<table>
<thead>
<tr>
<th>Title</th>
<th>A cochain complex associated to the Steenrod algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Shimada, Nobuo</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 31(2) P.455-P.471</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1994</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/12828</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/12828</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
A COCHAIN COMPLEX ASSOCIATED TO THE STEENROD ALGEBRA

In Memory of the late Professor José Adem

NOBUO SHIMADA

(Received November 19, 1992)

0. Introduction

In [8], the author introduced an acyclic, free resolution of the ground ring \mathbb{Z} of integers (resp. its localization $\mathbb{Z}(p)$ for a prime p) as the trivial module over the Landweber-Novikov algebra S (resp. $S(p) = \mathbb{Z}(p) \otimes S$), which is considerably smaller than the bar resolution.

In this paper, the same method of construction is applied to the case of the mod p Steenrod algebra A. The resulted resolution $X = A \otimes \hat{X} \rightarrow \mathbb{Z}/p$ has inductively defined differential d and contracting homotopy σ, and is naturally embedded in the bar resolution $B(A)$ as a direct-summand subcomplex.

The apparent feature of this resolution is that it seems to be an immediate 'lift' of the May resolution [5], while the latter is a resolution over the associated graded algebra $E^0 A$ for the augmentation filtration on the Steenrod algebra. In fact, the corresponding filtration on X leads to an equivalent of the May spectral sequence, of which $E^1 X$ is isomorphic to the May resolution and E^r-terms are the same as those of the May spectral sequence for $r \geq 2$.

In the case $p = 2$, the chain complex \hat{X} will be given as a polynomial ring P, and the dual cochain complex P^* has a non-associative product, which induces the usual associative product in its cohomology $H^*(A) = \text{Ext}^*_{\mathbb{Z}/2}(\mathbb{Z}/2, \mathbb{Z}/2)$, the E_2-term of the Adams spectral sequence [1,2].

May [5] studied extensively his spectral sequence and succeeded to obtain a great deal of information about $H^*(A)$ (See also, Tangora [10] and Novikov [7]).

It is hoped that the present work could be useful for calculating the differentials in the May spectral sequence and the ring structure of $H^*(A)$.

In this paper we shall restrict ourselves to the case $p = 2$. A parallel treatment for the odd prime case will be only suggested in the last section.
1. Notation and results

Let A_* be the dual Hopf algebra ([6],[9]) of the mod 2 Steenrod algebra A. A_* is given as the polynomial algebra $\mathbb{Z}/2[\xi_1, \xi_2, \ldots]$ over $\mathbb{Z}/2$ on indeterminates $\xi_i (i \geq 1)$ of degree $2^i - 1$, with comultiplication

$$\psi_{\xi_k} = \sum_{i=0}^{k} \xi_k^{2^i} \otimes \xi_i \quad (\xi_0 = 1).$$

Let $e_{i,k}=(\xi_i^k)^*$ denote the dual element of ξ_i^k with respect to the monomial basis $\{\xi_1, \xi_2, \ldots, \xi_n\}$ of A_*^*.

Lemma 1.1. (i) The Steenrod algebra A is multiplicatively generated by the set $\{e_{i,2^k}; i \geq 1, k \geq 0\}$, (ii) the set $\{1, e_{i_1,2^{k_1}} \cdots e_{i_n,2^{k_n}}; (i_1,k_1) < (i_2,k_2) < \cdots < (i_n,k_n)\}$ in the lexicographical order forms a $\mathbb{Z}/2$-basis of A, of which elements $e_{i,k} = e_{i,2^{k_1}} \cdots e_{i_n,2^{k_n}}$ are called admissible monomials.

Let L denote the $\mathbb{Z}/2$-submodule of A spanned by the set $\{e_{i,2^k}; i \geq 1, k \geq 0\}$, and $sL = \mathbb{Z}/2 \langle \{e_{i,2^k}\}; \; i \geq 1, k \geq 0 \rangle$, the suspension of L, with bideg $\langle e_{i,2^k} \rangle = (1,2^k(2^i - 1))$. Denote by $P = P(sL)$ the polynomial algebra (symmetric tensor algebra) on sL. We use the notation

$$\langle e_J \rangle = \langle e_{j_1,2^{l_1}}, \ldots, e_{j_s,2^{l_s}} \rangle = \langle e_{j_1,2^{l_1}} \rangle \otimes \cdots \otimes \langle e_{j_s,2^{l_s}} \rangle$$

with the index sequence

$$J : (j_1,l_1) \leq (j_2,l_2) \leq \cdots \leq (j_s,l_s),$$

in the lexicographical order and call it a canonical monomial in P.

Theorem 1.2. $X = A \otimes P$, with an inductively defined differential d gives an acyclic A-free resolution of $\mathbb{Z}/2$.

Proposition 1.3. There exist natural A-linear chain maps $f : X \to B(A)$ and $g : B(A) \to X$, such that $g \circ f = \text{id}$ and $f(P) \subset \bar{B}(A) = \mathbb{Z}/2 \otimes_{A} B(A) \subset B(A)$.

Proposition 1.4. The chain complex P with the induced differential $\bar{d} = \mathbb{Z}/2 \otimes_{A} d$ has a comultiplication $\Delta : P \to P \otimes P$ such that $(\bar{d} \otimes 1 + 1 \otimes \bar{d}) \Delta = \Delta \bar{d}$. This is not coassociative in general, but $(\Delta \otimes 1) \Delta$ and $(1 \otimes \Delta) \Delta$ are chain homotopic.

Corollary 1.5. The dual complex P^* of P with differential $\delta = \bar{\delta}$ has a non-associative product, therein δ is a derivation. This product induces the usual product in the cohomology $H^*(P^*, \delta) = H^*(A)$.
2. Preliminary

The lemma 1.1 may be well-known ([6],[4]), but we will recall its proof, since the resolution (Theorem 1.2) stems from the lemma.

