

Title	A cochain complex associated to the Steenrod algebra
Author(s)	Shimada, Nobuo
Citation	Osaka Journal of Mathematics. 1994, 31(2), p. 455-471
Version Type	VoR
URL	https://doi.org/10.18910/12828
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Shimada, N.
Osaka J. Math.
31 (1994), 455-471

A COCHAIN COMPLEX ASSOCIATED TO THE STEENROD ALGEBRA

In Memory of the late Professor José Adem

NOBUO SHIMADA

(Received November 19, 1992)

0. Introduction

In [8], the author introduced an acyclic, free resolution of the ground ring \mathbf{Z} of integers (resp. its localization $\mathbf{Z}_{(p)}$ for a prime p) as the trivial module over the Landweber-Novikov algebra S (resp. $S_{(p)} = \mathbf{Z}_{(p)} \otimes S$), which is considerably smaller than the bar resolution.

In this paper, the same method of construction is applied to the case of the mod p Steenrod algebra A . The resulted resolution $X = A \otimes \bar{X} \xrightarrow{\epsilon} \mathbf{Z}/p$ has inductively defined differential d and contracting homotopy σ , and is naturally embedded in the bar resolution $B(A)$ as a direct-summand subcomplex.

The apparent feature of this resolution is that it seems to be an immediate 'lift' of the May resolution [5], while the latter is a resolution over the associated graded algebra $E^0 A$ for the augmentation filtration on the Steenrod algebra. In fact, the corresponding filtration on X leads to an equivalent of the May spectral sequence, of which $E^1 X$ is isomorphic to the May resolution and E^r -terms are the same as those of the May spectral sequence for $r \geq 2$.

In the case $p=2$, the chain complex \bar{X} will be given as a polynomial ring P , and the dual cochain complex P^* has a non-associative product, which induces the usual associative product in its cohomology $H^*(A) = \text{Ext}_A^*(\mathbf{Z}/2, \mathbf{Z}/2)$, the E_2 -term of the Adams spectral sequence [1,2].

May [5] studied extensively his spectral sequence and succeeded to obtain a great deal of information about $H^*(A)$ (See also, Tangora [10] and Novikov [7].).

It is hoped that the present work could be useful for calculating the differentials in the May spectral sequence and the ring structure of $H^*(A)$.

In this paper we shall restrict ourselves to the case $p=2$. A parallel treatment for the odd prime case will be only suggested in the last section.

1. Notation and results

Let A_* be the dual Hopf algebra ([6],[9]) of the mod 2 Steenrod algebra A . A_* is given as the polynomial algebra $\mathbf{Z}/2[\xi_1, \xi_2, \dots]$ over $\mathbf{Z}/2$ on indeterminates $\xi_i (i \geq 1)$ of degree $2^i - 1$, with comultiplication

$$\psi \xi_k = \sum_{i=0}^k \xi_{k-i}^{2^i} \otimes \xi_i \quad (\xi_0 = 1).$$

Let $e_{i,k} = (\xi_i^k)^*$ denote the dual element of ξ_i^k with respect to the monomial basis $\{\xi_\omega = \xi_1^{k_1} \cdots \xi_n^{k_n}\}$ of A_* .

Lemma 1.1. (i) *The Steenrod algebra A is multiplicatively generated by the set $\{e_{i,2^k}; i \geq 1, k \geq 0\}$, (ii) the set $\{1, e_{i_1,2^{k_1}} \cdots e_{i_n,2^{k_n}}; (i_1, k_1) < (i_2, k_2) < \cdots < (i_n, k_n)\} in the lexicographical order\}$ forms a $\mathbf{Z}/2$ -basis of A , of which elements $e_I = e_{i_1,2^{k_1}} \cdots e_{i_n,2^{k_n}}$ are called admissible monomials.*

Let L denote the $\mathbf{Z}/2$ -submodule of A spanned by the set $\{e_{i,2^k}; i \geq 1, k \geq 0\}$, and $sL = \mathbf{Z}/2\{\langle e_{i,2^k} \rangle; i \geq 1, k \geq 0\}$, the suspension of L , with $\text{bideg } \langle e_{i,2^k} \rangle = (1, 2^k(2^i - 1))$. Denote by $P = P(sL)$ the polynomial algebra (symmetric tensor algebra) on sL . We use the notation

$$\langle e_J \rangle = \langle e_{j_1,2^{l_1}}, \dots, e_{j_s,2^{l_s}} \rangle = \langle e_{j_1,2^{l_1}} \rangle \otimes \cdots \otimes \langle e_{j_s,2^{l_s}} \rangle$$

with the index sequence

$$J : (j_1, l_1) \leq (j_2, l_2) \leq \cdots \leq (j_s, l_s),$$

in the lexicographical order and call it a canonical monomial in P .

