<table>
<thead>
<tr>
<th>Title</th>
<th>The Arf invariant of proper links in solid tori</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Shibuya, Tetsuo</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 26(3) P.483-P.490</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1989</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/12798</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/12798</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
THE ARF INVARIANT OF PROPER LINKS
IN SOLID TORI

Dedicated to Professor Junzo Tao on his 60th birthday

TETSUO SHIBUYA

(Received July 6, 1988)

Let $L = K_1 \cup \cdots \cup K_n$ be a tame oriented link with n components in a 3-space \mathbb{R}^3. L is said to be proper if the linking number of a knot K_i and $L - K_i$, denoted by $\text{Link}(K_i, L - K_i) = \sum_{1 \leq i < j \leq n} \text{Link}(K_i, K_j)$, is even for $i = 1, \ldots, n$. The total linking number of L, denoted by $\text{Link}(L)$, means $\sum_{1 \leq i < j \leq n} \text{Link}(K_i, K_j)$.

For two links L_1, L_2 in $\mathbb{R}^3[a], \mathbb{R}^3[b]$ respectively for $a < b$, L_1 is said to be related to L_2 (or L_1 and L_2 are said to be related) if there is a locally flat proper surface F of genus zero in $\mathbb{R}^3[a, b]$ with $F \cap \mathbb{R}^3[a] = L_1$ and $F \cap \mathbb{R}^3[b] = -L_2$, where $-L_2$ means the reflective inverse of L_2.

The Arf invariant of a proper link L, denoted by $\varphi(L)$, is defined to that of a knot related to L which is well-defined by Theorem 2 in [4].

Let V^*, V be solid tori with longitudes λ^*, λ respectively and μ a meridian of ∂V in \mathbb{R}^3, where λ^* is a trivial knot, and f_m an orientation preserving onto homeomorphism of V^* onto V such that $f_m(\lambda^*) = \lambda + m\mu$ for an integer m. Especially f_0 is said to be faithful. For a link ℓ^* in V^*, $f_m(\ell^*)$ is called a link T-congruent to $\ell = f_0(\ell^*)$ (in V) and denoted by $\ell(m)$. The winding number of ℓ in V means the (algebraic) intersection number of ℓ and a meridian disk of V and is denoted by $w_v(\ell)$ or simply by $w(\ell)$.

Theorem 1. Let $\ell, \ell(m)$ and $p = w(\ell)$ be those of the above. Suppose that p is odd or both p and m are even. Then ℓ is proper if and only if $\ell(m)$ is proper. Let ℓ be a proper link.

1. Assume that p is odd. Then
 - $\varphi(\ell(m)) = \varphi(\ell)$ if m is even, or m is odd and $p = 8r \pm 1$
 - $\equiv \varphi(\ell) + 1 \pmod{2}$ if m is odd and $p = 8r \pm 3$.

2. Assume that p and m are even. Then
 - $\varphi(\ell(m)) = \varphi(\ell)$ if $p = 4r$
 - $\equiv \varphi(\ell) + 1 \pmod{2}$ if $p = 4r + 2$,

for an integer r.

Shibuya, T.
Osaka J. Math.
26 (1989), 483–490
If \(p \) is even and \(m \) is odd in Theorem 1, \(\ell(m) \) is not always proper even though \(\ell \) is proper.

Let \(V_1^*, \ldots, V_n^* \) be mutually disjoint solid tori in \(\mathbb{R}^3 \) with cores \(c_1^*, \ldots, c_n^* \) respectively such that \(\Gamma^* = c_1^* \cup \cdots \cup c_n^* \) is a trivial link. An orientation preserving homeomorphism \(f \) of \(\mathcal{U}^* = V_1^* \cup \cdots \cup V_n^* \) onto \(\mathcal{V} = V_1 \cup \cdots \cup V_n \) is said to be faithful if \(f|_{V_i^*}: V_i^* \rightarrow V_i \) is faithful for \(i = 1, \ldots, n \). For a link \(l^* = l_1^* \cup \cdots \cup l_n^* \) in \(\mathcal{U}^* \), we write \(f(l^*) \) (or \(f(l_i^*) \)) by \(\ell(\text{or} \ l_i) \), where \(l_i^* \) is a link in \(V_i^* \).

