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1. Introduction

Every element of the commutator subgroup G’ of a group G is a finite
product of commutators. We shall say that G has property (C) if every ele-
ment of G’ is a commutator in G. For finite groups which do not have prop-
erty (C) see [11], [13, p. 258], and [14].

Ore [19] raised the question whether all finite non-abelian simple groups
G have property (C). If the character table of G is known then it is easy to
check which conjugacy classes of G consist of commutators, see [14]. Ito
[15] showed that the alternating groups 4, (n>5) have property (C), see also
[19]. For other results on Ore’s question consult [11] and the references there-
in.

Shoda [22] showed that if % is an algebraically closed field then the group
SL,(k) has property (C). From the results of Thompson [23] it follows that
SL,(k) has property (C) if k is an arbitrary field except in the case when n=2
(mod 4), k contains a primitive n-th root of unity, and the equation x*4-y*=—1
has no solution in k. In the exceptional case only the central elements of order
n are not commutators.

Goto [10] showed that connected compact topological group G whose
commutator subgroup is dense in G' has property (C). In particular, all con-
nected compact semisimple Lie groups have property (C), see also [2, p. 33].
Pasiencier and Wang [20] proved the same result for connected complex semi-
simple Lie groups. Their result has been extended to connected semisimple
algebraic groups over algebraically closed fields by Ree [21].

Note that —1&SL,(R) is not a commutator of SL,(R) by Thompson’s re-
sults. More generally, we show in Proposition 1 that if E=exp(2#i/n), n=
p+q, p=g=>1, then €€ SU(p, g) is not a commutator in SU(p, g). This includes
the previous case because SU(1, 1)=SL,(R). Thus there exist connected almost
simple real Lie groups which do not possess property (C).

Isaacs [14] observes that no example seems to be known of a non-abelian
simple group which possesses a non-commutator. We think that the simple
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group of [9] should be examined in this respect. Here we raise and discuss
the following conjecture.

Conjecture A. Every simple real Lie group G has property (C). (By
definition a simple real Lie group is connected and centerless.)

It is known that this conjecture holds in the following cases:

(i) if G is compact [6],

(if) if G has complex structure [20],

(i) if G=PSL,(R), see [23, Theorem 3].

Kursov [17] claimed that the quaternionic special linear group SL,(H) has
property (C). His proof of this (and other results) contains two mistakes on
which we will comment later. We shall give a different proof of his claim.

Let G be a connected semisimple real Lie group and g=¥@p the Cartan
decomposition of its Lie algebra g. If t is semisimple we show that every
element of G is a product of two commutators. We also show that the groups
Sp(p, q), p=g=>1, and the identity components of the groups SO(p, 1) for
»=0 or 3 (mod 4) have property (C).

2. Results and proofs

As observed in the introduction, the result of Pasiencier and Wang about
complex semisimple groups does not extend to the real case. In our first pro-
position we show that the groups SU(p, ¢), p=¢>1, do not have property (C).
(All connected semisimple Lie groups are perfect, i.e., they coincide with their
commutator subgroups.)

Proposition 1. Let E=exp(2xi[n) and let p, q be positive integers such that
n=p-+q and p>q>1. Then E&SU(p, q) is not a commutator in SU(p, q).

Proof. Assume that §=aba™'b~' where a, b&SU(p, ¢). Then aba™'=
&b, and consequently the spectrum of b has the form {A&*: 0<k<n}. Let J=
I,&(—1,) and let f(x, y)=«*]y for column vectors x, y=C". Let v, be an
eigenvector of b for eigen-value A&*, 0<k<<n. Since the spectrum of b has
the above form, it follows easily that |A|=1 and the numbers a,=f(7;, v;), 0<
k<mn, are real and nonzero, see for instance [7]. Precisely p of these numbers
are positive and the remaining ¢ of them are negative. Since a is an isometry
of (C”, f) which carries the subspace spanned by v, to the subspace spanned by
¥4, (indices mod #), we have a contradiction. QED.

In view of the above proposition, it is of interest to find the least integer
n such that every element of a real connected semisimple Lie group G can be
expressed as a product of # commutators. It is not known (to this author)
whether this statement is true with n=2. Our next result shows that it is
true when the maximal compact subgroup of the adjoint group of G is semi-
simple.
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Theorem 2. Let g=tPp be a Cartan decomposition of the Lie algebra g
of a connected semisimple real Lie group G. If T is semisimple then every element
of G is a product of two commutators.

Proof. The connected Lie subgroup K which corresponds to  is a maxi-
mal compact subgroup of G and the map KX p—G, defined by (y, X)—yexp X
is a diffeomorphism [4, p. 168]. Hence if x&G we can write x=y exp X where
yeK and Xep. By a result of Goto [10] y is a commutator in K. It re-
mains to show that exp X is a commutator in G. Let a be a Cartan subspace
(i.e. a maximal abelian subspace) of p containing X. The Weyl group W of
(g, t) is the quotient group Ny(a)/Cx(a), where Ng(a), resp. Cg(a), is the norma-
lizer, resp. centralizer, of a in K for the adjoint action Ad of K on g. It is
well known [12, p. 289] that W acts faithfully on a as a finite reflection group.
We shall now use an argument of Goto [10]. If ¢ is a Coxeter element of W
then ¢—1 is invertible [1, Théoréme 1, p. 119] and hence we can write X=
(c—1)Y for some Yea. If 2 Ng(a) is chosen so that c=Ad 2|, then

exp X = exp(c—1)Y = exp ¢(Y)-exp(—Y)
= exp(Ad z) (Y)-exp(—7Y)
= 2(exp Y)z leexp(—Y). QED.