Theorem 1.2. $X = A \otimes P$, with an inductively defined differential d gives an acyclic A -free resolution of $\mathbf{Z}/2$.

Proposition 1.3. There exist natural A -linear chain maps $f: X \rightarrow B(A)$ and $g: B(A) \rightarrow X$, such that $g \circ f = \text{id}$ and $f(P) \subset \bar{B}(A) = \mathbf{Z}/2 \otimes_A B(A) \subset B(A)$.

Proposition 1.4. The chain complex P with the induced differential $\bar{d} = \mathbf{Z}/2 \otimes_A d$ has a comultiplication $\Delta: P \rightarrow P \otimes P$ such that $(\bar{d} \otimes 1 + 1 \otimes \bar{d})\Delta = \Delta \bar{d}$. This is not coassociative in general, but $(\Delta \otimes 1)\Delta$ and $(1 \otimes \Delta)\Delta$ are chain homotopic.

Corollary 1.5. The dual complex P^* of P with differential $\delta = \bar{d}^*$ has a non-associative product, therein δ is a derivation. This product induces the usual product in the cohomology $H^*(P^*, \delta) = H^*(A)$.

2. Preliminary

The lemma 1.1 may be well-known ([6],[4]), but we will recall its proof, since the resolution (Theorem 1.2) stems from the lemma.

We shall take the dual basis $\{\xi_\omega^*\}$ of A (See §1). By definition the product of basis elements is given by

$$\xi_\omega^* \cdot \xi_\sigma^* = \sum_{\tau} (\xi_\omega^* \otimes \xi_\sigma^*) (\psi \xi_\tau) \cdot \xi_\tau^*.$$

Define the height of ξ_ω^* to be $\sum k_i$, the sum of exponents in the monomial $\xi_\omega = \xi_1^{k_1} \cdots \xi_n^{k_n}$. Then we have the equality

$$(2.1) \quad \xi_{\omega'}^* \cdot (\xi_n^{k_n})^* = \xi_\omega^* + \sum_{\sigma} \xi_{\sigma}^*,$$

where $\xi_{\omega'} = \xi_1^{k_1} \cdots \xi_{n-1}^{k_{n-1}}$, $\xi_\omega = \xi_{\omega'} \cdot \xi_n^{k_n}$, and the second summand in the right hand side is a sum of suitable basis elements of height $h(\xi_{\sigma}^*) < h(\xi_\omega^*)$. In fact, ξ_{σ} are so chosen that $\psi \xi_{\sigma}$ contain $\xi_{\omega'} \otimes \xi_n^{k_n}$ as a summand, and such a ξ_{σ} must be of the form

$$(2.2) \quad \xi_{\sigma} = \xi_1^{u_1} \cdots \xi_{n-1}^{u_{n-1}} \xi_n^{v_0} \xi_{n+1}^{v_1} \cdots \xi_{2n-1}^{v_{n-1}},$$

with $\sum_{i=0}^{n-1} v_i = k_n$, $u_i + 2^n \cdot v_i = k_i$ (for $1 \leq i \leq n-1$).

Then

$$h(\xi_{\sigma}^*) = \sum_{i=1}^{n-1} u_i + \sum_{i=0}^{n-1} v_i = \sum_{i=0}^n k_i - 2^n \sum_{i=1}^{n-1} v_i < \sum_{i=0}^n k_i = h(\xi_\omega^*).$$

Now by induction on height we conclude that any basis element ξ_ω^* of A can be expressed by a sum of products of $e_{i,k} = (\xi_i^k)^*$. But we can see easily that $e_{i,k}$ with k , not a power of 2, is also decomposable into a sum of products of $e_{i,2^t}$. This proves (i) of Lemma 1.1.

Note further that

$$(2.3) \quad (\xi_i^k)^* \cdot (\xi_i^l)^* = \binom{k+1}{k} (\xi_i^{k+l})^* + \Sigma \text{ terms of lower height}$$

and

$$(2.4) \quad [(\xi_i^k)^*, (\xi_j^l)^*] = \Sigma \text{ terms of lower height for } i \neq j.$$

It follows then (ii) of Lemma 1.1.