Theorem 2. Let \(l^*, \ell = \ell_1 \cup \cdots \cup \ell_n \) and \(\Gamma = f(\Gamma^*) \) be those of the above. Suppose that \(\omega(l_i) \equiv \omega(l_j) \pmod{4} \) for \(i, j = 1, \ldots, n \) and \(q = \text{Link}(\Gamma) \). If \(l^* \) and \(\Gamma \) are proper, then \(\ell \) is also proper and

1. \(\varphi(\ell) \equiv \varphi(l^*) + \varphi(\Gamma) \pmod{2} \) if \(p \) is odd
2. \(\varphi(\ell) = \varphi(l^*) \equiv \varphi(l^*) + 1 \pmod{2} \) if \(q \) is odd and \(p = 4m + 2 \)

for some integer \(m \).

Corollary 1. Let \(l^*, \ell, \Gamma, p \) and \(q \) be those of Theorem 2. If \(q \) is even, then

\[
\varphi(\ell) \equiv \varphi(l^*) + \varphi(\Gamma) \pmod{2} \quad \text{if } p \text{ is odd}
\]

\[
\varphi(\ell) = \varphi(l^*) \quad \text{if } p \text{ is even.}
\]

If \(n = 1 \) in Theorem 2, namely \(\Gamma \) is a knot, we define that \(\text{Link}(\Gamma) = 0 \). Hence we obtain the following.

Corollary 2. If \(\Gamma \) is a knot,

\[
\varphi(\ell) \equiv \varphi(l^*) + \varphi(\Gamma) \pmod{2} \quad \text{if } p \text{ is odd}
\]

\[
\varphi(\ell) = \varphi(l^*) \quad \text{if } p \text{ is even.}
\]

Theorem 3. Let \(l^*, \ell = \ell_1 \cup \cdots \cup \ell_n \) be those of the above. Suppose that \(\omega(l_i) \equiv \omega(l_j) \pmod{4} \) and \(\text{Link}(c_i, \Gamma - c_i) \equiv 0 \pmod{4} \) for \(i = 1, \ldots, n \). If \(l^* \) is proper, then \(\ell \) is proper and

\[
\varphi(\ell) \equiv \varphi(l^*) + \varphi(\Gamma) \pmod{2} \quad \text{if } p \text{ is odd}
\]

\[
\varphi(\ell) = \varphi(l^*) \quad \text{if } p \text{ is even.}
\]

Theorem 4. Let \(\ell = \ell_1 \cup \cdots \cup \ell_n \) and \(\Gamma \) be those of the above. If \(\Gamma \) is a boundary link and \(\ell_i \) is proper for \(i = 1, \ldots, n \), then \(\varphi(\ell) \equiv \sum_{i=1}^{n} \varphi(\ell_i) \pmod{2} \).

The author thanks to Doctor H. Murakami for his helpful advice.

Proof of Theorems.

Lemma 1 is easily obtained by Theorem 2 in [4].

Lemma 1. If two proper links \(L_1 \) and \(L_2 \) are related, then \(\varphi(L_1) = \varphi(L_2) \).
For a knot K, \overline{K} means the knot orientation reversed to K. For a 2-component link $L_0 = K_1 \cup K_2$, let $L'_0 = \overline{K}_1 \cup \overline{K}_2$ and $s = \text{Link}(K_1, K_2)$.

Lemma 2 ([2]). \[V_{L'_0}(t) = t^{-3s} V_{L_0}(t) \] for Jones polynomials of L_0, L'_0.

For a link L, a relation between Jones polynomial and the Arf invariant of L is known by [3].

Lemma 3 ([3]). For a n-component link L,
\[
V_L(\sqrt{-1}) = \begin{cases}
(\sqrt{2})^{n-1} \times (-1)^{j(L)} & \text{if } L \text{ is proper} \\
0 & \text{if } L \text{ is non-proper.}
\end{cases}
\]

By using the above Lemmas, we prove Lemma 4 which is effective to prove Theorems 1, 2 and 3.