Next we consider the case of the special linear group over the real quater-
nions H. We shall use some elementary facts of linear algebra over division
rings for which we recommend the reader to consult the references [3] and
[16]. By 1, 7, /, & we denote the standard basis of H over R. Every matrix
AeGL,(H) is conjugate to an upper triangular matrix B. The diagonal entries
of B are the eigenvalues of 4 and they are unique up to conjugacy in H*. The
special linear group SL,(H) consists of all matrices A& GL,(H) for which the
product of all # eigenvalues has norm 1. Of course this is equivalent to the
requirement that the Dieudonné’s determinant of 4 is equal to 1. SL,(H)
is a connected closed Lie subgroup of GL,(H) of co-dimension 1. This group
is almost simple (and perfect) with center of order 2. Kursov [17] stated that
every element of SL,(H) is a commutator in that group. But the proof of his
Lemma 2 contains two mistakes, which we were not able to fix.

First, he claims that if 4 is a diagonal matrix, say 4=diag(e;, -, &,), then
its characteristic matrix ¢J,—A4 has only one invariant factor (by ¢z we denote an
indeterminate which commutes with quaternions). For the definition of in-
variant factors we refer to [3] or [16]. A counterexample is provided by the qu-
aternionic matrix A=diag(s, §, k). Indeed, by performing elementary row and

column transformations, we get
(t . —j - )
0 2(t—k)

(t——j O) (t—j t—k) (t—jj—k)
0 t—k 0 t—k 0 t—k
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Q(t?. (t~k)1(i—k))_>((l) (t—Fk) (J'Ek) (t~j)> B ((1) (t—F) (t+2) (J'—k))

—’(<1> (t—k) ?t+k)) ’

and consequently 4 has two (non-constant) invariant factors ¢—i and (t—&)
(t+k)=+1.

Second, he claims that, if R=HT[¢] and if the quaternions g8, -+, B, are
distinct, we have an isomorphism of right R-modules

R|(t—,) - (t—Bn)R=R|(t—B)RD-- BR/(t— LR .

A counterexample: Let #=3, and let the 8’s be the quaternionic units 7, j, k.
Then the module on the right hand side is annihilated by #*41 while the one
on the left hand side is not.

Kursov’s paper is quoted in [8], but the above mistakes apparently have
not been noticed so far. Hence the main result of [17], which deals with gen-
eral division rings remains in doubt. We shall now prove Kursov’s claim
about SL,(H).

Theorem 3. Every element of SL,(H) is a commutator.

Proof. For n=1 this follows from [10]. We show first that a Jordan
block J,(N\), of size m, with eigenvalue A&C, |1 | =1, is a commutator in SL,,(H).
If A#=—1 choose p&C such that Au’=—1. If X=jJ,(u) and Y=EI,, then
since @3 p we have

XYXTY ™ = —Ju(@) Ja(0) ' ~J(—F) = Ju(D) »

where ~ is the similarity relation. In the case A=—1 we take X=jJ,(¢) and
Y=jI,. Then

XYXY'=]o(—0) JuD) '~ Tu(—1) = JulD) .

Next let X SL,(H) be arbitrary. By making use of the Jordan canonical
form, see [16], and in view of the previous remark we may assume that X has
the form

X 2],,,1(7\1)69-"65],,.,(7&,), m+-tmy=mn;

where )\, €C and |\, | F1, 1<r<s.
Let (@, ***, p,) be the main diagonal of X and let

Y=v» dlag(l) 1y rfbzs t°y l‘l”‘z"'”’n—l) ’

where v&C is chosen so that v?u u,--p,=1. Since X&SL,(H), we have
|vl=1. The main diagonal of XY is
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ve(py, talty 5 Bafla fha) -

Since p,=X\, for 1<r<m, and |\,| =1, the first m, diagonal entries of XY
are distinct. Similarly the next m, diagonal entries of XY are distinct, etc.
These facts and the obvious block-diagonal structure of XY imply that XY
is similar to the diagonal matrix Z having the same diagonal entries as XY.

Since vp,p, - p,=v '=p, we have Z~Y. Hence XY~Z~Y, and so X
is a commutator in GL,(H ), and consequently also in SL,(H). QED.

In the last theorem we show that two infinite series of real semisimple
Lie groups have property (C). If G is a Lie group then by G, we denote the
identity component of G.

Theorem 4. If G is one of the groups Sp(p, q), p=q=>1, or the groups
SO(p, 1)o, =0 or 3 (mod 4), then every element of G is a commutator.

Proof. Let a&G be arbitrary. Let g be the Lie algebra of G and exp:
g—>G the exponential map of G. We need the following two facts. First,
for the groups mentioned in the theorem the exponential map is surjective,
see [5] and [18]. Hence we can write a=exp X for some X&g. Second,
for the same groups and for any X &g there exists an inner automorphism a
of g such that a(X)=—X, see [6]. Thus, if Ad is the adjoint representation
of G, we have a=Ad b for some b&G. Hence, we have

a = exp X = exp(X/2)-exp(X/2) = exp(a(—X/2))-exp(X/2)
= exp(Ad b (—X/2))-exp(X/2) = b exp(—X/2)-b7 -exp(X/2),

i.e., @ is a commutator in G. QED.
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