u

) <

The University of Osaka
Institutional Knowledge Archive

Computing Methods for the Weight Distributions
Title of Linear Block Codes and the Weight
Distributions of the Extended Binary Primitive
BCH Codes of Lengths 64 and 128

Author(s) |HI&E, ZX

Citation |KFRKZ, 1997, HEHmX

Version Type|VoR

URL https://doi.org/10.11501/3129358

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Computing Methods for the Weight
Distributions of Linear Block Codes and
the Weight Distributions of the Extended
Binary Primitive BCH Codes of Lengths
64 and 128

by

Yoshihisa Desaki

April 1997

Dissertation submitted to Graduate School of Engineering Science of
Osaka University in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in Engineering

Abstract

In high speed and high reliable digital data communication systems, error control
coding is one of the most important technology. To design the systems, it is needed
to estimate the error performance of codes precisely. Since it is easy to design the
encoder and decoder of linear block codes, they are frequently used for the current
communication systems. The weight distribution of a linear block code is a fundamental
and important factor to determine its error performance. The formulas of the weight
distribution are known only for limited classes of codes.

In this dissertation, we propose methods for computing the weight distributions
of linear codes, and estimate the weight distributions of the extended binary primitive
BCH codes of lengths 64 and 128. For the binary codes derived from shortened Reed-
Solomon codes, the number of codewords with small weight is also investigated.

In Chapter 1, related topics on the weight distributions are briefly summarized to
provide a background for this research.

In Chapter 2, we present a method for computing the weight distribution of a
linear block code using the trellis structure of the code. This method is called trellis-
based computing method. The computational complexity of the method is given in
terms of the dimensions of subcodes and the related codes. Since the complexity can
be evaluated easily, we can choose the trellis diagram by which the computational
complexity becomes relatively small.

In Chapter 3, we also present a computing method using the invariant property of a
code for some bit position permutations. In this method, the set of cosets of a subcode,
which forms the original code, is partitioned into blocks. T'wo cosets are in the same
block if and only if a permutation of coordinate places changes a coset into the other
one. Since two cosets in the same block have the same weight distribution, it is enough
to compute the number of cosets and the weight distributions of the representative

coset in each block, which can be computed by the trellis-based computing method.

The computational complexity depends on the number of blocks. We investigate it
for the case when we partition the set of cosets of the subcode of the code which is
contained in a Reed-Muller code hierarchy and is invariant under the affine group.

In Chapter 4, by using the methods presented in Chapters 2 and 3, we compute
the weight distributions of all the extended binary primitive BCH codes of lengths 64
and 128 for which the weight distributions have not been known so far. From the
results, we also computed the probabilities of an undetectable error when the codes are
used only for error detection in a binary symmetric channel, and determined whether
or not the probability of each code monotonically increases as the bit error rate does.

It is still infeasible to compute the whole weight distribution for larger codes.
Also, when shortened codes of various lengths are used, we need to know the weight
distribution for large number of the codes. In Chapter 5, we investigate the binary code
derived from a shortened Reed-Solomon code. For the binary code with a generator
polynomial (X — «), a formula is shown for the exact number of codewords with weight
2, and an upper bound on the number of codewords with weight greater than 2 are
derived. We also investigate the upper bound of the number of codewords with weight
4 and 6 for the binary code with the generator polynomial (X — 1)(X — «a). With these
results, we computed the upper and lower bounds on the probability of an undetectable
error for the case when n = 26, m = 32, the generator polynomial is (X — a), « is the
root of the polynomial go(X) = X32 + X2 4 X2 + X2 4 X116 4 X124 X1 4 X101
X8+ X"+ X%+ X%+ X%+ X +1 and the polynomial basis is used. We also computed
the upper and lower bounds on the probability of an undetectable error for the case
when n = 2!2, the generator polynomial is (X — 1)(X — o) and other conditions are
the same as those in the above case. For the former case, those bounds are tight when
the bit error rate of the channel is less than 1077, and for the latter case, when the bit

error rate of the channel is less than 1076,

- -

Acknowledgment

I am deeply indebted to many people for the advice, feedback and support they
gave to me in the course of this work. I would especially like to thank Professor emeritus
Tadao Kasami, currently Professor of Nara Institute of Science and Technology for his
invaluable support, discussions and encouragement throughout the work.

I am grateful to Professor Nobuki Tokura for his invaluable suggestions and dis-
cussions on the work. I am also obliged to Professor Hideo Miyahara and Professor
Toshinobu Kashiwabara for their helpful comments and suggestions.

I am extremely thankful to Associate Professor Toru Fujiwara for his invaluable
discussions and great support throughout the work. I would like to thank Professor
Shu Lin of University of Hawaii, Associate Professor Toyoo Takata of Nara Institute
of Science and Technology, Dr. Robert H. Morelos-Zaragoza of Tokyo University and
Dr. Hiroshi Yamamoto for their helpful comments and suggestions.

I would like to thank Professor Kazuhiko Iwasaki of Tokyo Metropolitan Univer-
sity, Professor Hiroyuki Seki of Nara Institute of Science and Technology, Dr. Masahiro
Higuchi, Dr. Yukiya Miura of Tokyo Metropolitan University and Dr. Ryuichi Nakan-
ishi of Nara Institute of Science and Technology for their kind and helpful support.
I am thankful to Dr. Yasunori Ishihara of Nara Institute of Science and Technology,
Dr. Yuich Kaji of Nara Institute of Science and Technology and Dr. Hajime Watan-
abe of Nara Institute of Science and Technology for their valuable support. I am also
grateful to Ms. Yukiko Tanobe and Ms. Machiko Uehara for their kind support.

Lastly, I would like to thank all the students of information theory and logics labo-
ratory of Osaka University and information and communication engineering laboratory

of Tokyo Metropolitan University.

- 1il -

List of Publications

Journal Papers

(1) Yoshihisa Desaki, Toru Fujiwara and Tadao Kasami: “A Method for Computing
the Weight Distribution of a Block Code by Using Its Trellis Diagram,” IEICE
Trans. Fundamentals, vol. E77-A, no. 8, pp. 1230-1237, Aug. 1994.

(2) Yoshihisa Desaki, Toru Fujiwara and Tadao Kasami: ” The Weight Distributions
of Extended Binary Primitive BCH Codes of Length 128, to appear in IEEE
Trans. Inf. Theory, 1997.

International Conferences

(3) Yoshihisa Desaki, Toru Fujiwara, Tadao Kasami and Shu Lin: “Upper and Lower
Bounds on the Undetected Error Probability of Binary Codes Derived from Short-
ened Reed-Solomon Codes,” Proc. of the International Symposium on Informa-

tion Theory and Its Applications, pp. 598-602, Singapore, Nov. 1992.

(4) Yoshihisa Desaki, Toru Fujiwara and Tadao Kasami: “The weight distributions of
the (128, 64, 22) and (128, 71, 20) extended binary primitive BCH codes,” Proc.
of the International Symposium on Information Theory and Its Applications,

pp. 594-597, Victoria, Sep. 1996.

Workshops

(5) Yoshihisa Desaki, Toru Fujiwara and Tadao Kasami: “A Method for Computing
the Weight Distributions of Block Codes by Using Trellis Diagrams,” Proc. of
the 16-th Symposium on Information Theory and Its Applications, pp. 25-28,
Kanazawa, Dec. 1993.

(6) Yoshihisa Desaki, Toru Fujiwara and Tadao Kasami: “A Method for Computing
the Weight Distribution of a Linear Block Code by Using Weight Distributions

-1V -

(7)

of Cosets with Respect to Its Subcode,” Proc. of the 17-th Symposium on Infor-
mation Theory and Its Applications, pp. 213-216, Hiroshima, Dec. 1994.

Yoshihisa Desaki, Toru Fujiwara and Tadao Kasami: “The weight distributions
of extended codes of binary primitive BCH codes of length 127 with designed dis-
tances 11, 13, 15, 23, 25, 29 and 31,” IEICE Technical Report, I'T95-25, Jul. 1995.

Yoshihisa Desaki, Toru Fujiwara and Tadao Kasami: “The Weight Distributions
of (128, 71) Extended Cyclic Codes which Contain the Extended Cyclic Third
Order RM Code and Their Dual Codes,” Proc. of the 18-th Symposium on
Information Theory and Its Applications, pp. 651-654, Hanamaki, Dec. 1995.

Yoshihisa Desaki, Toru Fujiwara and Tadao Kasami: “The weight distributions
of the (128,64,22) and (128,71,20) extended binary primitive BCH codes,” IEICE
Technical Report, IT95-71, Mar. 1996.

Contents

1 Introduction

2 A Computing Method Using the Trellis Diagram of a Linear Block

Code 7
2.1 Minimal Trellis Diagram 7
2.2 Two Algorithms for Computing the Weight Distribution 8
2.3 Complexity analysis of the Two Algorithms 11
24 Example e e 15
2.5 Symmetric Property of Minimal Trellis Diagram 17
2.6 An Improved Computing Method by Using a Trellis Diagram 20

A Computing Method Using an Invariant Property of a Linear Block

Code for Permutation Groups 21
3.1 Outline of the Method 21
3.2 Partition of the Cosets with respect to the Cyclic Group 22
3.3 Partition of the Cosets with respect to the Affine Group 24

The Weight Distributions of Extended Codes of Binary Primitive

BCH Codes of Lengths 64 and 128 27
4.1 Computing Methodo L Lo oo 27
4.2 Weight Distributions L. 31
4.3 Probability of an Undetectable Error 38

Upper and Lower Bounds on the Undetected Error Probability of
Binary Codes Derived from Shortened Reed-Solomon Codes 40
5.1 Binary Weight Distribution of a Code over GF/(2™) 40
5.2 The Number of Codewords with Small Weights of Some Shortened Reed-
Solomon Codes 42

-vi-

5.2.1 Shortened Reed-Solomon Codes Generated by (X —a)
5.2.2 Shortened Reed-Solomon Codes Generated by (X — 1}(X — a) .
5.2.3 Other Shortened Reed-Solomon Codes
5.3 Upper and Lower Bounds on the Probability of an Undetectable Error .

6 Conclusions

References

- vil -

55

59

Chapter 1

Introduction

In recent years, digital communication systems have made remarkable advances,
and the demands for high speed and high reliability have been increased. Error correct-
ing/detecting codes have been to meet the demands. Especially, linear block codes are
frequently used for the current communication systems, since it is easy to design the
encoder and decoder of them. The Hamming weight distribution (or simply the weight
distribution) is important to estimate the performance of the used code. When a linear
block code is used only for error detection in a ¢-ary symmetric channel, the probability
of an undetectable error can be computed by the Hamming weight distribution of the
code.

Let C be an (n, k) linear block code. Theoretically, the weight distribution of the
code can be computed by generating all the codewords or generating all the codewords
of its dual code and applying the MacWilliams’ identity to it. If this is done by
generating all linear combinations of row vectors from a generator matrix (or a parity-
check matrix), the time complexity is O(n2*%) (or O(n2"~*)). We call this computation
method a brute-force method. The formulas of the weight distribution are known
only for limited classes of codes, say Hamming codes, single, double and triple error-
correcting binary primitive BCH codes. Then, expected is the research of the formula
or the efficient computing method for the weight distributions which may use the
knowledge of the structural property of a particular class of codes. Also, we may
choose the other strategy, that is, to compute the some part of weight distribution
and to estimate the upper and lower bounds from the results instead of computing the
exact probability from the whole weight distribution. For example, it is known that the
probability derived from only the numbers of codewords with small weight is a simple

lower bound. Several computing methods for the number of codewords with minimum

weight for some classes of codes are known. D. Coppersmith and G. Seroussi proposed
the efficient method to compute the minimum weight and the number of codewords
with minimum weight for cyclic codes[1], and A.M. Barg and L.I. Dumer proposed the
improved method[2]. Moreover, M. Mohri and M. Morii investigated the improved
method in detail, and reduced the computational complexity furthermore|3].

In this dissertation, we propose efficient computing methods for the whole weight
distribution of a general linear block code. By using the methods, we also compute
the weight distributions of the extended binary primitive BCH codes of lengths 64 and
128.

In Chapter 2, we present a method for computing the number of codewords of
weight less than or equal to the given integer in a linear block code by using its trellis
diagram, which is called a trellis-based computing method. When the code length is
a given integer, the weight distribution of the code can be computed. The time and
space complexities are also analyzed. In this method, the computation is done by
tracing the paths in a trellis diagram and counting the weight of the label on each
branch. Then, the complexities of the trellis-based computing method depends on the
structure of the used trellis diagram. For example, the sectionalization is one of such
factors that have an influence on the complexities. Since the computational complexity
can be represented in terms of the dimensions of subcodes and the related codes, we
can choose the trellis diagram with a lower computational complexity by examining
the dimensions. Some measures are proposed for the complexity and examine them
for several section trellis diagrams of (128,36) extended binary primitive BCH code.
In general, the computing time for this algorithm is not greater than that for a brute-
force method. As another computing method for the weight distributions of linear
block codes, T. Tanigawa et al. proposed a method which uses a code tree in [4]. A
code tree is also a trellis diagram, and it is not minimal. Then, the capability of the
trellis-based computing method is higher than that of the method by a code tree.

In general, the same label set of parallel branches between state pairs in a section
may appears many times. Then, if the number of distinct weight distributions of the
label sets is small enough to make a table for them, we can reduce the computational

complexity for the trellis-based computing method by constructing the table.

When the error performance is precisely analyzed, we may need to know detailed
weight distribution, say split weight distribution or joint weight distribution[5]. For
example, joint weight distribution was used in the analysis of multi-stage decoding]6].
It is easy to modify the proposed algorithm to compute the detailed weight distribution.

In Chapter 3, we also propose a computation method which uses the invariant
property of a code for permutation groups. The method is called a coset-based com-
puting method. By the method, the set of cosets of a subcode, which forms the original
code, is partitioned into blocks. Two cosets are in the same block if and only if a per-
mutation of coordinate places changes a coset into the other one. Consequently, two
cosets in the same block have the same weight distribution. Therefore, it is enough to
compute the number of cosets and the weight distributions of the representative coset
in each block. Then, the computation complexity is reduced.