Let $L = L_1 \cup L_2$ be a link, where L_1, L_2 consist of m_1, m_2 knots K_1, \ldots, K_{m_1}, $K_{m_1+1}, \ldots, K_{m_1+m_2}$ respectively. The linking number of L_1 and L_2, denoted by $\text{Link}(L_1, L_2)$, means $\sum_{i=1}^{m_1} \sum_{j=m_1+1}^{m_1+m_2} \text{Link}(K_i, K_j)$. For a link $L = K_1 \cup \cdots \cup K_{m_1}$ we denote that $L_1 = K_1 \cup \cdots \cup K_{m_1}$.

Lemma 4. Let $L = L_1 \cup L_2$ be a proper link and $L' = L_1 \cup L_2$. Then L' is also proper and $\text{Link}(L_1, L_2)$ is even. Moreover, if $\text{Link}(L_1, L_2) \equiv 0 \pmod{4}$, then $\varphi(L') = \varphi(L)$ and $\varphi(L'_0) = \varphi(L_0)$.

Proof. Let $L_1 = K_1 \cup \cdots \cup K_{m_1}$ and $L_2 = K_{m_1+1} \cup \cdots \cup K_{m_1+m_2}$. As L is proper, $\text{Link}(K_1, L_2 - K_1) = 2r_i$ for $K_i \subset L$ and some integer r_i. Then we see that $\text{Link}(\overline{K}_1, L'_1 - \overline{K}_1) = 2(r_i - \text{Link}(K_i, L_1))$ for $K_i \subset L_1$ and $\text{Link}(K_1, L'_2 - K_1) = 2(r_i - \text{Link}(K_1, L_2))$ for $K_1 \subset L_2$ and that $\text{Link}(L_1, L_2) = 2(r_1 + \cdots + r_{m_1} - \text{Link}(L_1))$. Hence L' is also proper and $\text{Link}(L_1, L_2)$ is even.

Let $L_0 = K_1 \cup \cdots \cup K_{m_1}$ be a 2-component link related to L such that κ_1, κ_2 are obtained by fusion (band sum) of L_1, L_2 respectively and let $L_0' = \kappa_1 \cup \kappa_2$ which is related to L'. As $\text{Link}(\kappa_1, \kappa_2) = \text{Link}(L_1, L_2) = s$ is even, L_0 and L_0' are proper. So by Lemma 1, $\varphi(L_0) = \varphi(L)$ and $\varphi(L_0') = \varphi(L')$. As $\text{Link}(L_1, L_2) = \text{Link}(\kappa_1, \kappa_2) = s$, $V_{L_0}(t) = t^{-3s} V_{L'_0}(t)$ by Lemma 2 and hence $V_{L_0}(\sqrt{-1}) = (\sqrt{-1})^{-3s} V_{L'_0}(\sqrt{-1})$. Therefore if $s \equiv 0 \pmod{4}$, then $\varphi(L') = \varphi(L'_0) = \varphi(L_0) = \varphi(L)$ and if $s \equiv 2 \pmod{4}$, then $\varphi(L') = \varphi(L'_0) = \varphi(L_0) + 1 = \varphi(L) + 1 \pmod{2}$.

For a link L in a solid torus V, the minimum of intersection of L and a meridian disk in V is called the order of L (in V) and denoted by $o(L)$ or simply by $o(L)$.

To prove Theorem 1, we prepare Lemma 5.

Lemma 5. Let $\mathcal{L}_1, \mathcal{L}_2$ and $\mathcal{L}_3, \mathcal{L}_4$ be torus links of type $(8m \pm 1, 8m \pm 1)$, $(8m \pm 3, 8m \pm 3)$ and $(4m, 8m)(4m+2, 8m+4)$ for some integer m respectively.
Then L_1, L_2 and L_3, L_4 are proper. Furthermore if we orient L_i so that $o(L_i)=w(L_i)$ for each i, then $\phi(L_1)=\phi(L_3)=0$ and $\phi(L_2)=\phi(L_4)=1$.

Proof. It is easily seen that L_i is proper for $i=1, 2, 3, 4$.

Next suppose that $o(L_i)=w(L_i)$ for each i. L_1 consists of $(8m\pm 1)$-component. Let L_{11}, L_{12} be disjoint sublinks of L_1 with $4m, (4m\pm 1)$-components respectively. Then $\text{Link}(L_{11}, L_{12})=4m (4m\pm 1)$. Hence $\phi(L_1)=\phi(L_{11} \cup L_{12})$ by Lemma 4. As $L_{11} \cup L_{12}$ is related to a torus knot of type $(\pm 1, \pm 1)$, $\phi(L_1)=0$. By the same way as above, we see that $\phi(L_2)=1$, for the Arf invariant of torus link of type $(\pm 3, \pm 3)$ is 1.