We shall take the dual basis \(\{ \xi^*_\omega \} \) of \(A \) (See §1). By definition the product of basis elements is given by

\[
\xi^*_\omega \cdot \xi^*_\sigma = \sum \left(\xi^*_\omega \otimes \xi^*_\sigma \right)(\psi \xi_\lambda) \cdot \xi^*_\tau.
\]

Define the height of \(\xi^*_\omega \) to be \(\Sigma k_i \), the sum of exponents in the monomial \(\xi_\omega = \xi_1^{k_1} \cdots \xi_n^{k_n} \). Then we have the equality

\[
(2.1) \quad \xi^*_\omega \cdot (\xi^*_\sigma)^* = \xi^*_\omega + \sum_{\sigma} \xi^*_\sigma,
\]

where \(\xi_\omega = \xi_1^{k_1} \cdots \xi_n^{k_n} \), \(\xi_\sigma = \xi_1^{k_1} \cdots \xi_n^{k_n} \), and the second summand in the right hand side is a sum of suitable basis elements of height \(h(\xi^*_\sigma) < h(\xi^*_\omega) \). In fact, \(\xi_\sigma \) are so chosen that \(\psi \xi_\sigma \) contain \(\xi_\omega \otimes \xi_\sigma^n \) as a summand, and such a \(\xi_\sigma \) must be of the form

\[
(2.2) \quad \xi_\sigma = \xi_1^{v_1} \cdots \xi_n^{v_n} \xi_{n+1}^{v_1} \xi_{n+2}^{v_2} \cdots \xi_{n+1}^{v_{n-1}},
\]

with \(\sum_{i=0}^{n-1} v_i = k_n \), \(u_i + 2^i v_i = k_i \) (for \(1 \leq i \leq n-1 \)).

Then

\[
(\xi^*_\omega)^* = \sum_{i=1}^{n-1} u_i + \sum_{i=0}^{n-1} v_i = \sum_{i=1}^{n-1} k_i - 2^n \sum_{i=0}^{n-1} v_i < \sum_{i=0}^{n-1} k_i = h(\xi^*_\omega).
\]

Now by induction on height we conclude that any basis element \(\xi^*_\omega \) of \(A \) can be expressed by a sum of products of \(e_{i,k} = (\xi^*_i)^* \). But we can see easily that \(e_{i,k} \) with \(k, \not \text{a power of 2, is also decomposable into a sum of products of } e_{i,2^i} \). This proves (i) of Lemma 1.1.

Note further that

\[
(2.3) \quad (\xi^*_i)^* \cdot (\xi^*_j)^* = \binom{k+1}{k}(\xi^*_{i+k})^* + \Sigma \text{ terms of lower height}
\]

and

\[
(2.4) \quad [(\xi^*_i)^*,(\xi^*_j)^*] = \Sigma \text{ terms of lower height for } i \neq j.
\]

It follows then (ii) of Lemma 1.1.
Here are a few examples of (2.3) and (2.4):

\[[e_{1,1}, e_{1,2}] = e_{2,1}, \quad [e_{1,1}, e_{2,1}] = 0 \]
\[[e_{1,1}, e_{2,2}] = e_{3,1} = [e_{1,4}, e_{2,1}] \]
\[[e_{1,2}, e_{2,2}] = e_{1,1} \cdot e_{3,1} \]
\[e_{1,2} \cdot e_{1,2} = e_{1,1} \cdot e_{2,1} \]
\[e_{1,4} \cdot e_{1,4} = e_{1,2} \cdot e_{2,2} \]
\[e_{1,8} \cdot e_{1,8} = e_{1,4} \cdot e_{2,4} + e_{2,1} \cdot e_{2,2} \cdot e_{3,1} \]
\[[e_{1,1}, e_{1,64}] = e_{1,62} \cdot e_{2,1} + e_{1,58} \cdot e_{3,1} + e_{1,50} \cdot e_{4,1} + e_{1,34} \cdot e_{5,1} + e_{1,2} \cdot e_{6,1} \]
\[e_{i,1} \cdot e_{i,1} = 0 \quad (i \geq 1), \text{ etc. (Cf. [4])} \]

It will be another interesting problem to give the explicit formulae expressing (2.3) and (2.4) by *admissible monomials* in the sense of §1, like the Adem relations [3].

3. Resolution

In this section we shall give a detailed proof of Theorem 1.2, since we had remained in showing only a sketchy proof in [8] for the case of the Landweber-Novikov algebra. Clearly the set of canonical monomials \(\langle e_J \rangle \) forms a \(\mathbb{Z}/2 \)-basis of \(P \). Then \(P = \sum_{s \geq 0} P_s \), where the submodule \(P_s \) is spanned by \(\langle e_J \rangle \) of length \(|J| = s \). We call \(|J| \) also the homological dimension of \(\langle e_J \rangle \).

We shall introduce in \(X = A \otimes P \) a boundary operator \(d = (d_s) \):

\[d_s: X_s = A \otimes P_s \to X_{s-1} \]

and a contracting homotopy \(\sigma = (\sigma_s) \):

\[\sigma_s: X_s \to X_{s+1}, \]

so that \(X \) becomes an acyclic differential \(A \)-module (a chain complex) with augmentation \(\varepsilon: X \to \mathbb{Z}/2 \).