Here are a few examples of (2.3) and (2.4):

$$\begin{aligned}
 [e_{1,1}, e_{1,2}] &= e_{2,1}, \quad [e_{1,1}, e_{2,1}] = 0 \\
 [e_{1,1}, e_{2,2}] &= e_{3,1} = [e_{1,4}, e_{2,1}], \\
 [e_{1,2}, e_{2,2}] &= e_{1,1} \cdot e_{3,1}, \\
 e_{1,2} \cdot e_{1,2} &= e_{1,1} \cdot e_{2,1}, \\
 e_{1,4} \cdot e_{1,4} &= e_{1,2} \cdot e_{2,2}, \\
 e_{1,8} \cdot e_{1,8} &= e_{1,4} \cdot e_{2,4} + e_{2,1} \cdot e_{2,2} \cdot e_{3,1} \\
 [e_{1,1}, e_{1,64}] &= e_{1,62} \cdot e_{2,1} + e_{1,58} \cdot e_{3,1} + e_{1,50} \cdot e_{4,1} + e_{1,34} \cdot e_{5,1} + e_{1,2} \cdot e_{6,1} \\
 e_{i,1} \cdot e_{i,1} &= 0 \quad (i \geq 1), \text{ etc. (Cf. [4])}
 \end{aligned}$$

It will be another interesting problem to give the explicit formulae expressing (2.3) and (2.4) by *admissible monomials* in the sense of §1, like the Adem relations [3].

3. Resolution

In this section we shall give a detailed proof of Theorem 1.2, since we had remained in showing only a sketchy proof in [8] for the case of the Landweber-Novikov algebra. Clearly the set of canonical monomials $\langle e_J \rangle$ forms a $\mathbb{Z}/2$ -basis of P . Then $P = \sum_{s \geq 0} P_s$, where the submodule P_s is spanned by $\langle e_J \rangle$ of length $|J| = s$. We call $|J|$ also the homological dimension of $\langle e_J \rangle$.

We shall introduce in $X = A \otimes P$ a boundary operator $d = (d_s)$:

$$d_s: X_s = A \otimes P_s \rightarrow X_{s-1}$$

and a contracting homotopy $\sigma = (\sigma_s)$:

$$\sigma_s: X_s \rightarrow X_{s+1},$$

so that X becomes an acyclic differential A -module (a chain complex) with augmentation $\varepsilon: X \rightarrow \mathbb{Z}/2$

First define an A -map $d_1: X_1 = A \otimes sL \rightarrow X_0 = A$ by

$$(3.1) \quad d_1(a \langle e_{i,2^k} \rangle) = a \cdot e_{i,2^k} \quad (a \langle e_{i,2^k} \rangle \text{ means } a \otimes \langle e_{i,2^k} \rangle),$$

and a $\mathbb{Z}/2$ -map $\sigma_0: X_0 \rightarrow X_1$ by

$$(3.2) \quad \sigma_0(1) = 0$$

$$\sigma_0(e_{i_1,2^{k_1}} \cdots e_{i_n,2^{k_n}}) = e_{i_1,2^{k_1}} e_{i_{n-1},2^{k_{n-1}}} \langle e_{i_n,2^{k_n}} \rangle$$

for admissible monomials. Thus we have a direct sum decomposition

$$(3.3) \quad X_1 = \text{Im } \sigma_0 \oplus \text{Ker } d_1, \quad \text{Ker } d_1 = \text{Im}(1 - \sigma_0 d_1),$$

$$\sigma_0 \eta = 0, \quad \varepsilon d_1 = 0 \text{ and } d_1 \sigma_0 + \eta \varepsilon = 1,$$

where $\eta: \mathbb{Z}/2 \rightarrow A$ is the unit. Then d_2 is easily defined by

$$(3.4) \quad d_2 \langle e_{j_1, 2^{l_1}}, e_{j_2, 2^{l_2}} \rangle = (1 - \sigma_0 d_1)(e_{j_2, 2^{l_2}} \langle e_{j_1, 2^{l_1}} \rangle) \quad ((j_1, l_1) \leq (j_2, l_2)).$$

On the other hand, it is laborious to find and formulate a proper candidate of possible contracting homotopy σ_1 . In order to overcome this difficulty, we begin with a careful observation of the construction X .