L_3 consists of $4m$-component and let L_3, L_3' be disjoint sublinks of L_3 with $2m, 2m$-components. Then $\text{Link}(L_3, L_3')=8m^2$. Hence $\phi(L_3)=\phi(L_{31} \cup L_{32})$ by Lemma 4. As $L_{31} \cup L_{32}$ is related to a trivial knot, $\phi(L_3)=0$. By the same way as above, we easily see that $\phi(L_4)=1$.

Proof of Theorem 1. We easily see that, when p is odd or both p and m are even, l is proper if and only if $\ell(m)$ is proper.

Let n be $o(l)$. Then $\ell(m)$ is obtained by a fusion of l and a torus link L_0 of type (n, mn) split from l in V and hence $\ell(m)$ is related to $l_0 L_0$, where o means that l is split from L_0. By the way, $l_0 L_0$ is related to $l_0 L$, where L is a torus link of type $\langle p, mp \rangle$ for $p=w(L)$. If l and $\ell(m)$ are proper, L_0, L are also proper and $\phi(\ell(m))=\phi(l_0 L_0)=\phi(l_0 L)$ by Lemma 1. Hence we obtain Theorem 1 by Lemma 5.

Let $V=V_1 \cup \cdots \cup V_n$ be the union of mutually disjoint solid tori in R^3 and Γ that of Theorem 2. For a core c_i, take a p_i-component link, denoted by p_i, c_i, in V_i, each of which is parallel and homologous to c_i and non-twisted, namely p_i, c_i is contained on a non-twisted annulus A_i in V_i with $\partial A_i \sim c_i$, in V_i for $i=1, \cdots, n$. Especially if $p_i=p_j=(=p)$, we denote $p_{c_1} \cup \cdots \cup p_{c_n}$ by $p \Gamma$.

In Lemma 6, we consider the case that $p=2$ which is used to prove Lemma 7.

Lemma 6. $\phi(2\Gamma) = \begin{cases} 0 & \text{if } q \text{ is even} \\ 1 & \text{if } q \text{ is odd, where } q=\text{Link}(\Gamma) \end{cases}$

Proof. Let $2\Gamma=\Gamma \cup \Gamma'$. As $c_i \cup c_i' (\subset \Gamma \cup \Gamma')$ is non-twisted, $\text{Link}(\Gamma, \Gamma')=2q$. Hence if q is even, $\phi(2\Gamma)=\phi(\Gamma \cup \Gamma')$ and if q is odd, $\phi(2\Gamma) \equiv \phi(\Gamma \cup \Gamma')+1 \pmod{2}$ by Lemma 4. As $\Gamma \cup \Gamma'$ is related to a trivial knot, we obtain Lemma 6 by Lemma 1.

Lemma 7. If Γ is proper, $p \Gamma$ is also proper and

1. $\phi(p \Gamma) = \phi(\Gamma)$ if p is odd

2. $\phi(p \Gamma) = \begin{cases} 0 & \text{if } p \text{ and } q \text{ are even, or } q \text{ is odd and } p=4m \\ 1 & \text{if } q \text{ is odd and } p=4m+2 \end{cases}$
for some integer m and $q = \text{Link}(\Gamma)$. Hence if q is even,
\[
\varphi(p\Gamma) = \begin{cases}
\varphi(\Gamma) & \text{if } p \text{ is odd} \\
0 & \text{if } p \text{ is even.}
\end{cases}
\]

Proof. As pc_i is non-twisted, we easily see that if Γ is proper, $p\Gamma$ is also proper.

Lemma 7 is clear if $p=0$. Hence we assume that $p>0$. Each pc_i consists of p components, say c_{i_1}, \ldots, c_{i_p}. Let $L_1 = c_{i_1} \cup c_{i_2} \cup \cdots \cup c_{i_m}$ and $L_2 = p\Gamma - L_1$. Then we see that $\text{Link}(L_1, L_2) = 2(\rho - 1)q$.