In recent years, X. Hou has been examining the equivalent property of the cosets
of a Reed-Muller code[7, 8]. He classified the set of cosets and derived a representative
coset for each block. For several parameters, the weight distribution is also computed
for a representative coset. Then, once it is known which representative cosets compose
the given code, the weight distribution of the code can be easily computed. However,
it is generally difficult to efficiently decide which representative coset is a component.
In this chapter, a concrete study is given about it for some cases. It is known that
a cyclic code is given by the direct sum of some irreducible cyclic codes. First, we
consider the case when we partition the set of cosets of the cyclic subcode which is
the largest cyclic subcode except for the original code by a cyclic group. Second, we
investigate the equivalent property among the cosets of the subcode of the code which
is contained in a Reed-Muller code hierarchy and is invariant under an affine group.
A lemma is derived for the latter case, which is the generalization of the Lemma 5.1
in [8]. Note that the coset-based computing method can be simultaneously used with
the trellis-based computing method presented in Chapter 2. That is, it is feasible
that first, the coset-based computing method is used to reduce the computation of the
weight distribution of a code into that of each representative coset of the subcode, and
second, the trellis-based computing method is applied to the estimation of the weight

distribution of each coset.

In Chapter 4, the extended binary primitive BCH codes of lengths 64 and 128
are taken as target codes. The weight distributions for the codes of length 128 have
been known for the nontrivial codes with designed distances 4, 6 and 8[5, 9, 10], and
48, 56 and 64[10, 11]. In this chapter, by using the above methods, we compute
the weight distributions of all the remaining extended binary primitive BCH codes of
lengths 64 and 128 except for the codes of which the weight distributions are already
known. If K > N/2, first the weight distribution of the dual code is computed and the
MacWilliams’ identity is applied to it, except for the case when N = 128, K = 57. The
weight distributions of their dual codes are also computed. From the results, it turned
out that (128, 64) extended binary primitive BCH code is formally self-dual, that is,
the weight distributions of the code and its dual code are the same. From each weight
distribution, we compute the probability of an undetectable error, denoted P,.(C,¢),
when the code C is used only for error detection in a binary symmetric channel with
bit-error rate 1/27 < ¢ < 1/2. A code C is called proper if P,.(C,¢) is monotonously
increasing for 0 < £ < 1/2. For the choice of a code for some real applications, it is
important whether a code is proper or not. Hence, it is examined whether each code
is proper within the accuracy of our computation. Note that the above range of ¢ is
sufficient to estimate it, since it is known that for any C of length n and minimum
distance d, P,.(C,¢) is monotonously increasing for 0 < ¢ < d/n.

It is still infeasible to compute the weight distributions for codes with large pa-
rameters. Also, when shortened codes of various lengths are used, we need to know
the weight distributions for large number of the codes. This may be also infeasible.
For such cases, another strategy is chosen, that is, to compute the some part of weight
distribution and to estimate upper and lower bounds on the probability instead of
computing the whole weight distribution and examining the exact probability. For
example, it is difficult to compute the weight distribution of the binary codes derived
from a shortened Reed-Solomon code. The binary codes often appear in a built-in
self-test (BIST) in VLSI as it is explained below.

Signature analysis is a widely used data compaction method for built-in self-test
in VLSI. Usually, a linear feedback shift register (LFSR) is used for a signature register

which is a circuit to compress the output from a circuit under test (CUT). One problem

caused by data compaction is error aliasing. An aliasing error occurs when the output
of CUT contains error and we fail to detect it. It is important to evaluate the aliasing
probability of a signature register [12-17]. When we assume that any bit of the output
of CUT is in error with a constant probability ¢ [12-17], the aliasing probability of the
widely used multiple input signature registers is equal to the probability of an unde-
tectable error P,(C,¢) of the binary code C derived from a shortened Reed-Solomon
code when the code is used only for error detection in the binary symmetric channel
with bit error rate €.

In Chapter 5, we investigate the number of codewords with small weights in the
binary codes derived from some shortened Reed-Solomon codes. By using the results,
upper and lower bounds on the probability of an undetectable error are derived. In the
following, let RS{9[g(X)] (or RS{4*) denote the shortened Reed-Solomon code over
GF(2™) of length n and the minimum distance d whose generator polynomial is (X —
a®)X — o). (X — a®%2) where a is a root of the primitive polynomial g(X) of
degree m. The binary code derived from RS&L"[’“) by using a basis 8 = {a®, o, ... abm}
is denoted by RS»*(3). We mainly consider the case where 3 is the polynomial
basis B(P) £ {1,a,02,---,a™ !}, since LFSRs whose aliasing probability is equal to
P.(RS{4®)(3(P))) are often used.

The probability of an undetectable error is computed from the binary weight
distribution. When the Reed-Solomon code is not shortened, the formulas for the
binary weight distributions are known for RS(;%I_)l with 2 < d < 5[18, 19], but when
shortened, they are still unknown. It becomes infeasible to compute the whole weight
distributions for many code lengths even for m = 32 and d = 1 which is an ordinary
parameter for the LFSR used in a practical BIST. Then, the upper and lower bounds on
the probability instead of examining the exact value are proposed. They are derived
from the number of codewords with small weights, and the numbers are examined
for some cases. For example, the exact number of codewords with weight 2 and an
upper bound on the number of codewords with weight greater than 2 are derived for
ngz’l) (3). These results are independent of the chosen primitive element, although
in general, the binary weight distribution depends on the primitive element used to

derive the binary image. We also derived upper bounds on the numbers of codewords

with weight 4 and 6 in RSS”O)(B). Using these results, upper and lower bounds on
the probability of an undetectable error are computed for the case when n = 216,
m = 32, the generator polynomial is (X — a), o is the root of the polynomial go(X) =
X324 x26 4 X2 4 Y22 x164 x12 x4 x10 4 x84 T L X5 L x4 X2 X 4]
and the polynomial basis is used. The upper and lower bounds on the probability
of an undetectable error are also computed for the case when n = 2!2, the generator
polynomial is (X — 1)(X — «) and other conditions are the same as those in the above
case. For the former case, those bounds are tight when the bit error rate of the channel

is less than 1077, and for the latter case, when the bit error rate of the channel is less

than 1075.

Chapter 2

A Computing Method Using the
Trellis Diagram of a Linear Block

Code

In this chapter, we show a computing method for the number of codewords of
weight less than or equal to a given integer in a linear block code by using its trellis
diagram. When we choose the code length for the integer, we can compute the weight
distribution of the given code. The time and space complexities are also analyzed. In
general, the label set of parallel branches between state pairs in a section may appears
many times for a trellis diagram of a linear block code. For the case, a further reduction

of time complexity can be made.

2.1 Minimal Trellis Diagram

For simplicity, we only consider the trellis structure of binary linear block codes
in this dissertation. The extension to nonbinary linear codes or to nonlinear codes is
straightforward.

Consider a binary linear (n, k) block code C. By an n-section trellis diagram for
C[20, 21], we mean a directed graph, denoted T, such that (1) T has an initial state sg
and a final state sy (a state is simply a node in the graph), (2) each branch (an edge in
the graph) has a label and two branches diverging from the same state have different
labels, and (3) there is a directed path from so to s; with label sequence ujus-- - u,
if and only if (u;,us,...,u,) is a codeword in C. In the followings, a binary sequence

of length ¢ is regarded as a binary {-tuple, and vice versa. It is clear that the paths

connecting the initial state sy and the final state sy of T represent all the codewords in
C, and a branch represents a code bit. A trellis diagram for C' with minimum number
of states is said to be minimal, and a minimal trellis diagram is unique within graph
isomorphism|[20, 21].

Let T be an n-section minimal trellis diagram for a binary linear (n, k) block code
C. For a nonnegative integer h not greater than n, let S, denote the set of states of
T just after the h-th bit position, where Sy consists of the initial state sy only and
S, consists of the final state s; only. For two states s and s, let L(s,s’) denote the’
set of all label sequences of paths from s to s’, and A,(s,s’) denote the number of
label sequences of paths of weight ¢ in L(s,s’). Also, let W (s,s’) denote the weight
distribution of L(s, s’), {Ai(s,s’) : 0 <17 < n}. For convenience, we define that

1, for: =0,
Ai(s,s) = (2.1)

0, otherwise.

Then L(sg,s;) = C and W(sy, s;) is the weight distribution of C.

For a set of integers U = {ho,hi,hy,...;h} with 0 = hg < hy < --- < by = n,
a section minimal trellis diagram for C, denoted T(U), can be obtained from the n-
section minimal trellis diagram T by deleting every state in Sy, for h € {0,1,...,n}-U
and every branch to or from a deleted state and by writing a branch with label X from
a state s € O, to a state s € Sh;,, for 0 < 7 <1, if and only if there is a path with
label A from s to s’ in T[22]. T({0,1,...,n}) is T itself. This section minimal trellis
diagram T(U) may have parallel branches between two adjacent states with different
labels. Every branch from a state in Sj; to a state in Sy, for 0 < j < [represents

(hj+1 — hj) code bits.

2.2 Two Algorithms for Computing the Weight Distribution

For a section trellis diagram T(U) of C, let T'(U) be a graph which is obtained
from T'(U) by replacing the label of each branch by the Hamming weight of the label.
In this section, we show a method for computing the weight distribution of C when
T'(U) is given for U = {ho,h1,ho, ..., i} with 0 =hy < hy < --- < by =n. T'(U) can

be constructed from a generator matrix of C[20, 21].

For a branch b in T"(U), let 5,(b) be the starting state of b. The label of b in T"(U)
is denoted by wg(b). For a state s, let IB(s) denote the set of incident branches to s
in T'(U). For simplicity, A;(so,s) is denoted by A;(s). Then, for a state s € Sy, with
0<y <,

Ai(s) = > Aicwyp)(ss(b)), for 0<i<n. (2.2)
beIB(s)wi (b)<i

By using (2.1) and (2.2), the weight distribution of C can be computed. For a given
integer w, an algorithm, denoted Algorithm I, to compute A;(sy) with 0 <7 < w is as

follows:

[Algorithm I to compute A;(s;) with 0 < ¢ < w for a given integer w]
(L1) Ao(so) :=1;

(L2) for j:=1to!

(L3) for each state s in Sj; do begin

(L4) for ¢ = 0 to min{h;,w}

(L5) As) = 0;

(L6) for each branch b € IB(s)

(L7) for i = wy(b) to min{h;_; + wy(d), w}
(L8) Ai(s) = Ai(s) + Aimwne)(5s());

(L9) end;

(L10) end.

This algorithm can be used to compute the weight distributions of the shortened codes
of various code lengths simultaneously. For two integers h and A’ suchthat 0 < h < b’ <
n, let Cp o be the linear subcode of C consisting of all codewords whose components
are all zero except for the b’ — h components from the (h + 1)-th bit position to the

R'-th bit position. Let C}’,, be defined as

N
C}tl’h, = {(vh+1,vh+2, ceey ’Uhl) : (0, cen ,0, Vh41y Vh+2, - - - ,’Uh/,o, e ,0) € Ch,h’}- (23)
h —ht!
The code Céfk is a shortened code of length h, denoted Cj. For each S, with 0 < h < n,

let 59 be the state in S;, for which

00---0€ L(s),sp). (2.4)

The state s} is unique for each h. Then, the weight distribution of Cj is given by
{A:(s0,59) : 0 < i < h}. Therefore, we can compute the weight distributions of the
codes, Cy, with h € U simultaneously by the above algorithm.

Next, we show a modified algorithm for computing the weight distribution. For
a state s in T"(U), define Al(s) £ A,(s,ss). Then, the numbers of label sequences in

L(sg, sy) with weight ¢ which pass through the state s is given by
> Ai(s)Ai_(s)- (2.5)
7=0

Therefore, we can compute the weight distribution by computing A;(s) with 0 < ¢ < h,,
and A(s) with 0 <4 < n — h,, for all the state s in S, for an integer p with 0 <p < I.
For a branch b in T'(U), let s.(b) be the end state of b. For a state s, let IB'(s)
denote the set of branches diverging from s in T(U). Then, for a state s € Sy, with

0<j<i,
Al(s) = > Al upy(3e(b), for 0<i<n. (2.6)

beIB(s),wp(b)<i

By using the above equation, we can also compute Ai(s) for any ¢ and s in a similar
way as for A;(s).

The modified algorithm by using (2.1), (2.5) and (2.6), denoted Algorithm II,
consists of the following three parts:
[Algorithm IT (Outline)]
(1) Compute A;(s) with 0 < ¢ < h, for each state s in Sj, for a given integer p by the
same way as in Algorithm I.
(2) Compute Aj(s) with 0 < ¢ < n — h, for each state s in Sy, in a similar way.
(3) Compute A;(ss) with 0 < ¢ < n by using

Als) = T Y A(9)AL(s) (2.7)

s€Sh, 7=0

Algorithm IT is more efficient than Algorithm I in several cases, say A;(sf) = 0 for
many 7, as shown in the following section.

When we only compute the number of codewords with minimum weight, we can
reduce the computational complexity of the above two algorithms furthermore. That

is, we only need to compute Ag(s) and A;,(s) (or A(s) and A;a (s)) for the minimum

-10 -

positive integer 4o (or éy) such that A (s) # 0 (or A} # 0). In step (L6), it is enough
to consider only the minimum weight branch among the parallel branches.
This method is called a trellis-based computing method. The simple straightfor-

ward method examining all the codewords can be viewed as the trellis-based computing

method using the one-section trellis diagram T({0,n}).

2.3 Complexity analysis of the Two Algorithms

In this section, we analyze the complexities of the above two algorithms. Before
that we briefly review the results in [22] on the structural complexity of a section
minimal trellis diagram for a binary linear code. The numbers of branches and states
in T(U) are expressed in terms of the dimensions of specific subcodes of C'.

