[20]1} if n=2mod (8)

where Z,; is generated by iusyo if #=10mod (16), or 7,4sso-+ip[[2v]] if
n=2 mod (16).

(2.17) and (2.24) give the proof of Theorem.

Added in proof. Professor Y. Furukawa has pointed out to the author

that in [5], [17], [18] and [19] the stable homotopy groups 7y,.;(W,.s ) have
been calculated for <4 and ¢<36, and K. Oguchi [19] partly treated them
for k=S5.
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