Take the set of elements

$$(3.5) \quad e_I \langle e_J \rangle = e_{i_1, 2^{k_1}} \cdots e_{i_n, 2^{k_n}} \langle e_{j_1, 2^{l_1}}, \cdots e_{j_s, 2^{l_s}} \rangle$$

with the index sequences $I = (i_1, k_1) < \cdots < (i_n, k_n)$ and $J: (j_1, l_1) \leq \cdots \leq (j_s, l_s)$ in the lexicographical order, and call it canonical basis of $X = A \otimes P$.

Classify the canonical basis elements (c.b.e.'s) into the following types:

$$(3.6) \quad \text{Type 1: } \max I < \max J \quad (\text{i.e. } (i_n, k_n) < (j_s, l_s))$$

and

$$\text{Type 2: } \max I \geq \max J.$$

Put

$$(3.7) \quad C_{1,s} = \mathbb{Z}/2 \{ \text{c.b.e. of Type 1 in } X_s \}$$

and

$$C_{2,s} = \mathbb{Z}/2 \{ \text{c.b.e. of Type 2 in } X_s \}$$

Then we have

$$(3.8) \quad X_s = C_{1,s} \oplus C_{2,s},$$

as a $\mathbb{Z}/2$ -module, with obvious isomorphisms

$$C_{1,s} \xrightarrow{\tau_s} C_{2,s-1}, \quad \sigma'_{s-1} = \tau_s^{-1},$$

defined by

$$(3.9) \quad \tau_s(e_I \langle e_J \rangle) = e_{I+(j_s, l_s)} \langle e_{J-(j_s, l_s)} \rangle \text{ for } e_I \langle e_J \rangle \in C_{1,s},$$

$$\sigma'_{s-1}(e_I \langle e_J \rangle) = e_{I-(i_n, k_n)} \langle e_{J+(i_n, k_n)} \rangle \text{ for } e_I \langle e_J \rangle \in C_{2, s-1}.$$

We shall introduce here a partial order in the set of index sequences J of the same length $|J|=s$ as follows:

$$(3.10) \quad J' \leq J \text{ if } (j'_i, l'_i) \leq (j_i, l_i) \text{ for all } i, \text{ and}$$

$$J' < J \text{ if, moreover, } (j'_i, l'_i) < (j_i, l_i) \text{ for at least one } i.$$

Now assume that (d_i, σ_{i-1}) are defined for $1 \leq i \leq s-1$ and satisfy the following conditions (for convenience, put $d_0 = \varepsilon$ and $\sigma_{-1} = \eta$):

$$(3.11) \quad \begin{aligned} (A_i) \quad & \sigma_{i-1} \sigma_{i-2} = 0 \text{ and } \text{Im } \sigma_{i-1} = C_{1,i}, \\ (B_i) \quad & X_i = \text{Im } \sigma_{i-1} \oplus \text{Ker } d_i, \\ (C_i) \quad & d_i \sigma_{i-1} + \sigma_{i-2} d_{i-1} = 1 \text{ and } d_{i-1} d_i = 0, \\ (D_i) \quad & \begin{aligned} (i) \quad & \text{There is a } \mathbb{Z}/2\text{-isomorphism } \varphi_i: C_{2,i} \rightarrow \text{Ker } d_i, \text{ defined} \\ & \text{by } \varphi_i(e_I \langle e_J \rangle) = e_{I'} \cdot (l - \sigma_{i-1} d_i)(e_{i_n, 2^{k_n}} \langle e_J \rangle) \text{ for } e_I \langle e_J \rangle \in C_{2,i} \text{ and } e_I = e_{I'} \cdot e_{i_n, 2^{k_n}}, \\ (ii) \quad & \text{Further, we have } \varphi_i(e_I \langle e_J \rangle) = e_I \langle e_J \rangle + \sum_{\alpha} e_{I_{\alpha}} \langle e_{J_{\alpha}} \rangle, \\ & \text{where } e_{I_{\alpha}} \langle e_{J_{\alpha}} \rangle \text{ are suitable c.b.e.'s with conditions } J_{\alpha} > J \text{ and } \max J_{\alpha} \geq \max I \text{ (See (3.10)).} \end{aligned} \end{aligned}$$

We temporally assume (D_1) , of which proof is reasonably postponed.

Under this induction hypothesis $(3.11)_{s-1}$ we shall define (d_s, σ_{s-1}) as follows.

First define $d_s: X_s \rightarrow X_{s-1}$, as an A -map, by

$$(3.12) \quad d_s \langle e_J \rangle = \varphi_{s-1} \cdot \tau_s \langle e_J \rangle = (1 - \sigma_{s-2} d_{s-1}) \cdot e_{j_s, 2^{l_s}} \langle e_{J-(j_s, l_s)} \rangle$$

where $|J|=s$ and $(j_s, l_s) = \max J$.