First define an \(A \)-map \(d_1: X_1 = A \otimes sL \to X_0 = A \) by

\[d_1(a \langle e_{i,2s} \rangle) = a \cdot e_{i,2s} \quad (a \langle e_{i,2s} \rangle \text{ means } a \otimes \langle e_{i,2s} \rangle), \]

and a \(\mathbb{Z}/2 \)-map \(\sigma_0: X_0 \to X_1 \) by

\[\sigma_0(1) = 0 \]
\[\sigma_0(e_{i_1,2^{k_1}} \cdots e_{i_n,2^{k_n}}) = e_{i_1,2^{k_1}} e_{i_{n-1},2^{k_{n-1}}} \langle e_{i_n,2^{k_n}} \rangle \]
for admissible monomials. Thus we have a direct sum decomposition

\[(3.3)\]

\[X_1 = \text{Im} \sigma_0 \oplus \text{Ker} \ d_1, \ \text{Ker} \ d_1 = \text{Im}(1 - \sigma_0 d_1),\]

\[\sigma_0 \eta = 0, \ \varepsilon d_1 = 0 \text{ and } d_1 \sigma_0 + \eta \varepsilon = 1,\]

where \(\eta: \mathbb{Z}/2^A \rightarrow A\) is the unit. Then \(d_2\) is easily defined by

\[(3.4)\]

\[d_2 \langle e_{j_1, 2l_1}, e_{j_2, 2l_2} \rangle = (1 - \sigma_0 d_1) (e_{j_2, 2l_2} \langle e_{j_1, 2l_1} \rangle) \quad ((j_1, l_1) \leq (j_2, l_2)).\]

On the other hand, it is laborious to find and formulate a proper candidate of possible contracting homotopy \(\sigma_1\). In order to overcome this difficulty, we begin with a careful observation of the construction \(X\).

Take the set of elements

\[(3.5)\]

\[e_I \langle e_J \rangle = e_{i_1, 2^k_1} \cdots e_{i_m, 2^k_m} \langle e_{j_1, 2^l_1} \cdots e_{j_s, 2^l_s} \rangle\]

with the index sequences \(I = (i_1, k_1) < \cdots < (i_m, k_m)\) and \(J: (j_1, l_1) \leq \cdots \leq (j_s, l_s)\) in the lexicographical order, and call it canonical basis of \(X = A \otimes P\).

Classify the canonical basis elements (c.b.e.'s) into the following types:

\[(3.6)\]

Type 1: \(\max I < \max J\) (i.e. \((i_m, k_m) < (j_s, l_s)\))

and

Type 2: \(\max I \geq \max J\).

Put

\[(3.7)\]

\[C_{1,s} = \mathbb{Z}/2 \{\text{c.b.e. of Type 1 in } X_s\}\]

and

\[C_{2,s} = \mathbb{Z}/2 \{\text{c.b.e. of Type 2 in } X_s\}\]

Then we have

\[(3.8)\]

\[X_s = C_{1,s} \oplus C_{2,s},\]

as a \(\mathbb{Z}/2\)-module, with obvious isomorphisms

\[\sigma_{s-1} \sim C_{1,s}, \ \ \ \sigma_{s}^{-1} = \tau_{s}^{-1},\]

defined by

\[(3.9)\]

\[\tau_{s}(e_I \langle e_J \rangle) = e_{I+(j_s, l_s)} \langle e_{J-(j_s, l_s)} \rangle \quad \text{for } e_I \langle e_J \rangle \in C_{1,s},\]
\[\sigma'_{s-1}(e_J) = e_{J - (i_n, k_n)}(e_J + (i_n, k_n)) \] for \(e_J(e_J) \in C_{2,s-1} \).

We shall introduce here a partial order in the set of index sequences \(J \) of the same length \(|J| = s \) as follows:

\[J' \leq J \text{ if } (j'_i, l'_i) \leq (j_i, l_i) \text{ for all } i, \quad \text{and} \]

\[J' < J \text{ if, moreover, } (j'_i, l'_i) < (j_i, l_i) \text{ for at least one } i. \]

Now assume that \((d_i, \sigma_{i-1}) \) are defined for \(1 \leq i \leq s - 1 \) and satisfy the following conditions (for convenience, put \(d_0 = \varepsilon \) and \(\sigma_{-1} = \eta \)):

\[(A_i) \quad \sigma_{i-1} = 0 \text{ and } \Im \sigma_{i-1} = C_{1,i}, \]

\[(B_i) \quad X_i = \Im \sigma_{i-1} \oplus \Ker d_i, \]

\[(C_i) \quad d_i \sigma_{i-1} + \sigma_{i-2} d_{i-1} = 1 \quad \text{and} \quad d_{i-1} d_i = 0, \]

\[(D_i) \quad (i) \text{ There is a } \mathbb{Z}/2\text{-isomorphism } \varphi_i : C_{2,i} \to \Ker d_i, \text{ defined by } \]

\[\varphi_i(e_J) = (1 - \sigma_{i-1} - d_{i-1})(e_{2i, i}(e_J)) \text{ for } e_J(e_J) \in C_{2,i} \]

\[(ii) \text{ Further, we have } \varphi_i(e_J) = e_J + \sum a_J a_J(e_J), \]

where \(e_J(e_J) \) are suitable c.b.e.'s with conditions \(J_a > J \) and \(\max J_a \geq \max J \) (See (3.10)).

We temporarily assume (D), of which proof is reasonably postponed. Under this induction hypothesis (3.11) we shall define \((d_s, \sigma_{s-1}) \) as follows.

First define \(d_s : X_s \to X_{s-1} \), as an \(A \)-map, by

\[d_s(e_J) = \varphi_{s-1}(\tau_{s-1}(e_J)) = (1 - \sigma_{s-2} d_{s-1})(e_{2s, 2s}(e_J)) \]

where \(|J| = s \) and \((j_s, l_s) = \max J \).