For integers h and A’ with 0 < h < k' < n, let K} 5 be the dimension of Cj, , i.e.,
K pr = logy |Ch prl, (2.8)

where for a set X, |X| denotes the number of elements in X. For convenience, K is
defined as zero. For integers h,h’ and h” such that 0 < h < b’ < A" < n, let Kjp pr
be defined as

Kiprpr 2 Knpn = Knp — Kpopor. (2.9)
For simplicity, we write K}, for Ko . Then, it is shown in [21, Appendix A] that |S,| =
2Kr . Let h and A be two integers such that 0 < h < &' < n again. For a binary n-
tuple v = (v1,va, ..., V), let pp v denote the binary (b’ —h)-tuple (vVhi1, Vhs2, .- ., Unt)
and let py »/[C] be defined as pyx/[C] = {prpv : v € C}. For u € pgn[C], let ou
denote the last state of the path labeled u from the initial state s in 7. The following

theorem[22] holds on the structure of a minimal trellis diagram.

Theorem 1: For 1 < h < n, let S;, be the set of states of the n-section minimal trellis
diagram just after the h-th bit position for a binary linear (n, k) code C. Let g4 4 be
defined as |

qh p 2K, - Kopp = Kp — Kp it n- (2.10)
Then, S, and S can be partitioned into 2%# blocks of the same size S,

Shg, ceey Sthh,hl and Sh’l: Shl?, .« ey Shlzqh,h'z in such a way that (].) Sh’i = {O'V 1V E V;},

- 11 -

where V1, Va, ..., Vs are the cosets of pox [C] with respect to pou [Copr + Chnl, (2)
there is a path from s € S), to s’ € Sy, if and only if s € Sp; and s’ € Sp; for the same
i, and (3) for s € Sp; and s’ € Sp; with 1 < ¢ < 2%.#', the number of paths from s to
s’ is 28w, AA

By using this theorem, the number of branches in the j-th section, which is the

section from (h;_; + 1)-th to hj-th bit positions, is given by
(1880205715 - [|- 250525 = 9K Koy osFoe (211)

Define By, »; S K- Co,h;_; — Kh;n- Then the total number BR of branches in the

entire trellis diagram T'(U) is given by
!
BRE S 28k, (2.12)

7=1

Now we consider the time complexity of Algorithm I. This algorithm consists of
two parts: part (1): the construction of T/(U) and part (2): the computation of A;(sy).
We can use the total number BR of branches in the trellis diagram given by (2.12)
as the complexity measure for the part (1). In the part (2), for every state s in the
trellis diagram, we compute A(s) 2 {Ai(s): 0 < i < min{w, h;}} where s € S, from
A(ss(b)) for b € IB(s) by using (2.1) and (2.2). The number of additions to obtain
A(s) for a state s € S, is upper bounded by

(min{w, hj_1} + 1) |IB(s)| = (min{w, hj_,} + 1) 250k ~Formr, (2.13)

Consider the case where s € Sj,; and |L(so, 55(b))| = 2Koki-1 is less than min{w, h;_; } +
1 for b € IB(s). This often occurs when j is small. The number of additions to obtain
A(s) can be reduced in the following way: Let wgb)) wéb) R wfz)(s()’ss(b))l be the weights
of label sequences in L(so, s5(b)). Then, A(s) can be obtained by computing w (b)+w”

for b € IB(s) and 1 < ¢ < |L(sg,5,(b))|.- The number of additions to obtain A(s) is
|L(50, 55(b))| x |[IB(s)] = 2K, (2.14)
Therefore, we can use

ADD; £ S % min{w+1,hj_; +1,|L(s0, 5:(6))[}

1<j<I s€Sh bEIB(s)

= Z 984105 min {w +1,h_; +1, 9ok } . (2.15)

1<5<1

-12-

as the complexity measure for the part (2).

The time complexity of Algorithm I is given by ¢;BR + ¢coAD D), where ¢; and ¢
are the cost of an operation to compute the weight of a branch and that of an addition,
respectively. The order of the complexity is wBR.

Next, we consider the time complexity of Algorithm II. This algorithm consists
of four parts: part (0): the construction of 7V(U) and three parts mentioned before.
As the complexity measure for the part (0), we can use the same measure BR as for
Algorithm I. For the parts (1) and (2), the measure is given by

ADD;, 2 3 % Y min{w +1,hjm1 +1,]L(s0, 5(6))]}

1<5<p sESh . beIB(s)

+ 3 > Y min{w+1,n-h;+1,|L(s.(d),s5)}

P<j<IsE€Sh;_; beIB'(s)

= Z 2 "1~1’Jm1n{w+1,hj_1 + 1, 2K°"J 1}

1<5<p

+ Z 2Bh]‘_1,h]‘ min {UJ + 177’[, —_ h,] + 1721(hj’n} . (2.16)

p<j<i
The measure for the part (3) is the number of multiplications to compute the
weight distribution by using A(s) and A’(s) for all the states s € Sp,, which is upper
bounded by

MLT, £ 250 x min{w + 1, h, + 1,254} x min{w + 1,n — h, + 1,25} (2.17)

Note that we need the same number of additions as that of multiplications to obtain
A(sy) from the values of A(s) and A'(s) with s € Sj,,. If A;(sy) = 0 for many ¢, we can
reduce the number of multiplications. It is shown by MacEliece[5, 23] that the weight
of every codeword of a binary cyclic code is divisible by 2*~1, where h is the smallest
number such that h nonzeros of the code have product 1. For example, all weights in
RM,, ., that is, r-th order Reed-Muller code of length 2™ are multiple of 2[™/71-1[5]. In
this case, A;1i(s) = 0 (or Al ,(s) =0) for 1 < ¢ < 21 if A;(s) # 0 (or Aj(s) # 0).
Therefore, A;(s) =0 (or Ai(s) = 0) for many ¢ at every state s. By finding the sets of
integers ¢ such that A;(s) # 0 and Al(s) # 0 before multiplications, we can reduce the
number of multiplications.

The time complexity of Algorithm II is given by ¢; BR+ ¢ AD Dy +(co+c3)M LT,

where c3 is the cost of a multiplication. The order of the complexity is wBR + 'w2|Shp |.

-13 -

We compare the time complexities of these two algorithms. It is easy to see that
ADD, > ADD,. For simplicity, we consider Algorithm II with p = n/2, and the
case where U = {0,n/4,n/2,3n/4,n} and w = n. Then, MLT, ~ 2%22(n/2 4+ 1)2.
Since the term with 7 = 3 is dominant in ADD; — ADD, in most cases, ADD; —
ADDy == 2Bnp23n/4{(n/2 + 1) — (n/4 + 1)}. Therefore, ADD, ~ ADD, + 2MLT; if
n = 2K2/22=Ksn/an=1 When B, /2,3n/4 is relatively large, Algorithm II is more efficient
than Algorithm I. The number of multiplications M LT, becomes much smaller than
ADD, when A;(s;) = 0 for many 7. Therefore, in such a case, Algorithm II is more
efficient than Algorithm I, even if the difference between ADD; and AD D, is not large.

The time complexities of these algorithms depend on the choice of U. In general, it
is hard to determine U that minimizes the time complexity. Since it is easy to evaluate
the time complexity for a given U, we may find a good U by computer search. For an
example code, the complexities are compared with respect to various U in the following
section. A good U for one algorithm is also good for the other algorithm in most cases.
But it is not known whether optimum U for one algorithm is optimum for the other
or not.

Next, we consider the space complexity of Algorithm I. It is easy to see that
to compute A(s) for a state s € Sy, we only need A(s') for states s’ in Sj,_,, and
the information on the j-th section of the trellis diagram. Therefore, we can com-
pute the weight distribution by constructing the trellis diagram section by section,
and the amount of space needed for computation is dominated by that to store the
values of A(s), which is O(maxocj<i{hj-1|Sh,_,| + hj|Sh;|}). It is easy to see that
O(maxocj<i{hj—1|1Sh,_,| + R;|Sh;|} + n|Sh,|), where 0 < p < I, is the space complexity
of Algorithm II.

The trellis diagrams for some linear block codes are loosely connected and have
parallel structure in the sense that the trellis diagram consists of parallel sub-trellis
diagrams without cross connection between them. From Theorem 1, the entire section
minimal trellis diagram for C consists of the first tree type section, 2%1%-1 struc-
turally identical (except branch labels) sub-trellis diagrams without cross connection
between them, and the last tree type section. For example, the 4-section trellis diagram

T({0,n/4,n/2,3n/4,n}) for RMs 2 consists of the first tree type section, 64 structurally

- 14 -

identical 16-state sub-trellis diagrams without cross connection between them, and the
last tree type section. From Theorem 1, each parallel sub-trellis diagram combined
with the first and the last tree type section is the minimal trellis diagram for a coset of
C with respect to Cyp,_, + Ch, ». We can reduce the space complexity by computing
the weight distribution of each coset independently. Then the space complexity of Al-
gorithm I (or Algorithm II) is reduced to O(maxocj<i{hj—1|Sh,_,| + h;j|Sh,|}/2%1 1)
(or O({maxoc;j<i{hj-1|Sh;_,| + h;|Sh,|} + n|Sh,|}/2%14-1), where 0 < p < I).

In [24], the state complexities of minimal trellises have been analyzed for Reed-
Muller codes and the extended and permuted (64,24), (64,45), and double-error cor-
recting (2™,2™ — 2m — 1) BCH codes. The state complexities of some other permuted
BCH codes have also been investigated[25, 26]. Since the following upper bound on

the number of branches holds for the n-section minimal trellis diagram T,
BR <) 2|84, (2.18)
h=1

these results show that for these codes, BR is much smaller than 2n x min{2*,2"~*}.
That is, to compute the weight distributions of these codes, the algorithms proposed

here are efficient.

2.4 Example

Consider the extended (128, 36) code of the binary primitive (127, 36) BCH code
with minimum weight 32 as C. The numbers of branches and states of a minimal trellis
diagram depend on the choice of the order of the bit positions. To get a relatively simple
minimal trellis diagram, we consider an equivalent code of C' which contains the second
order Reed-Muller code with the standard binary order. The specific bit permutation
is given in [24].

A trellis diagram T is said to be reversible if the graph T obtained from T by
reversing the direction of each branch without changing the label and exchanging the
initial state and the final state is identical to T'. For an integer [by which n is divisible,
define

U 2 {njjl:0<j <1} (2.19)

- 15-

The trellis diagram T'(U;) is the l-section minimal trellis diagram with the section
length h; — h;_; +1 = n/l for 1 < j <, and is reversible (see Section 2.5). Since
C is an extended code, (i) all weights are even and (ii) A;(sy) = An—i(sy). It follows
from (i), (ii) and (iii) the designed distance is 32 that the number of multiplications in
Algorithm II is upper bounded by M LT, =8 LT,/13. In Table 2.1, the measures of
time complexities for the trellis diagrams T(U;) are listed for I = 2 with 1 < ¢ < 7,
where ADDy and M LT} are evaluated for p = n/2. Note that for this example code,
the actual number of multiplications is much smaller than M LT}, since all the weights
are multiple of 4.

Although the ratios of ¢; to ¢ and ¢y to cg depend on the computer used, the ratio
c2 10 c3 is almost equal to 1 for most cases. The ratio of ¢; to ¢z also depends on the
implementation. We can store the label of a branch of length h; —h;_; + 1 in the j-th
section in [(h; — hj_y + 1)/L] words in the computer, when L bits binary sequence is
stored in a word. By finding the Hamming weight of the label in a word with the table
look up, we can obtain the weight of a branch by [(h; — kj—;1 + 1)/L] — 1 additions.
For example, L may be 16.

From Table 2.1, we see that Algorithm IT with [= 4 is appropriate to compute the
weight distribution. The st'ructural complexity of the reversible trellis diagram T(U,)
is as follows: (1) The number of states at the end of the j-th section with 1 < 5 < 2is
222 (2) The number of parallel components in the second section is 2!7 and therefore
one parallel component is a 25-state sub-trellis diagram. (3) The number of parallel
branches between any connected states is 2. (4) The total number of branches in the
first section is 2%% and that in the second section is 2%.

Since each parallel component has only 32 states, the space complexity is enough
small to compute on a workstation. Given a generator matrix of the code, it takes
about 79 minutes (CPU time) to obtain the weight distribution by using a UNIX
workstation, DEC Station 3100.

We have also applied the proposed algorithm to compute a detailed weight dis-
tribution of the inner code for the error performance analysis of a concatenated code.
Each 8-bit byte in a codeword of the inner code is also a symbol of the outer code.

Therefore, for each integer ¢ and each binary 8-tuple v, we need to know the number

- 16 -

Table 2.1 The measures of the time complexity of the two algorithms for the /-section
minimal trellis diagrams, T(U;) for the extended and permuted (128, 36) code of the
binary primitive (127, 36) BCH code.

l BR ADD; ADD»

2| 1.073 x 10° | 3.543 x 100 | 1.073 x 10°
4 | 5.536 x 108 | 1.880 x 100 | 1.090 x 10°
8| 5.537 x 108 | 2.122 x 101% | 1.627 x 10°
16 | 8.305 x 108 | 3.375 x 1010 | 2.978 x 10°
32 | 1.519 x 10° | 6.338 x 101% | 5.814 x 10°
64 | 2.966 x 10° | 1.253 x 101! | 1.155 x 1010
128 | 2.966 x 10° | 1.253 x 101! | 1.155 x 100

MLT; =1.363 x 10° for each 2i;section minimal trellis diagram where 1 <2 < 7.

of codewords whose weight is ¢ and a specific 8-bit byte is v. We have computed the
detailed weight distribution of a (64,40) subcode of the third order Reed-Muller code

of length 64 on the workstation.

2.5 Symmetric Property of Minimal Trellis Diagram

For an i-tuple u = (uy,us," - -, u;), let uf denote (u;,u;—1,---,u1), and for a code
C, let CE denote {uf : u € C}. It is known that C = CE® for Reed-Muller codes,
extended and permuted primitive BCH codes and their dual codes. The minimal
trellis diagram T is reversible for a code C such that C = CE.