If p is odd or q is even, $\varphi(p\Gamma) = \varphi(L_1 \cup L_2)$ by Lemma 4. As $L_1 \cup L_2$ is related to $(p-2)\Gamma$, $\varphi(p\Gamma) = \varphi((p-2)\Gamma)$ by Lemma 1. By doing this successively, if p is odd, $\varphi(p\Gamma) = \varphi(\Gamma)$ and if both p and q are even, $\varphi(p\Gamma) = \varphi(\emptyset) = 0$ for a trivial knot \emptyset.

Next we consider the case that q is odd and p is even. Then,
\[
\varphi(p\Gamma) \equiv \varphi((p-2)\Gamma) + 1 \equiv \varphi((p-4)\Gamma) \pmod{2}
\]
by Lemma 4. Hence if $p=4m$, $\varphi(p\Gamma) = \varphi(\emptyset) = 0$ and if $p=4m+2$, $\varphi(p\Gamma) = \varphi(2\Gamma) = 1$ by Lemma 6.

By the similar proof of Lemma 7, we obtain Lemma 8.

Lemma 8. Let $p_i \equiv p_j \pmod{4}$ and $p = \text{Min} \{p_1, \ldots, p_n\}$. Then $\varphi(p\Gamma) = \varphi(p_1 c_{i_1} \cup \cdots \cup p_n c_{i_n})$ for a proper link $\Gamma = c_{i_1} \cup \cdots \cup c_{i_n}$.

Let L_i be a link in V_i with r_i components for some integer r_i such that L_i is non-twisted and parallel to c_{i} and $w(L_i) = p_i (\leq r_i)$ for $i=1, \ldots, n$. Then as $L = L_1 \cup \cdots \cup L_n$ is related to $p_1 c_{i_1} \cup \cdots \cup p_n c_{i_n}$, we obtain Lemma 9.

Lemma 9. If Γ is proper and $p_i \equiv p_j \pmod{2}$, L is also proper and $\varphi(L) = \varphi(p_1 c_{i_1} \cup \cdots \cup p_n c_{i_n})$.

Proof of Theorem 2. Let $\mathcal{U} = U_1 \cup \cdots \cup U_n$ be the union of mutually disjoint solid tori in \mathbb{R}^3 with core $-\Gamma = (-c_1) \cup \cdots \cup (-c_n)$, the reflective inverse of Γ, split from \mathcal{V} by a 2-sphere S^2 and symmetric with respect to S^2. For $i = 1, \ldots, n$ in \mathcal{U}, let \tilde{L}_i be a link with $r_i (=o(L_i))$ components in U_i such that \tilde{L}_i is non-twisted and parallel to c_i and $w(\tilde{L}_i) = p_i (\leq r_i)$, $i=1, \ldots, n$. Attach a 3-ball B_i to $V_i \cup U_i$ such that $V_i \cup U_i \cup B_i$ is symmetric with respect to S^2, Fig. 1(b) for each i. Let M_i, M_i' be meridian disks of V_i, U_i respectively such that $\#(L_i \cap M_i) = \#(\tilde{L}_i \cap M_i') = p_i$ and $M_i \cap B_i = \partial M_i \cap \partial B_i (= \{\text{an arc } \alpha_i\}), M_i' \cap B_i = \partial M_i' \cap \partial B_i (= \{\text{an arc } \beta_i\})$, where $\#(X)$ means the number of points of X, see Fig. 1(a). Let D_i be a proper non-twisted disk in B_i with $\partial D_i \supset \alpha_i \cup \beta_i$ and $\Delta_i = M_i \cup M_i' \cup D_i$. For each i, perform the fusion of $L_i \circ \tilde{L}_i$ along Δ_i and we obtain a link L_i which is contained in a solid torus $W_i = \tilde{V}_i \cup U_i \cup B_i - \Delta_i \times [-\varepsilon, \varepsilon]$.
for a small positive number ε, Fig. 1(c). Then $\mathcal{W}=W_1 \cup \cdots \cup W_n$ is the union of disjoint solid tori which is symmetric with respect to S^2 by the construction. So the core of \mathcal{W} is cobordant to zero by [1] and hence $L=L_1 \cup \cdots \cup L_n$ is cobordant to $L^* = L_1^* \cup \cdots \cup L_n^*$ by [5], [6] for a faithful homeomorphism f_0 of \mathcal{W}^* onto \mathcal{W}, where $L=f_0(L^*)$. As \mathcal{L}_i is non-twisted, L^* is ambient isotopic to \mathcal{L}_i^*. As L is cobordant to \mathcal{L}_i^* and \mathcal{L}_i^* is proper, L is also proper. Moreover as Γ is proper, $\mathcal{L}=\mathcal{L}_1^* \cup \cdots \cup \mathcal{L}_n^*$ is proper. Hence we easily see that \mathcal{L} is also proper. As L and \mathcal{L} are related, $\varphi(\mathcal{L}) + \varphi(\mathcal{L}^*) \equiv \varphi(L) = \varphi(L^*) = \varphi(\mathcal{L}_i^*) \pmod{2}$.