It follows immediately, from (C)\(_{s-1}\)

\[d_{s-1} d_s = 0. \]

Next define

\[\sigma_{s-1} = 0 \text{ on } \Im \sigma_{s-2} = C_{1,s-1}. \]

To define \(\sigma_{s-1} \) on \(\Ker d_{s-1} \), take the set \(\{ \varphi_{s-1}(e_J) ; e_J(e_J) \text{ c.b.e. of Type 2 in } X_{s-1} \} \) as a fixed basis of \(\Ker d_{s-1} \), by virtue of (D)\(_{s-1}\), and put

\[\sigma_{s-1}(\varphi_{s-1}(e_J)) = \sigma'_{s-1}(e_J) = e_J(e_J) \]

where \((i_n, k_n) = \max I \) (See (3.9)). Then \(\sigma_{s-1} \) is naturally extended to a \(\mathbb{Z}/2\)-map and gives an isomorphism.
Thus we have
\[
d_s = \begin{cases}
\varphi_s - \tau_s & \text{on } C_{1,s} \\
0 & \text{on } \Ker d_s
\end{cases}
\]

and verify \((A_s), (B_s), (C_s)\) for \((d_s, \sigma_{s-1})\). From (3.11), \((D_{s-1})\) and (3.14), it follows that

\[
(3.16) \quad \sigma_{s-1}(e_I \langle e_J \rangle) = e_I \langle e_{J + \max I} \rangle + \sum_{J_a > J, \max J_a \geq \max I_a} \sigma_{s-1}(e_{I_a} \langle e_{J_a} \rangle)
\]

for \(e_I \langle e_J \rangle \in C_{2,s-1}\), where the added conditions on the summand come from those of \(e_{I_a} \langle e_{J_a} \rangle \in C_{2,s-1}\), and as well

\[
(3.17) \quad d_s \langle e_J \rangle = e_{J_s,2s} \langle e_J \rangle + \sum_{J_y > J', \max J_y \geq (j_s, l_s) = \max J} e_{I_y} \langle e_{J_y} \rangle.
\]

Lemma 3.18.

\[
(3.18) \quad \sigma_{s-1}(e_I \langle e_J \rangle) = e_I \langle e_{J + \max I} \rangle + \sum_{J_a > J + \max I} e_{I_a} \langle e_{J_a} \rangle \quad \text{for } e_I \langle e_J \rangle \in C_{2,s-1}
\]

or, we write simply

\[
\sigma_{s-1}(e_I \langle e_J \rangle) = e_I \langle e_{J + \max I} \rangle + \Sigma \text{ higher terms.}
\]

Proof. In the right hand side of (3.16), using itself again, we have

\[
\sigma_{s-1}(e_I \langle e_{J_a} \rangle) = e_{I_a} \langle e_{J_a + \max I_a} \rangle + \sum_{J_{_B} > J_a, \max J_{_B} \geq \max I_{_B}} \sigma_{s-1}(e_{I_{_B}} \langle e_{J_{_B}} \rangle)
\]

here \(J_a > J\) and \(\max I_a \geq \max J_a \geq \max I\) so that \(J_a + \max I_a > J + \max I\). Repeating this process, we obtain Lemma 3.18.
Now $\varphi_s: C_{2,s} \to \text{Ker} \, d_s$ will be defined just as before:

\begin{equation}
\varphi_s(e_i(e_j)) = e_I(1 - \sigma_{s-1} d_s)(e_{i_n,2^n}(e_j)).
\end{equation}

To prove (D$_s$), (ii) it is sufficient to consider the special case $|I| = 1$:

\begin{equation}
\varphi_s(e_{i,2^k}(e_j)) = (1 - \sigma_{s-1} d_s)(e_{i,2^k}(e_j)) (i,k) \geq \max J.
\end{equation}

In view of (3.17), we have

\begin{equation}
\varphi_s(e_{i,2^k}(e_j)) = e_{i,2^k}(e_j) + \sigma_{s-1}(e_{i,2^k} d_s(e_j))
\end{equation}

\begin{equation}
= e_{i,2^k}(e_j) + \sigma_{s-1}(e_{i,2^k} e_{I,y}(e_j))
\end{equation}

\begin{equation}
+ \sum_{J_y > J', \max J_y \geq \max J} \sigma_{s-1}(e_{i,2^k} e_{I,y}(e_j)).
\end{equation}

Rewriting $e_{i,2^k} e_{I,y}$ and $e_{i,2^k} e_{I,y}$ in the admissible form:

\begin{equation}
e_{i,2^k} e_{I,y} = \sum_{\max I_y, I_z \geq (i,k)} e_{I_z}
\end{equation}

\begin{equation}
e_{i,2^k} e_{I,y} = \sum_{\max I_y, I_z \geq (i,k)} e_{I_y, I_z}
\end{equation}

we have, from Lemma 3.18,

\begin{equation}
\varphi_s(e_{i,2^k}(e_j))
\end{equation}

\begin{equation}
= e_{i,2^k}(e_j) + \sum_{\max I_z \geq (i,k)} \sigma_{s-1}(e_{I_z}(e_j)) + \sum_{J_y > J', \max J_y \geq \max J} \sigma_{s-1}(e_{I_y, I_z}(e_j))
\end{equation}

\begin{equation}
= e_{i,2^k}(e_j) + \sum_{\max I_z \geq (i,k)} \left(e_{I_z}(e_j + \max I_z) + \Sigma \text{higher terms} \right)
\end{equation}

\begin{equation}
+ \sum_{J_y > J', \max I_y, I_z \geq (i,k)} \left(e_{I_y, I_z}(e_{j_y + \max I_y, I_z}) + \Sigma \text{higher terms} \right).
\end{equation}

Then we have in general

\begin{equation}
\varphi_s(e_I(e_j)) = e_I \cdot \varphi_s(e_{i_n,2^n}(e_j))
\end{equation}

\begin{equation}
= e_I(e_j) + \sum_{J_z \geq J, \max J_z \geq \max I} e_{I_z}(e_{j_z}) \text{ for c.b.e. } e_I(e_j) \in C_{2,s}.
\end{equation}
Thus we have proved (3.11), (Dₜ), (ii).