In this section, we show that computational complexity to obtain the weight dis-
tribution of a linear code C with an even code length n can be reduced by modifying
Algorithm IT when C = C%. The result (Theorem 2 below) may also be used to simplify
the maximum likelihood decoder of the code.

From the definition, C§7, 5 = Pon/2[Conse); and Cy, is a linear subcode of

Pon2lC]. The concatenation of two n/2-tuples u = (uj,ug,...,unsp2) and v =

- 17 -

(v1,v2,...,Un/2) is defined as the following n-tuple:
uov 2 (w1, Up,. .., Upja, U1, V2, .o, Ung2)- (2.20)
For u; € pg,2[C], let Ry(u;) be defined as

Ry(u;) 2 {uf:u;0uy € C}. (2.21)

Theorem 2: Suppose that
C =C*k (2.22)

Let CSR denote the following subcode of C:
CSR 2 {fueC:uf =u}. (2.23)

For any u € py,/2[C] and v € Rg(u), (1) ov is unique, and (2) if u € po,n/z[CS.R],
ov = ou and otherwise, ou and ov are in {ow : w € V} for a coset V of pg/2[C]
with respect to pg,/2[C5R].

(Proof)

See Appendix for its proof. AA

For a state s € S, /2, let u, be an n/2-tuple in pg ,/2[C] such that ou, = s, and let
R(s) denote the state ov, where v € Ry(u;). From (1) of Theorem 2, we see that we
can reduce the computing time by the following way:

(1) Compute A;(s) with 0 < i < n/2 for each s € Sy,)o.
(2) Compute A;(sy) with 0 <7 < n by
Al = X 3 A A (R()) (224
€8, /3 §=0

The technique to reduce the space complexity described in Section 2.2 can be also
applied. The left half of the minimal trellis diagram T({0,k,...,n/2,...}), consists
of the first tree type section and 2%~/2 structurally identical (except branch labels)
sub-trellis diagrams without cross connection between them[22]. From Theorem 1, the
set of all label sequences of paths in each parallel sub-trellis diagram combined with

the first tree type section is a coset of pg,/2[C] with respect to pgn/2[Con/2 + Chon)- It

- 18 -

follows from this fact and (2) of Theorem 2, the computation of (2.24) can be performed

independently for each subset of S5, s,
{ov: visin a coset of pgn/2[Clwith respect to pgn/2[Cons2 + Chn + CSF]}. (2.25)

The number of states in the subset is given by

21\’}1’" —2[(0’,,/2

CSE|/|Cs% |- (2.26)

The derivation of (2.26) is shown in Appendix. For these purposes, we need to obtain

a basis of CS®. The following Lemma 1 gives us an efficient algorithm for finding it.

Lemma 1: Let {u;,uy,---,u;} be a basis of (n,k) linear code C, where for a non-
negative integer kgR, u, with1 <1< kSR are in CS® and u; with kSR < 1 < k are not
in CSR. Let C§® be the linear (n, k§%) subcode of CS® spanned by {u;,up,--- , Wysw }.
Note that C5® = {0} if k5% = 0. Then the followings hold:
(1) If there is u; with k§® < ¢ < k such that u; and uf belong to different cosets of C
with respect to C5¥, then

u; +ul € SR — CSR. (2.27)

(2) Suppose that u; + uf € C§R for every i with k§® < i < k. If u; + uf with

k§® < i < k are linearly independent, then

C3® = CSR, (2.28)
and otherwise, for any binary nonzero tuple (akgn 10 OkSR 1057 ar) such that
k
> ai(w;+uf) =0, (2.29)
i=kSR+1
we have that
k
> au; e CR - g (2.30)
i=kSR+1
(Proof)
See Appendix for its proof. AA

- 19 -

2.6 An Improved Computing Method by Using a Trellis Di-
agram

In this section, we show an idea to reduce the computational complexity for the
trellis-based computing method.

Define h 2 h;—1 and A/ = h; for 1 < 7 < 1. It is known that a nonempty set
L(s,s') of parallel branch labels between two states, s € S, and s’ € Sy, is a coset
in paw[Cl/CE[22, 27]. Any coset in ppp[C]/Cy) may appears many times as the
label set of parallel branches between state pairs in the section. For example, consider
the second section of the 4-section minimal trellis diagram T'({0, 32,64, 96,128}) for
RMy 3. The second section is the subgraph of the trellis diagram obtained by truncating
T({0,32,64,96,128}) except from time 32 to time 64. Now, the following equation
holds.

Comse = Crjpn = RMpoy o1 (2.31)

Then, we see that C35 ¢, is the (32, 6) RMs; code. It is also easy to show that p3s64[C]
is the (32,26) RMj5 5 code. Hence, L(s,s’) with s € Ssa, s’ € Se4 is a coset of the (32,6)
code and has 64 labels. There are 220 cosets in p3g 4[C]/C85 64 = RM53/RMs,;. Using
the analysis in [27], we can show that every coset in RMj53/RMs; appears 2° times as
the label set of parallel branches.

When each coset in p,u[C]/C}', appears many times as the label set, we can
reduce the computing time by computing W (s,s’) with s € S, and s’ € Sy in the
following way: (1) Construct a table to find the weight distribution of any coset in
Pui[C]/ C’}th, from the syndrome of the coset leader. To compute the weight distribu-
tion of a coset of C}',/, we can use trellis-based computing method recursively. (2) For

each L(s,s’), find its weight distribution, W (s, s’), from the table.

- 90 -

Chapter 3

A Computing Method Using an
Invariant Property of a Linear
Block Code for Permutation

Groups

In this chapter, we present a computation method for the weight distribution using
an invariant property of a given code for permutation groups. The set of cosets of a
subcode, which forms the original code, is partitioned into blocks. Two cosets are
in the same block if and only if a permutation of coordinate places changes a coset
into the other one. Consequently, two cosets in the same block have the same weight
distribution. Therefore, it is enough to compute the number of blocks and the weight
distributions of the representative coset in each block. Here, we examine the number

of blocks and which cosets are in a same block for the two special cases.

3.1 Owutline of the Method

In this section, we present another method with reduced computational complexity
which uses the invariant property of a code for groups of bit position permutations.
For a vector u = (u,ug,---,u,) and a permutation 7 on {1,2,---,n}, let 7(u) be the
permuted vector (Us(1), Un2); -+, Ur(n))- For a set D of vectors of length n, let 7(D)
denote {m(u) : u € D}. We say that the set D is invariant under a permutation = if

7(D) = D, and that D is invariant under a set II of permutations if 7(D) = D for any

=N

- 91 -

Let C be a binary linear block code and let Cy be a linear subcode of C. For a
group II of permutations under which Cj is invariant, we define an equivalence relation
on C/Cy. Two cosets, u + Cy and v + Cy, are equivalent if and only if there is a
permutation 7 € II such that 7(u+ Cp) = v+ Cy. We call an equivalence class a block.
A block containing v + Cj is the set of cosets, {m(v)+ Cp : 7 € II}. All the cosets in a
block have the same weight distribution. Let the blocks be denoted by By, Bo, -+, By.
For 1 <7 < b, let W@(z) denote the weight enumerator of a coset in B;. To obtain
the weight enumerator of C, it is enough to obtain the size of each block, |B;|, and the

weight enumerator W) (x) of representative coset for each block. Then, the weight
enumerator of C is given by
b
> |1BW (). (3.1)
=1
We must devise an efficient method for finding the number of cosets and the
representative coset in each block. In the following, we consider the case where II is

the cyclic group or the affine groupl5, 28]. Note that BCH codes are invariant under

the cyclic group and the extended codes of binary primitive BCH codes are invariant

under the affine group.

3.2 Partition of the Cosets with respect to the Cyclic Group

Consider the case where C is a cyclic code of length n = 2™ — 1. Let C0r)(u) be
the irreducible cyclic code of length 2™ — 1 whose nonzeros are a* and its conjugates,
where « is a primitive element of GF(2™). It is known that any cyclic code of length

2™ — 1 can be represented as the direct sum of irreducible codes[5, Theorem 7, p. 220].

Suppose that C # C((0). Then, C can be expressed as
C = CU(u)+Cy, for u#0, (3.2)

where Cj is a cyclic subcode of C. If u is relatively prime to 2™ — 1, then for any

nonzero codeword v of CU™(u), the following equation holds.

CUM(u) = {a§(v)|0 < j < n} U {0}, (3.3)

-99.

where (V) is the vector given by cyclically shifting v j times to the left, that is, for
v = (v1,v2,, Uy), |
a5(V) = (Ujg1," 5 Vny V1,05 V5)- (3.4)

Now, consider the partition of C/Cy with respect to the cyclic group of permuta-

tions. There are (n + 1) cosets of Cy,
Cy and oj(v)+C, for 0<j<m, (3.5)

in C/Cy, and C/Cj is partitioned into two blocks. The block containing the coset Cj
consists of Cy only, since Cy is a cyclic subcode of C. The remaining n cosets form the
other block, since for any j and j/ with 0 < j < 5/ < n, 6j(v) + Cp can be translated
into o§ (v) + Cp by the cyclic permutation o .

Therefore, we have the following lemma.

Lemma 2: Consider a cyclic code C of length 2™ — 1. Suppose that C(™)(u) C C for
an integer u which is relatively prime to 2™ — 1. Let Cy be the cyclic subcode of C
such that C = C™(u) + Cy, and let Wp(z) denote the weight enumerator of a set D
of vectors. Then, for any nonzero codeword v € C"™(u), the weight enumerator of C
is given by

(2m - l)WV+Co (.’E) + WCo (IL‘) (36)

AA

It is straightforward to modify Lemma 2 for a extended cyclic code. Let vex denote
the extended vector of v, and let De, = {Vex : v € D} for a set D of vectors. Hence,

the following corollary holds.

Corollary 1: For any nonzero codeword v € CU™)(u), the weight enumerator of Co,
is given by
(2m -]')chx+co,ex (I) + WCO,ex (‘r)’ (3'7)

where Cjx denotes the extended code of Cy. ‘ AA

-93.

3.3 Partition of the Cosets with respect to the Affine Group

For an integer 7 with 0 < i < 2™, let (4,12, -, i) be the binary representation

of 7, l.e.,

i=y 327 (3.8)
j=1

and for an m-variable Boolean polynomial F(X) (or simply F'), where X =
(X1, Xs,- -+, Xm) with Boolean variable X; for 1 < ¢ < m, its vector representation vg
is defined as (vg, vy, ,vam_y), where v; = F(iy,19,- -, %,). We say that this 2™-tuple
is in standard order of bit positions[24]. For a set D of vectors, we write F' € D if and
only if vp € D.

We consider a linear block code C of length 2™ such that

VF(X) e CVa € GF(2)"[F(X +a) € (], (3.9)
RM,.,_2 C C C RMp,, and C & RMy 1. (3.10)

For a code C which satisfies (3.9) and (3.10), we have the following lemma.

Lemma 3: Let C be a linear block code of length 2™ which satisfies (3.9) and (3.10).
For a Boolean polynomial F' € C of degree r and a € GF(2)™, let F, be the Boolean
formula which is obtained from F(X + a) — F(X) by deleting all the terms with the
degree less than or equal to r — 2.
(1) Let AF be a set of Boolean polynomials {Fj, : a € GF(2)™}. Then, AF is a linear
subcode of C' N RM,, 1.
(2) Let C(F) be a linear subcode of C such that C N RM,,,_1 = C(F) + AF and
C(F)NAF = {0}. Then, C(F) is invariant under the bit permutation X — X 4 a for
a € GF(2)™.
(3) The weight enumerator of the coset F + C N RM,,, .1 = F + C(F) + AF is given
by

|AF[Weicr)(). (3.11)
(Proof)
(1) Since C satisfies (3.9), Fa € C. The degree of F, is equal to r — 1 or 0, and
F, € CNRM,, ,~1. We will prove that

Fa+ Fp=Fap, for abe GF2)™. (3.12)

- 24 .-

: b -
Let a = (aj,as,-+-,a,) and b = (b1,bs,-+-,by). For a monomial G = X;, X, --- X,
with 1 <11 < iy < --- <t < m, we have that

Ga+ G =Y (ai, +b,)X0 Xy X, Xipy, - Xiy = Gagp. (3.13)
=1

J
(3.12) follows from the fact that F, (or Fp) is zero or can be expressed as a sum of

some monomials and (3.13).

(2) Since both C and RMy,,—; contain RMp,,—2, C N RM, .1 = C(F) + AF also
contains RM,, ,_s. From the definition of AF, C(F') contains RM,, ,_». The degree of
the coset leader of a coset in C(F)/RM,, .o is 7 — 1 but that of RM,, ,_o itself. For

an Boolean polynomial H(X) with degree r — 1 or less,
H(X)+ RM,,—2 = H(X +a) + RM,,, .o, (3.14)

since H(X+a)—H(X) € RM,, ,—o. Hence, C(F) is invariant under the bit permutation
X — X +a for a € GF(2)™.
(3) Consider Fy, Fy, € AF with a,b € GF(2)™. Then,

F(X)+ Fa(X)+ C(F) = F(X+a)+ C(F), (3.15)
FX)+ Fp(X)+C(F) = F(X+b)+C(F). (3.16)
Since F(X +a) can be obtained from F(X +b) by the bit permutation X — X+a+b
and C(F) is invariant under the bit permutations X — X + a for a € GF(2)™.

Therefore, F' + F, + C(F) and F + Fy, + C(F') have the same weight distribution, and
we have (3.11). AA

Lemma 3 is a generalization of Lemma 5.1 in [8] which is used to reduce the compu-
tational complexity to obtain the weight distribution of cosets of RMg, in RMg3[7, 8].
The special case of Lemma 3 where C = RM,,, is Lemma 5.1 in [8]. As shown in

Lemma 5.2 in [8], the size of AF is given by
log, |AF| = min{s:3A4 € GL(m,2),g9 € P

such that F(XA) € g+ RM,,,—1} <m, (3.17)

where P, is the set of all Boolean polynomials of s variables, and GL(m,2) is the
general linear group which is the set of all m x m invertible matrices over GF(2)[5].