So we obtain Theorem 2 by Lemmas 7, 8 and 9.

Remark 1. In Theorem 2, if we replace the condition "$\rho_i \equiv \rho_j \pmod{4}$" by "$\rho_i \equiv \rho_j \pmod{2}$", the conclusion is not true. For example, we consider the links Γ, \mathcal{L} illustrated in Fig. 2. Then $\varphi(\Gamma)=0$ and $\varphi(\mathcal{L})=1$, hence $\varphi(\mathcal{L}) \equiv \varphi(\mathcal{L}_i^*) + \varphi(\Gamma) \pmod{2}$.

Proof of Theorem 3. As $\text{Link}(c_i, \Gamma-c_i) \equiv 0 \pmod{4}$, $\text{Link}(c_i, \Gamma-c_i)=4r_i$ for some integer r_i for each i. Then $2\text{Link}(\Gamma) = \sum_{i=1}^n \text{Link}(c_i, \Gamma-c_i) = 4(r_1+\cdots+}$
Hence Link(Γ) is even. Therefore we obtain Theorem 3 by Lemma 7 and the proof of Theorem 2.

REMARK 2. The link in Fig. 2 is an example that the conclusion of Theorem 3 is not true if we replace that \(\text{"Link}(c_i, \Gamma - c_i) \equiv 0 \pmod{4}\) by \(\text{"Link}(c_i, \Gamma - c_i) \equiv 0 \pmod{2}\).

EXAMPLE 1. Let Γ, ℓ be links illustrated in Fig. 3. As \(\text{Link}(Γ) = 3 \) and ℓ* is a trivial link, \(\varphi(ℓ) = \varphi(ℓ^*) + 1 = 1 \) by Theorem 2.

\[
\begin{align*}
\text{Fig. 3}
\end{align*}
\]

EXAMPLE 2. Let ℓ be a link illustrated in Fig. 4. As Γ is the Whitehead link, \(\text{Link}(Γ) = 0 \) and \(\varphi(Γ) = 1 \) and ℓ* is a trivial link. Hence \(\varphi(ℓ) = \varphi(ℓ^*) + \varphi(Γ) = 1 \) by Theorem 3.

\[
\begin{align*}
\text{Fig. 4}
\end{align*}
\]

Proof of Theorem 4. For a proper link \(ℓ_i \) in \(V_i \), let \(k_i \) be a knot obtained by a fusion of \(ℓ_i \) in \(V_i \) for each \(i \). As \(ℓ_i \), \(ℓ \) are related to \(k_i \), \(ℓ_0 = k_1 \cup \cdots \cup k_n \) respectively, \(\varphi(ℓ_i) = \varphi(k_i) \) and \(\varphi(ℓ) = \varphi(ℓ_0) \) by Lemma 1. Furthermore as \(Γ \) is a boundary link, there are mutually disjoint surfaces \(\mathcal{F} = F_1 \cup \cdots \cup F_n \) with \(\partial \mathcal{F} = ℓ_0 \), \(\partial F_i = k_i \). Then \(\varphi(ℓ_0) = \sum_{i=1}^{n} \varphi(k_i) \pmod{2} \) by Theorem 3 in [4]. Hence we obtain that
\[\varphi(\mathcal{L}) = \varphi(\mathcal{L}_0) \equiv \sum_{i=1}^{n} \varphi(k_i) \equiv \sum_{i=1}^{n} \varphi(l_i) \pmod{2}.\]

References

Department of Mathematics
Osaka Institute of Technology
Asahi, Osaka 535
Japan