To show (Dₜ), (i), first note that \(\psi_s(e_j\langle e_j\rangle)\in\ker d_s\) and the set \(\{\psi_s(e_j\langle e_j\rangle); \text{ c.b.e. } e_j\langle e_j\rangle\in C_{2,s}\}\) are linearly independent in virtue of (3.22). This means that \(\psi_s\) is injective. To show the surjectivity of \(\psi_s\), we replace each higher term \(e_i\langle e_j\rangle\) of Type 2 in (3.22) by \(\psi_s(e_i\langle e_j\rangle)\). Repeating this process, we should finally obtain

\[
\varphi_s(e_j\langle e_j\rangle) = e_j\langle e_j\rangle + \sum \psi_s(e_i\langle e_j\rangle) + u_{I,J},
\]

where \(u_{I,J}\in C_{1,s}\) and \(e_j\langle e_j\rangle + u_{I,J}\in\text{Im }\varphi_s\).

The difference \((1-\sigma_{s-1}d_s)(e_j\langle e_j\rangle) - (e_j\langle e_j\rangle + u_{I,J})\) belongs to \(\ker d_s\cap\text{Im }\sigma_{s-1} = 0\). Therefore we have

\[
(1-\sigma_{s-1}d_s)(e_j\langle e_j\rangle) = e_j\langle e_j\rangle + u_{I,J}\in\text{Im }\varphi_s.
\]

Since \((1-\sigma_{s-1}d_s)(C_{1,s}) = 0\) and \((1-\sigma_{s-1}d_s)(C_{2,s}) = (1-\sigma_{s-1}d_s)(X_s)\), we have \(\text{Im }\varphi_s = \text{Im }\sigma_{s-1}d_s\).

This proves (3.11), (Dₜ), (i).

Now, for the remaining case of \(n=1\), a proof of (D₁) can be performed in a literally parallel way as just described, so it will be omitted.

Thus we have completed the induction process and a proof of the theorem 1.2.

Here we shall show some simple examples of boundaries and contracting homotopies:

\[
\begin{align*}
\Delta(e_{1,1}e_{1,2}) &= e_{1,1}\langle e_{1,2}\rangle + e_{1,2}\langle e_{1,1}\rangle + e_{2,1}
\Delta(e_{1,1}e_{2,1}) &= e_{1,2}\langle e_{1,1}\rangle + e_{2,1}\langle e_{1,2}\rangle + \sigma_0(e_{1,2}\cdot e_{1,2})
\Delta(e_{1,2}e_{2,1}) &= e_{2,1}\langle e_{1,2}\rangle + e_{1,2}\langle e_{2,1}\rangle + \sigma_0[e_{1,2}, e_{1,2}]
\end{align*}
\]

for \((i,k) < (j,l)\), where \([,]\) means the commutator.

\[
\begin{align*}
\sigma(e_{1,2}\cdot e_{1,2}) &= (e_{1,2}\cdot e_{1,2})
\end{align*}
\]

for \((i,k)\geq\text{max }J\)

where the last example shows that \(\sigma_i \neq \sigma'_i\) in general.
4. Chain complex P and its dual

The construction P defined in §1 with the induced differential

\[d = \mathbb{Z}/2 \otimes d : P \to P \]

becomes a chain complex.

Define natural A-linear chain maps $f: X \to B(A)$ and $g: B(A) \to X$ in the usual way ([2]), using contracting homotopy σ of X resp. S of $B(A)$:

\[f_0 = \text{id}, \quad f_s(e_j) = S f_{s-1} d(e_j) \quad \text{for} \quad s \geq 1, \]

and similar for g.

By induction on dimension, we see easily that

\[g \circ f = \text{id} \quad \text{on} \quad X \quad \text{and} \quad f_s(e_j) \in \bar{B}(A). \]

This proves Prop. 1.3.

Similarly define a diagonal $\psi: X \to X \otimes X$ by

\[\psi_0: X_0 = A \to A \otimes A = (X \otimes X)_0, \quad \text{the diagonal of} \quad A \]

\[(i.e. \quad \psi_0(e_{i,k}) = \sum_j e_{i,k} \otimes e_{i,j}), \]

\[\psi_s(e_j) = \tilde{\sigma} \psi_{s-1} d(e_j) \quad \text{for} \quad s \geq 1, \]

where $\tilde{\sigma} = \sigma \otimes 1 + \varepsilon \otimes \sigma$ is the induced contracting homotopy of $X \otimes X$.

This ψ is a chain map, and there is a natural chain homotopy:

\[(\psi \otimes 1) \psi - (1 \otimes \psi) \psi = d^{(3)} H + H d, \]

\[\text{with} \quad d^{(3)} = d \otimes 1 \otimes 1 + 1 \otimes d \otimes 1 + 1 \otimes 1 \otimes d, \]

where $H: X \to X \otimes X \otimes X$ is a $\mathbb{Z}/2$-map of degree $(1,0)$.