From Lemmas 2 and 3, we have the following theorem.

- 95 .

Theorem 3: Let 7y be a permutation on {1,2,---,2™} from the cyclic order to the
standard order of bit positions[24]. Let C,y be an extended cyclic code of length 2™
such that

(a) Ce is invariant under the affine group of permutations,

(b) RMy ;-2 € 7o(Cex) € RMpr, mo(Cex) € RMpn -1 and

(c) Wg(cex): To(CU(w)) + m(Cex) N RM,y, »—; for an integer u relatively prime to
2™ — 1, where C{™)(u) is the extended code of the irreducible cyclic code C™)(u).

Then, the weight enumerator We_ (z) of Cey is given by
Weo(z) = (27 = DIAF|Wrso(r)(®) + Wao(Cor)nRM 1 (T); (3.18)

where F' € my(C.y) is any Boolean polynomial of degree r and C'(F) is such a subcode of

T0(Cex)NRMyy -1 that satisfies mo(Cex)NRM, ,—1 = C(F)+AF and C(F)NAF = {0}.
AA

- 26 -

Chapter 4

The Weight Distributions of
Extended Codes of Binary
Primitive BCH Codes of Lengths
64 and 128

For the extended binary primitive BCH codes of length 128, the formulas of the
weight distributions are known for some high-rate codes for which the number of in-
formation bits is 127 — 7¢ with 1 < ¢ < 3[5, 10] and for some low-rate codes for which
that is 7¢' + 1 with 1 < ¢ < 3[11]. By using the techniques in Chapters 2 and 3, we
compute the weight distributions of all the remaining extended binary primitive BCH

code of length 128. We also compute the weight distributions of all the extended binary
primitive BCH code of length 64.

4.1 Computing Method

We discuss an efficient method for computing the weight distribution of (128, k)
extended binary primitive BCH code with 29 < k < 99 and (64, k) extended binary
primitive BCH code with any %.

Let o be a primitive element of GF(2™). The cyclic 7-th order RM code of length
2™ —1, denoted c-RM,, , is defined as a cyclic code generated by the polynomial which
has a* as a root if and only if the following holds[9, Theorem 8.1, p. 229],

O<Zu]~ <m-—r—-1, where u=Zuj2j_1. (4.1)
j=1 g=1

- 97 .-

The extended code of ¢-RM,, . is equivalent to RM,,,[28, p. 323]. Let 7y be a per-
mutation from the cyclic order to the standard order of bit positions[24]. By this
permutation, the extended code of ¢-RM,, , is transformed into RM,, ,. If C = mo(D)
for the extended code D of a cyclic code, the property (3.9) holds for C if D is invariant
under the affine group. Note that the extended code of a BCH code and its dual code
are invariant under the affine group|5, 28].

For a linear block code C, C* denotes the dual code of C. Let BCH(2™ -1, k, 2t+1)
(or BCH(2™ -1, k) for simplicity) denote a binary primitive (2™ —1, k) BCH code with
designed distance 2t + 1. Let EBCH(2™, k,2t + 2) (or EBCH(2™, k) for simplicity)
also denote the extended code of BCH(2™ — 1,%,2t + 1). The zeros of a cyclic code
are the roots of its generator polynomial, and the nonzeros of a cyclic code are the
roots of its check polynomial. For a binary BCH code with designed distance 2t + 1,
its zeros consist of a* with 0 < h < 2¢ + 1 and their conjugates. Table 4.1 shows the

nonzeros of several cyclic Reed-Muller codes, BCH codes and the dual codes of BCH

codes considered in this dissertation.

(A) EBCH(128, k) with k = 29, 36,43 and 50:
EBCH(128,29) and EBCH(128,36) are small enough to compute their weight
distributions by using the trellis-based computing method only.

Consider the case where k = 43 or 50. From Table 4.1, we have that
mo(EBCH(128,43)) C mo(EBCH(128,50)) C RM73. (4.2)

We can apply Lemma 3 with r = 3 to reduce the computational complexity to obtain
the weight distributions of certain cosets of RM7;. But we do not use this approach,
since RM7; is a small code and hence the improved trellis-based computing method
for RM7,; does not reduce the computational complexity very much.

We only use Corollary 1. We choose EBCH(128,k — 7) as Cjx for EBCH(128, k).
Once we have computed the weight distribution of EBCH(128, & — 7), we only need to
compute the weight distribution of one coset of EBCH(128, k — 7) to obtain the weight
distribution of EBCH(128, k).

Since mo(EBCH(128,k — 7)) contains RM75 and has a relatively simple trellis

structure, the weight distribution of the coset is computed by the improved trellis-

- 28 -

based computing method efficiently.

(B) EBCH(128, k) with k = 78,85,92 and 99:
For these codes, we compute the weight distribution of the dual codes first. Then,

we compute the weight distributions of the original codes with MacWilliams’ identity.

From Table 4.1, we have that

ro(EBCH(128,99)4) C mo(EBCH(128,92)+) C mo(EBCH(128, 85)*)
C mo(EBCH(128,78)+) C RMy. (4.3)

We only use Corollary 1 with Cp.x = EBCH(128,k + 7)*.

Table 4.1 Nonzeros of several codes of length 128.

Code NZ

c-RM74 7, 11, 13, 15, 19, 21, 23, 27, 29, 31, 43, 47, 55, 63
c-RM73 15, 23, 27, 29, 31, 43, 47, 55, 63
BCH(127,57)* | 7, 15, 23, 27, 29, 31, 43, 47, 55, 63
BCH(127,64)* | 7, 15, 23, 27, 29, 31, 47, 55, 63
BCH(127,71)% | 7, 15, 23, 29, 31, 47, 55, 63
BCH(127,78)* 15, 23, 29, 31, 47, 55, 63
BCH(127,85)+ 15, 29, 31, 47, 55, 63
BCH(127,92)* 15, 31, 47, 55, 63
BCH(127,99)+ 15, 31, 47, 63
BCH(127,64) 21, 23, 27, 29, 31, 43, 47, 55, 63
BCH(127,57) 23, 27, 29, 31, 43, 47, 55, 63
BCH(127, 50) 27, 29, 31, 43, 47, 55, 63
BCH(127,43) 29, 31, 43, 47, 55, 63
BCH(127, 36) 31, 43, 47, 55, 63
BCH(127, 29) 43, 47, 55, 63
c-RM7 5 31, 47, 55, 63

Nonzeros are {a” : h € NZ} and their conjugates.

-99.

(C) EBCH(128,57):

EBCH(128, 57) is also a subcode of RM73. We may compute the weight distribu-
tion by using Corollary 1 with Cy ., = EBCH(128,50). But there is the following more
efficient way.

From Table 4.1, we have that
EBCH(128,57)* = CU™(7) + RMy 3. (4.4)

By using Corollary 1 with Cpe = RMz3, we can compute the weight distribution
of EBCH(128,57). All we need to compute is the weight distribution of a coset of
RMpy 3, since that of RM7 3 was already computed[29]. Although RMy 3 is larger than
EBCH(128,50), we found that the computational complexity to obtain the weight
distribution of a coset of RMy 3 is less than that of EBCH(128, 50) by comparing the

trellis complexities of them.
(D) EBCH(128,64):
For this code, we use Theorem 3. As mentioned above, the condition (a) is satisfied.

Condition (b) is satisfied for m = 7 and r = 4. From Table 4.1, we have that

mo(EBCH(128,64)) = mo(CU™(21)) + mo(EBCH(128,64)) N RM 3
= 7(CI™(21)) + mo(EBCH(128, 57)). (4.5)

Then, the condition (c) is also satisfied.

To reduce the computational complexity, we should choose the boolean polynomial
F such that the number of codewords in AF is as large as possible. In this case,
we compute |AF| for every F in (128,7) mo(C{™(21)) code, and it turned out that
|AF| = 27 for any F € mo(C™(21)).

After computing the weight distribution of EBCH(128,57), all we have to do is
to compute the weight distribution of the coset F' + C(F'), where C(F) is a (128, 50)
subcode of EBCH(128,57). This computation is done by using the improved trellis-
based computing method.
(E) EBCH(128, 71):

For this code, we first compute the weight distribution of its dual code. Theorem 3

-30-

is also applied to the dual code. From Table 4.1, the following equation holds,
mo(EBCH(128, 71)*) = mo(CU™(7)) + mo(EBCH(128, 71)) N RMz 5. (4.6)

Three conditions for the theorem are also satisfied. In this case, it also holds that
|AF| =27 for any F € mo(C{M(7)).

The weight distribution of the (128,50) code, mo(EBCH(128,71)*) N RM73, and
that of one coset of the (128,43) code, C(F), are computed by using the improved
trellis-based computing method.

(F) EBCH(64, k) with any k:
For these codes, we may use a trellis-based computing method only. It is feasible

to compute the weight distributions in reasonable time.

4.2 Weight Distributions

The weight distributions are listed in Tables 4.2 to 4.9. Only the numbers Aey 4
of codewords of weight w with 0 < w < n/2 which are not zero are listed in these
tables. The number of codewords of weight w with n/2 < w < n equals that of weight
n —w. We also compute the weight distributions of their dual codes by MacWilliams’
identity. Then, it turned out that both EBCH(n,k) and EBCH(n,n — k) have the
same weight distribution when k = 29, 36,43,64,85,92 and 99 for n = 128 and k =7
and 57 for n = 64. Especially, EBCH(128, 64, 22) is formally self-dual, that is, the dual
code has the same weight distribution with the original code, although they are not
the same code[5, p. 596].

The weight distribution of a binary primitive BCH code can be easily obtained
from that of its extended code[5, p. 232], [28, p. 246]. Let A, and A, denote the
number of codewords of weight w of a binary primitive BCH code of length 2™ — 1 and

that of its extended code, respectively. Then,

o
%Aex,gi, for 0<i<2m (4.7)

2m -
A2i = om ZAex’Qi’ fOT 0 S 1 < Zm_l. (48)

Agicy =

-31-

Table 4.2 The weight distributions of EBCH(128,29, 44) (or EBCH(128,99,10)*) and
EBCH(128, 36, 32) (or EBCH(128,92,12)%).

w | Aex . for EBCH(128,29,44) | Aex . for EBCH(128, 36, 32)

(or EBCH(128,99,10)1) (or EBCH(128,92,12)+)
32 0 10668
36 0 16256
40 0 2048256
44 373888 35551872
48 2546096 353494848
52 © 16044672 2028114816
56 56408320 7216135936
60 116750592 14981968512
64 152623774 19484794406

Table 4.3 The weight distributions of EBCH(128,43,30) (or EBCH(128,85,14)%),
EBCH(128, 50, 28) and EBCH(128, 57, 24).

W | Aexw for EBCH(128,43,30) | Aex,.o for EBCH(128,50,28) | Aex,, for EBCH(128,57,24)
(or EBCH(128,85,14)1)
24 0 0 597408
28 0 186944 24579072
32 124460 19412204 2437776684
36 8810752 1103839296 141621881856
40 263542272 33723852288 4315318568736
44 4521151232 579267441920 74150180302848
48 44899876672 5744521082944 735289205007168
52 262118734080 33558415333632 4295496356229120
56 915924097536 117224663972352 15004724612905792
60 1931974003456 247312085243776 31655991621445632
64 2476672341286 316992306111910 40574965317267238

-32.

Table 4.4 The weight distributions of EBCH(128,64,22) (or EBCH(128,64,22)1),
EBCH(128, 71,20) and EBCH(128, 78, 16).

w | Aex.w for EBCH(128,64,22) | Ay for EBCH(128,71,20) | Aex,. for EBCH(128,78,16)
(or EBCH(128, 64,22))
16 0 0 387096
18 0 0 5462016
20 0 2674112 213018624
22 243840 37486336 5309859840
24 6855968 839699616 107350803840
26 107988608 13825045248 1766071867392
28 1479751168 188001347136 24074650400768
30 16581217536 2140095182336 273932927993856
32 161471882796 20510697927468 2625267567169884
34 1292241296640 166689980438016 21336485108951040
36 9106516329984 1156658661471040 148052866301892608
38 53383279307904 6886497209935616 881470039149213696
40 278420690161824 35363776220195360 4526561735332554624
42 1218666847725184 157207798773129984 20122606565844068352
44 4782630191822848 607468163067994304 77755925658495682560
46 15858705600596992 2045773679068686336 261859003134276581376
48 47425684161326912 6023796954778012480 771046023044966543784
50 120442185147493376 15537040516548126720 1988741249124011372544
52 277061634654099456 35191124114633006464 4504463828911859699712
54 543244862505775360 70078589269156969984 8970059328813665832960
56 967799721857135168 122925566952088660288 | 15734472710169831412480
58 1473287478189735168 190054082758956107264 | 24326922690137187741696
60 2041819511308530688 259342737902840355456 | 33195870221944924483584
62 2421550630907043328 312380032198035579904 | 39984644079892337086464
64 2617075886216910118 332409207867786543910 | 42548378876302513514950

- 33-

Table 4.5 The weight distributions of EBCH(128,85,14) (or EBCH(128,43,30)),

EBCH(128,92, 12)

(128,29, 44)4).