The following example shows non-coassociativity of ψ.

\[\psi(e_{1,4}) = e_{1,4} \otimes 1 + e_{1,1} e_{1,2} \otimes e_{1,1} + e_{1,2} \otimes e_{1,2} + e_{1,3} \otimes e_{1,3} + 1 \otimes e_{1,4} \]

\[(((\psi \otimes 1) \psi - (1 \otimes \psi) \psi) \psi)(e_{1,4}) = e_{1,1} \otimes e_{1,2} \otimes e_{1,1}. \]
The diagonal ψ induces a diagonal $\Delta: P \rightarrow P \otimes P$,

$$\Delta = (\rho \otimes \rho) \circ \psi, \quad \rho = \varepsilon_d \otimes 1_p: X \rightarrow P, \quad \text{with}$$

$$\Delta^2 \Delta = \Delta \delta.$$

From (4.5), it follows that Δ is also homotopy coassociative. We shall show a few examples of $\Delta \langle e_j \rangle$:

\begin{align*}
\Delta \langle e_{1,2k} \rangle &= \langle e_{1,2k} \rangle \otimes 1 + 1 \otimes \langle e_{1,2k} \rangle \\
\Delta \langle e_{1,2}, e_{1,2} \rangle &= \langle e_{1,2}, e_{1,2} \rangle \otimes 1 + \langle e_{1,2} \rangle \otimes \langle e_{1,2} \rangle + 1 \otimes \langle e_{1,2}, e_{1,2} \rangle \\
\Delta \langle e_{1,1}, e_{1,4} \rangle &= \langle e_{1,1}, e_{1,4} \rangle \otimes 1 + \langle e_{1,1} \rangle \otimes \langle e_{1,4} \rangle + \langle e_{1,4} \rangle \otimes \langle e_{1,1} \rangle \\
\text{(4.8)} &+ 1 \otimes \langle e_{1,1}, e_{1,4} \rangle + \langle e_{1,2} \rangle \otimes \langle e_{2,1} \rangle \\
\Delta \langle e_{1,4}, e_{2,2}, e_{3,1} \rangle &= \langle e_{1,4}, e_{2,2}, e_{3,1} \rangle \otimes 1 + \langle e_{1,4} \rangle \otimes \langle e_{2,2}, e_{3,1} \rangle \\
&+ \langle e_{2,2} \rangle \otimes \langle e_{1,4}, e_{3,1} \rangle \\
&+ \langle e_{3,1} \rangle \otimes \langle e_{1,4}, e_{2,2} \rangle + \langle e_{2,2}, e_{3,1} \rangle \otimes \langle e_{1,4} \rangle + \langle e_{1,4}, e_{3,1} \rangle \otimes \langle e_{2,2} \rangle \\
&+ \langle e_{1,4}, e_{2,2} \rangle \otimes \langle e_{3,1} \rangle + 1 \otimes \langle e_{1,4}, e_{2,2}, e_{3,1} \rangle + \langle e_{2,1}, e_{3,1} \rangle \otimes \langle e_{3,1} \rangle \\
\end{align*}

and, in general

$$\Delta \langle e_j \rangle = \text{shuffle} + \Sigma \text{ extra terms},$$

where an extra term $\langle e_{j_1} \rangle \otimes \langle e_{j_2} \rangle$, with $\langle e_{j_1} \rangle \cdot \langle e_{j_2} \rangle \neq \langle e_j \rangle$, is indicated by the underline.

Now the dual cochain complex P^*, with differential $\delta = \delta^*$, has a product $\Delta^*: P^* \otimes P^* \rightarrow P^*$, which is 'homotopy associative' and δ is a derivation there.

The product Δ^* of P^* induces the usual associative product in the cohomology $H^*(P^*) = \text{Ext}^*(\mathbb{Z}/2, \mathbb{Z}/2)$ as stated in Corollary 1.5.

A few examples of boundaries are given by

\begin{align*}
\delta \langle e_{1,1}, e_{1,4}, e_{1,4} \rangle &= \langle e_{2,2}, e_{2,1} \rangle \\
\delta \langle e_{1,2}, e_{1,4}, e_{2,1} \rangle &= \langle e_{3,1}, e_{1,2} \rangle + \langle e_{2,2}, e_{2,1} \rangle \\
\delta \langle e_{1,1}, e_{1,2}, e_{2,2} \rangle &= \langle e_{3,1}, e_{1,2} \rangle + \langle e_{2,2}, e_{2,1} \rangle \\
\delta \langle e_{2,2}, e_{1,2} \rangle^* &= \langle e_{1,1}, e_{1,4}, e_{1,4} \rangle^* + \langle e_{1,2}, e_{1,4}, e_{2,1} \rangle^* + \langle e_{1,1}, e_{1,2}, e_{2,2} \rangle^* \\
\delta \langle e_{3,1}, e_{1,2} \rangle^* &= \langle e_{1,2}, e_{1,4}, e_{2,1} \rangle^* + \langle e_{1,1}, e_{1,2}, e_{2,2} \rangle^* \\
\delta \langle e_{2,2}, e_{1,2} \rangle^* + \langle e_{3,1}, e_{1,2} \rangle^* &= \langle e_{1,1}, e_{1,4}, e_{1,4} \rangle^* \\
\delta \langle e_{1,1}, e_{1,1}, e_{1,4} \rangle &= \langle e_{2,1}, e_{2,1} \rangle \\
\end{align*}
We shall define a filtration on X which corresponds to May's filtration on $B(A)$ ([5]). This leads to a spectral sequence, essentially the same as the May spectral sequence.

Define a weight function w on X by

\[w(\langle e_j \rangle) = \sum_{i_h} i_h + \sum_{j_m} j_m \text{ for a c.b.e. } e_j, \]

where $I = \{(i_1, k_1) < \cdots < (i_n, k_n)\}$ and $J = \{(j_1, l_1) \leq \cdots \leq (j_s, l_s)\}$, and put $w(x+y) = \max(w(x), w(y))$.

Define a filtration F_u on X, for $u \leq 0$, by

\[e_j \in F_u \text{ if } |J| - w(\langle e_j \rangle) \leq u. \]

Then we have

\[X = F_0 \supset F_{-1} \supset F_{-2} \supset \cdots \]

and

\[dF_u \subset F_u. \]

Putting $Z_u^r = \ker(F_u \to F_u/F_{u-r})$ for $r \geq 0$, we get a spectral sequence $\{ E_u^r \}$:

\[E_u^r = Z_u^r + F_{u-1}/d(Z_u^r - 1) + F_{u-1}, \]

\[d^r : E_u^r \to E_{u-r}^r, \text{ induced by } d. \]

It follows that

\[E^0 X = \sum_{u \leq 0} F_u/F_{u-1} \cong E^0 A \otimes E^0 P, \]

\[d^0 = 0. \]

Here $E^0 A$ is the primitively generated Hopf algebra, isomorphic to the enveloping algebra $V(E^0 L)$ of restricted Lie algebra $E^0 L$ (in [5] and [10],
$E^0 L$ is simply denoted by L.