(or EBCH(128,36,32)%) and EBCH(128,99,10)

(or EBCH

w | Aex,w for EBCH(128,85,14) | Aex,w for EBCH(128,92,12) Acx,w for EBCH(128,99,10)

(or EBCH(128,43,30)*) (or EBCH(128,36,32)+) (or EBCH(128,29,44)+)
10 0 0 796544
12 0 1194816 90180160
14 341376 45646848 6463889536
16 22121368 2751682584 347764539928
18 856967552 110071456768 14127559573120
20 27230880768 3484410778688 445754705469248
22 680417833472 87099309355008 11149685265467776
24 13721772977024 1756359917165952 224811690627712384
26 226128254847488 28944450656120832 37004895377802191104
28 3081454360189952 394426389988237184 50486556173121673600
30 35064826913355520 4488297727663171584 574502176730571255552
32 336014520825141340 43009842715896693084 5505259786944679990620
34 2731238665152128768 349598717578587531264 44748635720273383143168
36 18949612280501341184 2425549189872597678976 310470296279994309297536
38 112834993226032103936 14442886028067639783424 1848689417301349247899904
40 579364846705294996864 74158665320604105580416 9492309123731911851566976
42 2575849616631486204416 329708906635048784769024 42202740212894624045103744
44 9952155728071153882112 | 1273875330862725405590976 163056041742389991882232512
46 | 33519982404512223401600 | 4290559778009132197764096 | 549191653602919908961484160
48 | 98687914666573428364840 | 12632047099619818751639976 | 1616902022803263350264149928
50 | 254574206248800159922816 | 32585525337307036591291392 | 4170947258582865019960480640
52 | 576536456040619165149184 | 73796631460924327761511104 | 9445968792041391795950926784
54 | 1148237129819878789497856 | 146974422148866514243084288 | 18812726104650984668145312896
56 | 2013890548801825020657408 | 257777868300680023693247232 | 32995567020535162782202434304
58 | 3114034684742715393815552 | 398596628232725831809523712 | 51020368602278287044701599232
60 | 4248814088020530790422528 | 543847945961233393472654592 | 69612536825810943211726121216
62 | 5118344400874949289841152 | 655148393268075658872238080 | 83858994648317780352552315392
64 | 5445862703373444517825478 | 697070096246413149145713004 | 89224971989631194512677986758

-34-

Table 4.6 The weight distributions of EBCH(64,7,31)

EBCH(64, 10, 27) and EBCH(64, 16,23).

(or EBCH(64,57,3)%),

w | Aexw for EBCH(64,7,31) | Aex . for EBCH(64,10,27) | A.y ., for EBCH(64, 16, 23)
(or EBCH(64,57,3)")

24 0 0 5040

28 0 448 12544

32 126 126 30366

Table 4.7 The weight distributions of EBCH(64, 18,21),

EBCH(64, 30, 13).

EBCH(64,24,15) and

W | Aex, for EBCH(64,18,21) | Aex. for EBCH(64,24,15) | Aex . for EBCH(64,30,13)
14 ' 0 0 8064
16 0 2604 30828
18 0 10752 631680
20 0 0 1128960
22 4224 216576 14022144
24 5040 291648 14629440
26 24192 1645056 105057792
28 12544 888832 65046016
30 69388 4419072 282933504
32 30366 1828134 106764966

- 35-

Table 4.8 The weight distributions of EBCH(64,36,11),

EBCH(64, 45, 7).

EBCH(64, 39, 9)

w | Aex . for EBCH(64,36,11) | Aex.., for EBCH(64,39,9) | Aex,w for EBCH(64,45,7)
8 0 0 27288
10 0 13888 301760
12 30240 172704 12738432
14 354816 2874816 182458368
16 3583020 29210412 1862977116
18 27105792 214597824 13739292672
20 145061280 1168181280 74852604288
22 603113472 4794749760 306460084224
24 1853011776 14924626752 956270217000
26 4517259264 35889146496 2294484111360
28 8269968448 66620912960 4268285380352
30 12166253568 96671788416 6180152832000
32 13547993382 109123263270 6991765639110

and

- 36 -

Table 4.9 The weight distributions of EBCH(64,51,5) and EBCH(64,57,3) (or
EBCH(64, 7, 31)4).

w | Aux.o for EBCH(64,51,5) | Aexo for EBCH(64,57,3)
(or EBCH(64,7,31)%)

4 0 10416

6 20160 1166592

8 1067544 69194232

10 37051840 2366570752
12 801494400 51316746768
14 11684617344 747741998592
16 119266575708 7633243745820
18 879321948238 56276359749120
20 4789977429888 306558278858160
22 19616032446528 . 1255428754917120
24 61193769988008 3916392495228360
26 146864398476096 9399341113166592
28 273137809339136 17480786291963792
30 395577405119232 25316999607653376
32 447418802536902 28634752793916486

-37-

4.3 Probability of an Undetectable Error

For an (n,k) binary linear code C, let P,.(C,¢) denote the probability of an
undetectable error when C is used for error detection in a binary symmetric channel
with bit-error rate £. Then, using the weight enumerator We(z) of C, P,(C,€) can be

expressed as follows:

Po(Cye)=(1—¢)" {WC (2) - 1}. (4.9)

1—¢

The probabilities of an undetectable error for EBCH(128, k) with 29 < &k < 99 are
computed from their weight distributions and are shown in Figure 1.

A code C is called proper if P,(C,¢) is monotonously increasing as ¢ increases.
From Figure 1, we see that EBCH(128,k) with kK = 36,57 and 78 are not proper.
From [30, Theorem 3.4.2, p. 74|, if the probability of an undetectable error for the

dual code C* of C, P,.(Ct,¢), is greater than 27* for some ¢, then P.(C,$=¥) >
2-(n=k) > P,.(C,1/2), and hence C is not proper. By examining the probability of an
undetectable error for the dual code, we see that EBCH(128, k) with £k = 71 and 92
are also not proper. For the remaining cases, EBCH(128, k) with k = 29,43, 50, 64, 85
and 99, the probabilities of an undetectable error are monotonously increasing as ¢

increases within the accuracy of our computation.

- 38-

Probability of an undetectable error

1e-10

1e-20

1e-30

1e-40

fé

X

& k=50 ,Xk=43F8"
2 X a3 #
X a#

&
-3

i

o *

k=36

0.01

0.1
Bit error rate

Figure 1: The probability of an undetectable error for EBCH(128, k).

-39-

Chapter 5

Upper and Lower Bounds on the
Undetected Error Probability of
Binary Codes Derived from

Shortened Reed-Solomon Codes

Although we already have two efficient computing method for a weight distribution
of a linear block code given in Chapter 2 and 3, it may be still infeasible to compute
the weight distributions for codes with large parameters. For such codes, we may
choose the other strategy, that is, to compute the some part of weight distribution and
to estimate the upper and lower bounds on the probability of an undetectable error
from the results instead of computing the whole weight distribution and examining
the exact probability. In this chapter, we take the binary codes derived from some
shortened Reed-Solomon codes as examples. From the results, we also derive upper
and lower bounds on the probability of an undetectable error when the binary codes

are used only for error detection in a binary symmetric channel.

5.1 Binary Weight Distribution of a Code over GF(2™)

Let 3 = {B1,52,...,0m} be a basis of the Galois field GF(2™). Then each element

v in GF(2™) can be expressed as a linear sum of 8y, Bs, ..., B as follows:

’Yzclﬂl +c2/32+"'+c7n16m7 (51)

- 40 -

where ¢; € GF(2) for 1 < i < m. Thus 7 can be represented by the m-tuple
(c1,¢2,---,cm) over GF(2). Let C be an (n, k) linear block code with symbols from
the Galois field GF(2™). If each code symbol of C is represented by the corresponding
m-tuple over the binary field GF(2) using the basis 3 of GF(2™), we obtain a binary
(mn, mk) linear block code, called a binary image of C. This binary code is denoted by
C(B). For a binary linear code Cg, let A;[Cp] be the number of codewords of weight ¢ in
Cp. The weight distribution of a binary image of C, {A;[C(B)] : 0 < i < mn}, is called
a binary weight distribution of C. In general, a binary weight distribution depends on

the choice of basis. But there are bases for which the binary weight distributions are

the same.

Lemma 4: Let C be a linear code of length n over GF(2™), and let §; =
{B1,0s,...,0m} be a basis of GF(2™).
(1) For any nonzero element y in GF(2™), define 3, = {761,782, --,¥Bm}. Then,

A[C(B)] = AC(B)], for0<i<mn. (5.2)

(2) Let N =2™ — 1, and let « be a primitive element of GF(2™). There is a basis

- , —)N
ﬁ:(ab‘,abz,...,abm), Q=b1<b2<-~<bm§(m—m)—, (53)

such that
A[C(B)] = Ai[C(B)]), for 0 <i< mn. (5.4)

(Proof)

(1) For a codeword (vy, v, ...,v,) € C and a basis 0o, let (vi,va, ..., vy)3, denote the
corresponding codeword in C(Bp). For any codeword (vy,ve,...,v)5 € C(B),
(Yv1,7v2, . .. ,7vn)g, is a codeword of the same weight in C(8,), and for any code-
word (vi,vs,...,v)5, € C(B8,), (v vi,7 va,..., 7 on)p, is a codeword of the
same weight in C(B). Therefore, equation (5.2) holds.

(2) From (1) of this theorem, we see that there is a basis

5'={ab'1,ab/2,...,ab:“) 0=0) <by<---<b, <N, (5.5)

- 4] -

such that
A[C(3)) = Ai[C(B)], for 0 < i < mn. (5.6)
Suppose that o/, > ﬁl"—_m—lﬁ Since

m - 7\7
Z (0 = by —b’m>——(m 1)1, (5.7)

m

there is j with 2 < j < m such that (b; — b;_1) > X. Consider a basis 3 which

consists of a%a ™% with 1 < i < m, that, is,

B:{ab‘,ab2,...,abm}, (5.8)
where
p 2 ;-_H-_l—b;-, forl1<i<m-—j+1 (5.9)
Vpjoiem = b3+ N, form—j3+2<i<m.
Then, we have that
—1)N
0=b1<b2<---<bm§(m—m)—. (5.10)

AA

5.2 The Number of Codewords with Small Weights of Some
Shortened Reed-Solomon Codes

5.2.1 Shortened Reed-Solomon Codes Generated by (X — «)

For a basis 3 in (5.3), let B be the set of integers defined by
A
B ={b(=0),by,...,bn}. (5.11)

Let '™ be a set of monomials (single term polynomials) of degree n — 1 or less whose
coefficient is in 3, that is,
")A{a iX7:1<i<m,0<j<n}. (5.12)

We partition I'™ into subsets. For an integer [with 0 < [< N, define

rm & {o%X7 €™ :b;+j=1 (mod N)}. (5.13)

249 .

For b; and [, the number of integers 7 which satisfy b;+7 =1 (mod V) is at most one.

< m. For an integer v with 1 < u < m, let ¢, be the

Therefore, we have that ‘I‘ }")

= u. For a given basis, it is easy to derive formulas

number of sets I\™ such that IFE")

of q1,92,...,q¢m. Such formulas for the polynomial basis are given in the following

example.
Example 1: We consider the case where 3 is the polynomial basis, that is,

5=5P2 (10,0 am). (514

(1) If 1 < n < m, we have that

2, for1<i<n
gi=3y m—n+1, fore=n (5.15)
0, forn <1 < m.

(2) If m <n < 2™ — m, we have that

2, for1<i<m
g = (5.16)
n—m+1, for:=m.
(3) If 2™ —m < n < N, we have that
(0, fori<i<n+m-N+1
n+m-—-N+1, fori=n+m-—-N
g = (5.17)
2, forn+m-N<i<m
| n—-m+1, for 1 = m.
AA

Next, we consider the number of codewords of weight 2 in RS(HQ’I)(B), denoted by
A2[RSEV(B)).
We associate a polynomial with v. For a vector v = (v, v1,...,vs_1), the corre-

sponding polynomial is Z;:OI v; X7,

- 43 -

For a binary linear code Cg, let U;[Cp] be the set of polynomials which correspond

to codewords of weight 7 in Cg. From the definition, we have that

Uo[RSED(B)] = {A(X)+ fo(X): f1(X), fo(X) € T}™ for an integer I
and fi(X) # fo(X)}. (5.18)

It follows from the definition of ¢; and (5.18) that we have the following theorem.

Theorem 4: The number of codewords of weight 2 in RSZ!(5) is given by

ARSE)] = 35 (5.19)

=2

AA

We also show that A,[RS@V(3P))] is the largest among all the bases. For two

integers b;,, b;, € B with ¢; < 12, define

Qb:, b, £ {aP1 X7 +0P2 X7 : 0 < j1,jo <mand b;, +j1 =b;,+J2 (mod N)}. (5.20)

Then,
ARSCIF] =3 S |Qu s (5.21)
112112=11+1

From the definition of Q. ,

i1 q0ip

Qb i, = {(ePaX*2™% 4+0%)X7:0<j <n— (b, —b;)}
U{(abe XV butby 4 oba) X7 :0< j<n+b;, —b, — N}. (5.22)

For a positive integer b, define
7(b) 2 max{n — b,0} + max{n +b— N,0}. (5.23)
Then, it follows from (5.22) and (5.23) that

= ’)’(b,‘2 - bi]), for bil < biz' (524)

IQbi, Wiy
Therefore, we have that

ARSPV(B)] = 3 S (5.25)

s
=
]
—
o
~
Il
.
=
+
—

. S . : AL L A
Lemma 5: For two integers 41,1 with 1 < ¢ <19 < m, define ¢t =iy —2,,b=b;, = b;,.

Then, we have that

7(b) < 7(1). (5.26)
(Proof)
From the definition of 7, b and B, we have that
0<i<m-1 and igbg(ﬂ%ﬂ. (5.27)
For any positive integer m, the following inequality holds.
m-—1< N/m. (5.28)

There are two cases to be considered.

(1) First, we consider the case where n < N/2. It follows from the definition of 7(b)

that
n — b, for0<b<n

7(b) =< 0, forn<b< N-n (5.29)

n+b— N, forN—n<b§£m—:nlﬂ.
Since 7(b) decreases monotonically as b increases for 0 < b < N — n, it follows from
(5.27) that (5.26) holds if b < N —n. N —n < b < gm—:nl)ﬁ, it follows from (5.28)

that

-1
T(b)=n+b—-N§n+——m N—N:n—-ﬁgn—(n"w—l). (5.30)
m m

Since N —n < gm_—mlm’ we have that n > N/m > m — 1 > ¢. Therefore, we have that
(i) =n—1. (5.31)

The inequality (5.26) follows from (5.27), (5.30) and (5.31).