From (5.5), we have

\[
(5.6) \quad E^1 X = E^0 X \quad \text{as} \quad E^0 A\text{-module},
\]

\[
d^1 \langle e_j \rangle = \sum_{(j,l)} e_{j,l} \langle e_{j-(j,l)} \rangle,
\]

where (j,l) run over the index sequence J without dublication.

Thus we have an isomorphism:

\[
(5.7) \quad (E^1 P_d, d^1 = E^1(d)) \cong (\Gamma(sE^0 L), d),
\]

the May complex (being divided polynomial algebra)

as a commutative DGA-coalgebra, in which $\langle e_{j,2l} \rangle^\gamma = \langle e_{j,2l}, \cdots, e_{j,2l} \rangle$ corresponds to $\gamma_\nu(P_j) \in \Gamma(sE^0 L)$. Thus we have $E^1 X \cong E^0 A \otimes \Gamma(sE^0 L)$, the May resolution.

Dualizing the above things, we shall have a filtration \mathcal{F}_u on $X^* = A^* \otimes P^*$ such that

\[
(5.8) \quad \mathcal{F}_u = (X/F_{u-1})^*, \quad \text{for} \quad u \leq 0,
\]

\[
0 = \mathcal{F}_1 \subset \mathcal{F}_0 \subset \mathcal{F}_{-1} \subset \cdots \subset \mathcal{F}_u \subset \mathcal{F}_{u-1} \subset \cdots \subset \mathcal{F}_{-\infty} = X^*,
\]

\[
\delta \mathcal{F}_u \subset \mathcal{F}_u,
\]

\[
Z_r^u = \operatorname{Ker}(\mathcal{F}_u \rightarrow \mathcal{F}_{u-1} / \mathcal{F}_{u+r}),
\]

\[
E_r^u = Z_r^u + \mathcal{F}_{u+1} / \delta Z_r^{u-r+1} + \mathcal{F}_{u+1},
\]

\[
\delta_r^u : E_r^u \rightarrow E_{r+r}^u.
\]

Thus we have

\[
E_0 X^* = E_0(A_*) \otimes E_0(P^*), \quad \delta_0 = 0,
\]

\[
E_1 X^* = E_0 X^* \quad \text{as a module},
\]

\[
(5.9) \quad E_1(P^*) \cong \Gamma(sE^0 L)^* = \mathcal{R} \quad \text{as a DGA-polynomial algebra ([5],[10])},
\]

\[
E_2 X^* \cong H^*(E^0 A),
\]

and $E_r X^*$ coincide with those of the May spectral sequence for $r \geq 2$. Here $\langle e_j \rangle^* \in E_1(P^*)$ corresponds to $R_{j_1}^{l_1} \cdots R_{j_r}^{l_r} \in \mathcal{R}$ ([5],[10]).

Returning to the complex P^*, we denote $\langle e_{j,2l} \rangle^*$ by $\varepsilon_{j,2l}$. Then we have
6. Appendix

Consider the case of the mod p Steenrod algebra A for an odd prime p. We shall sketch similar argument as in the preceding sections.

Lemma 6.1. (i) A is multiplicatively generated by $\{e_{i,p^k}, f_j; i \geq 1, k \geq 0$ and $j \geq 0\}$, $e_{i,p^k} = (\xi f_i)^*$ (resp. $f_j = \tau_j$) the dual element ξf_i^* (resp. τ_j) with respect to the Milnor monomial basis of the dual Hopf algebra A^* of A. (ii) The set $\{1, e_1^l \cdot f_j = e_{i_1,p^k_1} \cdots e_{i_m,p^k_m} f_{j_1} \cdots f_{j_n};$ with index sequences $I: (i_1,k_1) < \cdots < (i_m,k_m)$, $L = (l_1, \cdots, l_m)$ with $1 \leq l_i < p$, and $J: j_1 < \cdots < j_n\}$ forms a basis of A.

Put $L^+ = \mathbb{Z}/p\langle e_{i,p^k}; (i,k) \geq (1,0)\rangle$, $L^- = \mathbb{Z}/p\langle f_j \rangle$. Let $sL^+ = \mathbb{Z}/p\langle e_{i,p^k} \rangle$, $sL^- = \mathbb{Z}/p\langle f_j \rangle$ be the suspensions with bideg $\langle e_{i,p^k} \rangle = (1,2p^k(p^k-1))$, bideg $\langle f_j \rangle = (1,2p^k-1)$ respectively. And let $s^2\pi L^+$ denote a vector space $\mathbb{Z}/p\langle y_{i,p^k}; (i,k) \geq (1,0)\rangle$ spanned by indeterminates y_{i,p^k} of bidegree $(2,2p^k+1(p^k-1))$.

Define
\[
E(sL^+) = \text{the exterior algebra on } sL^+,
\]
\[
P(sL^-) = \text{the polynomial algebra on } sL^-,
\]
and
\[
P(s^2\pi L^+) = \text{the polynomial algebra on } s^2\pi L^+.
\]

Theorem 6.2. The A-module $X = A \otimes E(sL^+) \otimes P(s^2\pi L^+) \otimes P(sL^-)$ with an inductively defined differential d gives an acyclic, A-free resolution of \mathbb{Z}/p: $X^d \to \mathbb{Z}/p$.

Corollary 6.3. A suitable filtration on X induces a spectral sequence in which $E^1 X \cong E(sE^0 L^+) \otimes \Gamma(sE^0 L^-) \otimes \Gamma(s^2\pi E^0 L^+)$, the May's construction,
as a cocommutative DGA-coalgebra ([5]) and the E^r-terms are the same as those of May S.S. ($r \geq 2$).

We can prove this theorem quite similarly as in the mod 2 case, although we need here a more fine classification of the canonical basis elements $e^J_f f_j \langle e_G \rangle \langle y_M \rangle \langle f_K \rangle$ as follows.

Introduce first the following notation on the index sequences:

\begin{align*}
\alpha_1(I) &= \max I = (i_m, k_m) \quad \text{for} \quad I = (i_1, k_1) \prec \cdots \prec (i_m, k_m), \\
\text{and} \quad \alpha_1(\phi) &= (0, 0), \phi \text{ being the empty set.} \\
b(G) &= \max G \quad \text{for} \quad G = (g_1, h_1) \prec \cdots \prec (g_u, h_i), \\
\text{and} \quad b(\phi) &= (0, 0), \\
c(M) &= \max M \quad \text{for} \quad M = (m_1, q_1) \leq \cdots \leq (m_w, q_u), \\
\text{and} \quad c(\phi) &= (0, 0),
\end{align*}

and

\begin{align*}
a_2(J) &= \max J \quad \text{for} \quad J = (j_1 \prec \cdots \prec j_n), \\
\text{and} \quad a_2(\phi) &= -1, \\
d(K) &= \max K \quad \text{for} \quad K = (k_1 \leq \cdots \leq k_v), \\
\text{and} \quad d(\phi) &= -1.
\end{align*}

A c.b.e. $e^J_f f_j \langle e_G \rangle \langle y_M \rangle \langle f_K \rangle$ belongs to one of the following types:

Provided that $J = K = \phi$ the empty set,

\begin{align*}
\begin{cases}
I_1: a_1 \leq b \geq c \quad \text{and,} \\
\text{if} \quad a_1 = b, l_m < p - 1,
\end{cases} & \quad H_{I_1}: b < a_1 \geq c, \\
I_2: a_1 < c \geq b, & \quad H_{I_2}: a_1 = b \geq c, \text{ and } l_m = p - 1,
\end{align*}

Otherwise, if J or $K \neq \phi$, put

\begin{align*}
I_3: a_2 < d, & \quad H_{I_3}: a_2 \geq d.
\end{align*}

Thus we have a direct sum decomposition

\begin{align*}
X &= C_I \oplus C_{II}, \quad C_I = C_{I_1} \oplus C_{I_2} \oplus C_{I_3}, \quad C_{II} = C_{II_1} \oplus C_{II_2} \oplus C_{II_3},
\end{align*}

where

\begin{align*}
C_{I_i} &= \mathbb{Z}/p\{\text{c.b.e. of type } I_i\} \quad \text{and} \quad C_{II_i} = \mathbb{Z}/p\{\text{c.b.e. of type } II_i\} \\
\text{for } i &= 1, 2, 3,
\end{align*}

with linear isomorphisms
\[\tau_s \quad C_{I,s} \to C_{I,s-1} \]

defined by

\[
\tau_s(e^1_I \langle e_G \rangle y_M) = (-1)^{|G|-1} e^1_I \cdot e_{g_{s},p_{s}} \langle e_{G-(g_{s},h_{s})} \rangle y_M \\
\text{on c.b.e. of type } I_1 \quad ((g_s, h_s) = \max G) \\
\tau_s(e^1_I \langle e_G \rangle y_M) = e^1_I \cdot e_{p_{s},p_{s}^{\text{max}}} \langle e_{G+(m_{s},q_{s})} \rangle y_{M-(m_{s},q_{s})} \\
\text{on c.b.e. of type } I_2 \quad ((m_s, q_s) = \max M) \\
\tau_s(e^1_I f_{j} \langle e_G \rangle y_M \langle f_{k} \rangle) = (-1)^{|G|+|K|-1} e^1_I \cdot f_{j} \cdot f_{k} \cdot \langle e_G \rangle \cdot y_{M} \langle f_{K-(k)} \rangle \\
\text{on c.b.e. of type } I_3 \quad (k_s = \max K)
\]

where \(|G|\) denotes the length of the index sequence \(G\) and similarly for others, and \(s = |G| + 2|M| + |K|\) the homology dimension. The inverse \(\sigma'_{s-1}\) of \(\tau_s\) will be defined obviously.

Then, starting from

\[
d_1 \langle e_{j,p} \rangle = e_{j,p}, \quad d_1 \langle f_j \rangle = f_j,
\]

\[
\sigma_0(e^1_I) = (e^1_I)^{\prime} \cdot \langle e_{i_m,k_m} \rangle, \quad \text{with } (i_m,k_m) = \max I \text{ and}
\]

\[
(e^1_I)^{\prime} = \left\{ \begin{array}{ll}
e^1_{i_1,p^{k_1}} \cdot e^1_{i_2,p^{k_2}} \cdot \cdots \cdot e^1_{i_m,p^{k_m}} & \text{if } l_m > 1 \\
e^1_{i_1,p^{k_1}} \cdot e^1_{i_2,p^{k_2}} \cdot \cdots \cdot e^1_{i_m-1,p^{k_m-1}} & \text{if } l_m = 1
\end{array} \right.
\]

\[
\sigma_0(e^1_I \cdot f_j) = e^1_I \cdot f_j \cdot \langle f_{j_n} \rangle, \quad \text{with } j_n = \max J \text{ and } J^{\prime} = J - \{j_n\},
\]

we could define differential \(d\) and contracting homotopy \(\sigma\) inductively in \(X\) as before, and as well carry out all the parallel discussion.

References

Okayama University of Science
Ridaicho 1–1, Okayama 700
Japan