(2) Next, we consider the case where n > N/2. In this case, we have that

n —b, for0<b< N —n
7)) =< 2n—N, forN—-n<b<n (5.32)
n+b—N, forn<b< ﬁm—:nlw-
Since 7(b) decreases monotonically as b increases for 0 < b < n, it follows from (5.27)
that (5.26) holdsfor 0 <1 <b<n. Ifn<bd< (ﬂ:%, we can show that 7(b) < 7(7)
by the similar way used for the case where n < N/2 and N —n < b < Lm—_ml-ﬂ AA

- 45 -

It follows from (5.25) and Lemma 5 that the following theorem holds.

Theorem 5: For any basis 3, we have that
AlRSE(F)] < ARSEDF)] = 3 (m— () (5:39)
i=1
The equality in (5.33) holds if 3 = 37, AA
Next theorem shows that there is a basis 3 for which 43[RS@V(5)] = 0.

Theorem 6: Define an integer pg as

(5.34)

A 2™ —1
Po = [1082 J .

There is a basis 3 such that
Ao[RSEV(B)] = 0, for n < max{2/,2™ — 1 — (m — 1)2°°+1}. (5.35)

(Proof)
For any integer p with 0 < p < 2™ — 1 and ag, a1, ..., am-1 € GF(2),

m—1 m—1 2
Z (L,‘Oéﬂp = <Z aiai) = 0, (536)

i=0 i=0
if and only if a; = 0 for 0 < i < m. Therefore, (1,0%,a?%,...,a™ 12"} is a basis.
Define
, if 270 > 2™ — 1 — (m — 1)20H!
P2l = () (5.37)
po+ 1, otherwise.

Then, it is easy to see that (5.35) holds for the basis 8 = (1,a%,a%’,... am12"),
AA

Next, we consider 4,[RSZV(5)] for w > 3. The following simple bound holds.

Theorem 7: .
A, [RSE)(B)] < w(mn) (5.38)

w w—1

AA

- 46 -

For a primitive polynomial of degree m and an integer n with m +1 < n <
N, let HM,, (or HM,[g(X)]) denote the shortened Hamming code of length n with
generator polynomial g(X'). By using arelation between the codewords in the shortened
Hamming code HMnin{n+s,,,~} and those of the binary image of the shortened Reed-
Solomon code RS?Y(5), we improve the bound on A4, [RS®V(5)] for small w. For a

polynomial %, a® X7, define

(3 aba Xty & 5 x Grebimodn), (5.39)
=1 =1

Then, o® X’ = ¢*(a*X?) (mod ¢(X)). For monomials f;(X) with 1 <4 < w in '™,
let
[i(X) + fo(X) + (X)) + - + fu(X) (5.40)

be a codeword of weight w in RSZV(3). If o*(fi,(X)) # o*(fi,(X)) for any
fll(X)aflz(X)(]' <h<h< ’UJ),

o"(fu(X)) + 0" (f2(X)) + 0" (f3(X)) + - - - + 0" (fu(X)) (5.41)

is a codewords of weight w in HMpmin{nts,,,5}- We partition the set U, [RSS?’I)(B)] into

two subsets. Let
UDRSED(B)] 2 {£(X) € Uu[RSEV(B)] : 6™(£(X)) € Uu[HMumingnom, w3}, (5.42)
UDRSED(B)] £ U,[RSEV(B)] — UVRSED(B)]. (5.43)

First, we consider codewords in UN[RSZV(3)]. For X7 € I'™ and an integer i

with 1 <7 < m, define
ot (X7) & ot X (G-bimodN) (5.44)

Note that X7 = ¢(X?) (mod ¢(X)) for 1 < i < m. Then, UP[RSZV(F)] is the set

of polynomials of degree (n — 1) or less in the set,

{0 (f1(X)) + 02 (f2(X)) + 0™ (f3(X)) + - - + 0™ (fu(X)) : 1 < i1, 8a, . . .1 < M},
(5.45)

where

fi(X) + fo(X) + fo(X) + -+ + fu(X) (5.46)

is a codeword in the Hamming code, HMmin(n4s,, 5}, Of Weight w.

- 47 -

Therefore, we can compute IUIE,I)[RSQ’I)(B)]‘ by generating all the codewords of
weight w in HMpmin{n4m-1,5}. By using a similar method used in an algorithm to
determine the minimum distance of a given shortened Hamming code in [31], we can

Uz(vl)[RSSLQ’l)(B)”. The order of computing time is O(min{n*~"~1 n"}), and

compute

the space complexity is O(n"), where h is a predesigned integer. We can also show

that the following simple bound on 'Uﬁ,l)[RSSf’l)(B)]' holds.

Theorem 8: Let d®) be the minimum weight of the shortened Hamming code,

HMmin{n+bm,N}-
(1) For an integer w with 2 < w < d#),

UL [RSZV(B)]] = 0. (5:47)
(2) For an integer w with w > d'f),

IU&I)[RSg’I)(B)]I < mwAw[HMmin{n+bm,N}]' (548)

AA

Next, we derive a formula for [UP[RSZV(5)]| with a relatively small w in 4 <

w < d#) + 1. The following lemma holds.

Lemma 6: (1) For an odd integer w with 3 < w < d#) 41,
UPRSEV(3)] = 0. (5.49)
(2) For an even integer w with 4 < w < d¥) +1,

UPRSEV(B)] = {vi+va+- 4V :Vi,Va,. ..,V € Uo[RSPV(B)]

and the weight of v + vy + -+ + vy 0 is w}. (5.50)

AA

By using (5.50), we can derive a formula for [UP[RSZV(3)]| with a relatively

small w. For example,

VPRSI (B)]| = <A2[RS$§J)(5)]) S 2 @ _ é 34, @ (5.51)

=4

- 48 -

5.2.2 Shortened Reed-Solomon Codes Generated by (X — 1)(X ~- «)

It is known that the minimum Hamming weight of RS(? is not less than 3. Since,
RSEl?”O) (B) only contains codewords of even weight, the minimum Hamming weight of
RSG9(3) is not less than 4. Note that RS®Y(3) is a subcode of RS®V(3). For
polynomials fi(X) and fo(X) in Us[RSEV(B)], fi(1) = fo(1) if and only if there
are integers 4,y for which fi(X), fo(X) € @, .- Therefore, we have the following

theorem.

Theorem 9: (1) The following equation holds.

pPRsE @I ursEo) = 3 3 () e

=1 =41+

(2) For any basis 3,

|UPRSED(3)] 0 URSEI(B)]| < [UPIRSED(FD)] 0 UL RSED(F D).

(5.53)
The equality holds if § = 5.
AA
Theorem 10:
A[RSPI(B)] < |UPPRSEV(B)] N Us[RSEV(B)]| + m* As[HM s, . (5.54)
The equality holds if A4[HM,4s,.] = 0. AA

Next we derive an upper bound on A, [RS®Y(3)]. Suppose that ¥, o T¥ | XA i
a code polynomial of weight 2w in RS®Y(3). Then,

Zjizw, 0<n<w andOSP,(i)<n for1<i<m and1<I1<y. (5.55)
=1

By counting the number of polynomials 37, o® E{":l X Pl(i), we can obtain an upper

bound on Ay, [RS®Y(3)], denoted A,,[RSEY(3)]. For example, when 2w = 6, we

swstean-n() () ()) o)) o

-49 -

have that

5.2.3 Other Shortened Reed-Solomon Codes

Tt is known that the minimum Hamming weight of RS®!) is not less than 3, and
that RSV () is a subcode of RS(ZY(3).

We derive a lower bound on A4[RS$(5)] by counting the number of codewords
in a subset of U [RS®V(5)] N ULRSEV(3)].

Consider a codeword of weight 4 in RS&V(5),

ol X9 4 iz X792 + abis X3 4 abia Xj4, (5.57)

such that a1 X7 +ab2 X792 and abs X7 +abs X7+ are divisible by (X —«), and a1 X7 +
abis X7 and a2 X7 + ab4 X7 are divisible by (X — o?). For simplicity, we assume that
b, +2n < N. Then,

bi, + J1 = by, + J2

) biy + J3 = biy +Ja (5.58)
biy + 271 = bi; + 273

bi, +2j2 = b;, + 274.

\

Without loss of generality, we assume that
il :min{il,iQ,i3,i4}. (559)

Then, it follows from (5.58) that i > 71, 43 > 7; and min{js, js,js} = js. Therefore,

for each tuple of integers, (41,149, 3, j1) such that

' 1<1<<m
i3 € Ig(il,iQ) é {i3|il <13,b;, + bi3 - bil €eB (5 60)
and b;, — b;, is an even integer} .

| (biy —3b;,)/2+bi, < ji <,

there is a polynomial in U2 [RS@V ()] N U [RSGD(B)]. Tt is easy to see that for differ-
ent tuples 71,49, 73, 71, the polynomials are different. Therefore, we have the following

theorem:

Theorem 11: If b,, + n < N, we have that

A4[RSZV(5)] > fj fj > max{n— (b — 3b;,)/2—b;,,0}, (5.61)

t1=142=i1+1 i3EI3(i1 ,iz)

- 50 -

where I3(i1,i2) is defined in (5.60). The equality holds if and only if the minimum

weight of the shortened Hamming code, HMy, 4, , is not less than 5. AA

We can also show that A4[RS(Y(B)] (or A4[RSUV(B)]) is equal to zero if the

minimum weight of HMa, 44, (or HM3,44,,) is not less than 5.

5.3 Upper and Lower Bounds on the Probability of an Un-

detectable Error

In this section, we discuss the probability of an undetectable error when the code
C is used only for error detection in the binary symmetric channel with bit-error rate
€. Let P(C,¢) denote the probability of an undetectable error. By using the result
in Section 5.2, we can derive the following upper and lower bounds on the probability

of an undetectable error of RSZV(3).

Pi(RSEV(B),e) < ARSPV(B)E*(1 —)™ 2
+Z<mn)——‘mm{;m iy — gy, (5.62)

=3
Pi(RS$V(B),6) = A[RSPV(B)e*(1 ~)™ ?
+|UPRSED(B)]| (1 —)™=, (5.63)

If n + b, is not large, we can compute A3[HM, 4, .] and
A4[HM, 4,] by generating all the codewords of weight 3 and 4. By using A3{HM, s,]
and A4[HM, 44,.], the following improved upper bound holds.

P (RSZD(B),e) < AoRSCV(3))e2(1 — €)™ 2 + m® A3[HM 4, |3 (1 — €)™ 3

+{m* A4[HMop,] + UL RSV (B)]}e(1 —)™

£ (") min{m,) iy gymns, (5.64)
=5 2
P(RS$V(B),e) = Ao[RSPV(B)*(1 — €)™ 2 + A3[HMays,, | (1 — €)™ 2
+|UP[RSED(B)]| 4(1 —)™, (5.65)

Next we show bounds on P,(RSE?(5),¢).

Po(RSEV(3),2) < {|UPRSZV(B)] n U,[RSEI(3))|

- 51 -

+m2A4[HM 40,]} (1 — &)™

8
+ 3 AaRSCD(B)(1 — &)

=3
[=] -
mn \min{m,n} . i
_— 1-—)
+ izzg (22._ 1) 5 e*(1—¢) , (5.66)

P.(RSEV(B),e) > |UPRSEV(B)] N URSEI(B)]| (1 — &)™ % (5.67)

Note that the bounds proposed in this dissertation are tight for relatively small e.
Bounds which are tight for large ¢ are presented in [17].

In Figure 2, the bounds given by (5.62) to (5.65) on the probability of an un-
detectable error, P(RSZ[ge(X))(3"))) are shown where n = 216 and go(X) =
X4 XBLXB X2 X104 X124 XM X104 X84 X7+ X5+ X+ X%+ X +1. In this
figure, UPE1, LPE1, UPE2 and LPE2 correspond to (5.62), (5.63), (5.64) and (5.65),
respectively. The code generated by this polynomial is adopted for error detection in
IEEE standard 802.3. Since A3[HM,4s,.] = 0 for n + b, = 216 1 31, the values of these
two lower bounds are the same. Since the upper bound in [17] is tighter than those
given by (5.62) and (5.64) for ¢ > 6.7 x 107, the bound in [17] is shown for this range
of €.

In Figure 3, the bounds given by (5.66) and (5.67) on the probability of an unde-
tectable error, Pue(RSG?[go(X)](5P))) are shown where n = 2'2. We have computed
A4[HM,14,.] with n + b, = 22 + 31 for 250 polynomials which are the minimal poly-
nomials of &/ with 1 < j < 997 where a is a root of g,(X) = X¥? + X2+ X2+ X +1.

For the codes generated by these polynomials, we have that

— bi, — by,
4137432360 < > Y (T(22)) + m2A4[HM s,] < 4157805864. (5.68)

i1=122=11+1

The values of the upper bound given by (5.66) are very close for these polynomials.

-592.

0.0001 ——— —
i Upper Bound
. Given by (5.62) -
1e-05 | \Haﬁaiixa. \‘ 7
[S
S 1e06 } ! __
@ |
Q@ !
ﬁ 1e-07 I « Upper Bound]
5 : Givenby (5.64) | | -
o |
'g |
S5 1e-08 ¢t
C L
«©
"'6 L
2 1e-09 }
5 s
@ .
€ 1e-10
o [Lower Bounds
_ Given by '
1e-11 L (5.63) and (5.65)]
1e-12 — ' y : !

1e-07 1e-06 1e-05 0.0001
Bit error rate

1e-09 1e-08

Figure 2: The upper and lower bounds on the probability of an undetectable error for
RSV [g0(X)] generated by (X — a), where go(X) = X% + X204 X2 4 X2 4 X16 4

- 53 .

Upper Bound / *
Given by (5.66) # A

s
o / %
o ,j’ \’f\
% ,+”+’ \)*\
© X
o oo B0t
g 1e10 PO,
C
3
C
«©
S
=
=S Lower Bound
s Given by (5.67)
e
o
1e_20 . sl PR EPPIwS | . PPNy | R
1e-07 1e-06 1e-05 0.0001 0.001

Bit error rate

Figure 3: The upper and lower bounds on the probability of an undetectable error for
RS [go(X)] generated by (X — 1)(X — @), where go(X) = X322+ X2 + X2 + X2
X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1.

-54-

Chapter 6

Conclusions

In this dissertation, computing methods for the weight distributions of linear block
codes are proposed.

First, we consider the method for computing the number of codewords of weight
less than or equal to a given integer in a linear block code by using its trellis diagram.
When we give the code length as the parameter integer, we can compute the weight
distribution of the code. We also show that the time and space complexities are given
in terms of the dimensions of subcodes and the related codes. Then, we can choose
the trellis diagram by which the computational complexity becomes small by using the
dimensions which can be computed easily. This method is very efficient for the codes
which have relatively simple trellis diagram, say Reed-Muller codes and some BCH
codes.

We also present another computing method which uses the invariant property of a
code for permutation groups. Two lemmas are derived to reduce the computation of the
weight distribution of a given code into that of its subcode. One is for the case when the
code is invariant under cyclic permutations, and another is for the case when the code
is invariant under affine permutations. For the extended binary primitive BCH codes,
we can apply the two lemmas for the computation of the weight distributions. For the
extended BCH codes of length 64 and 128 whose weight distributions have not been
computed, we computed their weight distributions by using the above two methods
simultaneously. From the results, we also computed the probabilities of an undetectable
error when the codes are used only for error detection in a binary symmetric channel,
and determined whether each code is proper or not.

It may be still infeasible to compute the whole weight distribution for the codes

with large parameters with the methods. Also, when shortened codes of various lengths

- 55 .-

are used, we need to know the weight distribution for large number of the codes. For
such cases, we may compute the some part of weight distribution and to estimate the
upper and lower bounds from the results instead of computing the exact probability
from the whole weight distribution. In this dissertation, we take the binary code
derived from a shortened Reed-Solomon code as a target code. For example, a formula
is shown for the exact number of codewords with weight 2 in the binary image of a
shortened Reed-Solomon code generated by (X — «). By using the results, we estimate
the upper and lower bound on the probability of an undetectable error for the case when
n = 21 m = 32, the generator polynomial is (X — a), a is the root of the polynomial
do(X) = X2+ XL X4 X2 4 X164 X124 X1 X104 X84 XT4 X04 X4+ X2+ X +1
and the polynomial basis is used. For this case, those bounds are tight when the bit
error rate of the channel is less than 1077,

For the trellis-based computing method proposed in Chapter 2, the computational
complexity depends on the structure of the given trellis diagram. In general, the struc-
tural complexity varies by permuting the bit positions, while the weight distribution
of the code represented by the trellis diagram is invariant. Then, it is important to
examine the property of a trellis diagram for a group of bit permutations. This is our

future work.

- 56 -

Appendix

(Proof of Theorem 2)

It is shown in [22] that for u; and uy in py,/2[C], ou; = ouy, if and only if

For v,v’ € Ry(u), we have that (v+v') o0 € C, since vou® and v/ ou® are in C.
This implies that
v+ \'d € Cé’rn/2 (62)

Part (1) of the theorem follows from (6.1) and (6.2).
If u € pon2[C3®], u € Ry(u), and therefore ov = ou from part (1) of this
theorem. It follows from (2.21) and (2.22) that uo v® and v o u® are in C. Therefore,

(uovR) 4+ (vouR)= (u+v)o(u+v)® e CS®, and hence
U+ Vv € pyna[CR]. (6.3)

The remaining part of the theorem follows from (6.3). AA

(Derivation of (2.26))
It follows from the definition of the subset and (6.1) that the number of states in the

subset is given by

Ipo,n/Q[CO,n/Z + Chn]| - lpo,n/g[cs R]| (6.4)
B = ' :
[£6,1/2[Co/2 + Chn] N Pons2lCSF]| - |CE ol
First, we show that
P0.n/2[Con/2 + Chin] N Poas2[CF] = Cly o + Poms2lChrm_il, (6.5)

where, for two linear codes A and B, A+ B denote the linear code {u+v:ue€ A,v €
B}.

For any u € pgn/2[Co,n/2 + Chnl ﬁpg’n/z[CSR’], there are u; € Co /2 and uy € Chp
such that u = pg,/2(u; + up). Define u) 2 Po,nj2u; and uy £ Po,n/2U2. Since u €
P0n2[C5R], (u] +uh) o (u] +up)® € C. This and the fact that u} 00 and (u) 00)F are
in C imply u} o uy® € C. Therefore, u) € Pon/2|Chn_p). Since u) € Cy, /2> We have
that

Po.n/2[Coms2 + Chnl NP0 2[C%) € Cis + Poas2[il (6.6)

- 57-

Conversely, consider v; € C’é:"n /2 and vy € po,n/z[C,SL,}}l_h]. Let 0 denote the all-zero
n/2-tuple. Then, vi 4+ Va3 € Py n/2[Conj2 + Chinl, since vi 00 € Cy /e and vy 0 vit €
CiR_1 C Chp. It follows from (2.22) that v; 00 +(vio 0)% = v, o v € CSR. Hence
Vi = Ponjpp(uou®f) € ponp[CR]. Since vy o vl € CSR vy € ponj2[C5®]. Hence,

Vi+ V2 E€pon /g[CSR]. This implies that
[Consa+ ChnlN [CSR|DCl o + [CPR_,I- (6.7)
Pony21Lomny2 hel 11 Pon/2 = Co,n/2 TPon/2[Yhn—h

(6.5) follows from (6.6) and (6.7).
From Theorem 1 and (6.1), we have that

3

lpo,n/z[Co,n/z + Ch,n] — 9Kn/2=Ghn/> (68)

ir
[
It follows from (6.4), (6.5) and (6.8) that
21(1./2‘%,"/2 p07n/2[C'SR]

Icé,rn 2T pO,n/Q[CE,%—h”
2Kn/2=8hns2 |y o [CSE] 'lpo,n 2[Chn /2”

Sp =

|Clruyal] - [PonsalCER 4|
~ 9 Kh,n—2Ko,n/2 Cszzl o
N 'ng—h’ . (69)
AA

(Proof of Lemma 1)

For any codeword u in C, u + uf € CS®. (2.27) follows from this equation and the

assumption of u; and uf. Next, we prove (2.28). Suppose that C5F - CSR. Since

k
CSR is linear, there is a codeword u in CS® — CSR of the form Z a;u; for a binary
i=k°SR+l

nonzero tuple (ausri1, agsryg, <+, ak). Since u = uf, (2.29) holds. A contradiction.
k
Finally, we prove (2.30). Define u 2 > a;u;. (2.29) implies that u = uf. Since

i=kg R +1
{uy,us,- -+, ux} are linearly independent, u ¢ C§¥. AA

- 58 -

References

[1]

[3]

[4]

[5]

[6]

[7]

(8]
[9]

D. Coppersmith and G. Seroussi, “On the minimum distance of some quadratic

residue codes,” IEEE Trans. Inform. Theory, vol. IT-30, no. 2, pp. 407-411,
Mar. 1984.

A.M. Barg and LI. Dumer, “On computing the weight spectrum of cyclic codes,”
IEEE Trans. Inform. Theory, vol. 38, no. 4, pp. 1382-1386, Jul. 1992.

M. Mohri and M. Morii, “On Computing the Number of Codewords with Mini-
mum Weight for Cyclic Codes,” Trans.of IEICE, vol. J79-A, no. 4, pp. 963-972,
Apr. 1996 (in Japanese).

T. Tanigawa, M. Morii and H. Sasano, “On computing the weight spectrum of
linear block codes — Improved Cedervall-Johannesson algorithm for searching a

code-tree —,” IEICE Technical Report, IT92-95, Nov. 1992.

F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes. Am-
sterdam, The Netherlands: North-Holland, 1977.

M. Kataoka, T. Takata, T. Kasami and S. Ujita, “Error Performance of Multi-
Stage Hard-decision Bounded Distance Decoding for Multi-Level Block Modula-
tion Codes,” IEICE Trans., vol. E74, no. 9, pp. 25552562, Sep. 1991.

X. Hou, “GL(m,2) Acting on R(r,m)/R(r — 1,m),” Discrete Math., vol. 149,
pp. 99-122, 1996.

X. Hou, “Classification of R(3,8)/R(2,8),” unpublished.

S. Lin and D.J. Costello, Jr., Error Control Coding: Fundamentals and Applica-
tions. Englewood Cliffs, NJ: Prentice Hall, 1983.

- 59 -

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

T. Kasami, “Weight Distributions of Bose-Chaudhuri-Hocquenghem Codes,”
Combinational Math. and its Applications, Univ. of North Carolina Press, Chapel
Hill, NC, 1969.

E.R. Berlekamp, Algebraic Coding Theory. New York: McGraw-Hill, 1968.

T.W. Williams, W.Daehn, M. Gruetzner and C.W. Starke, “Bounds and analysis
of aliasing errors in linear feedback shift registers,” IEEE Trans. on Computer-

Aided Design, vol. CAD-7, no. 1, pp. 75-83, Jan. 1988.

A. Ivanov and V.K. Agarwal, “An iterative technique for calculating aliasing prob-
ability of linear feedback signature registers,” Proc. of the 18th international Sym-

posium on Fault Tolerant Computing, pp. 70-75, June 1988.

S.K. Gupta and D.K. Pradhan, “A new framework for designing and analyzing
BIST techniques: computation of exact aliasing probability,” Proc. of 1988 Inter-
national Test Conference, pp. 329-342, 1988.

K. Iwasaki, “Analysis and proposal of signature circuits for LSI testing,” IEEE
Trans. on Computer-Aided Design, vol. CAD-7, no. 1, pp. 84-90, Jan. 1988.

K. Iwasaki, “Design of signature circuits based on weight distributions of error-

correcting codes,” Proc. of 1990 International Test Conference, pp. 779-785,
Sept. 1990.

T. Fujiwara, S. Feng and T. Kasami, “An Approximation to Aliasing Probability
of Some Signature Analysis Registers,” IEICE, vol. J73-A, no. 10, pp. 1669-1677,

Oct. 1990.

T. Kasami and S. Lin, “On the binary weight distribution of some Reed-Solomon
codes,” Proc. of the 7th Symposium on Information Theory and Its Applications,
pp. 49-54, Nov. 1984.

T. Kasami and S. Lin, “The binary weight distribution of the extended (2™,2™ —4)
code of the Reed-Solomon code over GF(2™) with generator polynomial (X —
a)(X —a?)(X - a®),” Linear Algebra and its Applications, 98, pp. 291-307, 1988.

- 60 -

[20]

21]

[22]

[23]

[24]

[23]

[27]

28]

[29]

J. Wolf, “Efficient Maximum Likelihood Decoding of Linear Block Codes Using a
Trellis,” IEEE Trans. Inform. Theory, vol. IT-24, no. 1, pp. 76-80, Jan. 1978.

G.D. Forney, Jr., “Coset Codes—Part II: Binary Lattices and Related Codes,”
IEEFE Trans. Inform. Theory, vol. IT-34, no. 4, pp. 1152-1187, Sep. 1988.

T. Kasami, T. Takata, T. Fujiwara and S. Lin, “On Structural Complexity of the
L-section Minimal Trellis Diagrams for Binary Linear Block Codes,” IEICE Trans.
Fundamentals, vol. E76-A, no. 9, pp. 1411-1421, Sep. 1993.

R.J. MacEliece, “On periodic sequences from GF(q),” J. Comb. Theory, vol. 10A,
no. 1, pp. 80-91, Jan. 1971.

T. Kasami, T. Takata, T. Fujiwara and S. Lin, “On Complexity of Trellis Structure
of Linear Block Codes,” IEEE Trans. Inform. Theory, vol. 39, no. 3, pp. 1057-1064,
May 1993.

A. Vardy and Y. Be’ery, “Maximum Likelihood Soft Decision Decoding of BCH
Codes,” Proc. of 1993 IEEFE International Symposium on Inf. Theory, p. 29,
San Antonio, TX, Jan. 1993.

T. Fujiwara, T. Kasami, R. Morelos-Zaragoza and S. Lin, “The State Complex-
ity of Trellis Diagram for a Class of Generalized Concatenated Codes,” Proc.
of the 16th Symposium on Information Theory and Its Ap.plicantions7 pp. 21-24,
Kanazawa, Oct. 1993.

T. Kasami, T. Fujiwara, Y. Desaki and S. Lin, “On Branch Labels of Parallel
Components of the L-section Minimal Trellis Diagrams for Binary Linear Block

Codes,” IEICE Trans. Fundamentals, vol. E77-A, no. 6, pp. 1058-1068, Jun. 1994.

W.W. Peterson and E.J. Weldon, Jr., Error-Correcting Codes. Cambridge, MA:
MIT Press, 1972.

M. Sugino, Y. Ienaga, N. Tokura and T. Kasami, “Weight Distribution of (128, 64)
Reed-Muller code,” IEEE Trans. Inform. Theory, vol. IT-17, no. 4, pp. 627-628,
Sep. 1971.

-6l -

[30] T. Klgve and V.I. Korzhik, Error-Detecting Codes. Norwell, MA: Kluwer academic
publishers, 1995.

[31] T. Fujiwara, T. Kasami and S. Lin, “Error Detecting Capabilities of the Shortened
Hamming Codes Adopted for Error Detection in IEEE Standard 802.3,” IEEE
Trans. on Communications, vol. COM-37, no. 9, pp. 986-989, 1989.

[32] G.D. Forney, Jr., “Dimension/Length Profiles and Trellis Complexity of Lin-
ear Block Codes,” IEEE Trans. Inform. Theory, vol. 40, no. 6, pp. 1741-1752,
Nov. 1994.

- 62 -