It follows immediately, from (C_{s-1})

$$d_{s-1} d_s = 0.$$

Next define

$$(3.13) \quad \sigma_{s-1} = 0 \text{ on } \text{Im } \sigma_{s-2} = C_{1,s-1}.$$

To define σ_{s-1} on $\text{Ker } d_{s-1}$, take the set $\{\varphi_{s-1}(e_I \langle e_J \rangle); e_I \langle e_J \rangle \text{ c.b.e. of Type 2 in } X_{s-1}\}$ as a fixed basis of $\text{Ker } d_{s-1}$, by virtue of (D_{s-1}) , and put

$$(3.14) \quad \sigma_{s-1}(\varphi_{s-1}(e_I \langle e_J \rangle)) = \sigma'_{s-1}((e_I \langle e_J \rangle)) = e_{I'} \langle e_{J+(i_n, k_n)} \rangle$$

where $(i_n, k_n) = \max I$ (See (3.9)). Then σ_{s-1} is naturally extended to a $\mathbb{Z}/2$ -map and gives an isomorphism

$$(3.15) \quad \sigma_{s-1}: \text{Ker } d_{s-1} \xrightarrow{\cong} C_{1,s} = \text{Im } \sigma_{s-1}.$$

Thus we have

$$\begin{aligned} d_s &= \begin{cases} \varphi_{s-1} \tau_s & \text{on } C_{1,s} \\ 0 & \text{on } \text{Ker } d_s \end{cases} \\ \sigma_{s-1} &= \begin{cases} 0 & \text{on } C_{1,s-1} \\ \sigma'_{s-1} \varphi_{s-1}^{-1} & \text{on } \text{Ker } d_{s-1} \end{cases} \\ d_s \sigma_{s-1} + \sigma_{s-2} d_{s-1} &= 1 \text{ on } X_{s-1} \\ X_s &= \text{Im } \sigma_{s-1} \oplus \text{Ker } d_s, \quad \text{Ker } d_s = \text{Im } (1 - \sigma_{s-1} d_s), \end{aligned}$$

and verify (A_s), (B_s) and (C_s) for (d_s, σ_{s-1}). From (3.11), (D_{s-1}) and (3.14), it follows that

$$(3.16) \quad \sigma_{s-1}(e_I \langle e_J \rangle) = e_{I'} \langle e_{J + \max I} \rangle + \sum_{\substack{J_\alpha > J, \max J_\alpha \geq \max I \\ \max I_\alpha \geq \max J_\alpha}} \sigma_{s-1}(e_{I_\alpha} \langle e_{J_\alpha} \rangle) \\ \text{for } e_I \langle e_J \rangle \in C_{2,s-1},$$

where the added conditions on the summand come from those of $e_{I_\alpha} \langle e_{J_\alpha} \rangle \in C_{2,s-1}$, and as well

$$(3.17) \quad d_s \langle e_J \rangle = e_{j_s, 2l_s} \langle e_{J'} \rangle + \sum_{J_\gamma > J', \max J_\gamma \geq (j_s, l_s) = \max J} e_{I_\gamma} \langle e_{J_\gamma} \rangle.$$

Lemma 3.18.

$$\sigma_{s-1}(e_I \langle e_J \rangle) = e_{I'} \langle e_{J + \max I} \rangle + \sum_{J_\alpha > J + \max I} e_{I_\alpha} \langle e_{J_\alpha} \rangle \quad \text{for } e_I \langle e_J \rangle \in C_{2,s-1}$$

or, we write simply

$$\sigma_{s-1}(e_I \langle e_J \rangle) = e_{I'} \langle e_{J + \max I} \rangle + \Sigma \text{ higher terms.}$$

Proof. In the right hand side of (3.16), using itself again, we have

$$\sigma_{s-1}(e_{I_\alpha} \langle e_{J_\alpha} \rangle) = e_{I'_\alpha} \langle e_{J_\alpha + \max I_\alpha} \rangle + \sum_{\substack{J_\beta > J_\alpha, \max J_\beta \geq \max I_\alpha \\ \max I_\beta \geq \max J_\beta}} \sigma_{s-1}(e_{I_\beta} \langle e_{J_\beta} \rangle)$$

here $J_\alpha > J$ and $\max I_\alpha \geq \max J_\alpha \geq \max I$ so that $J_\alpha + \max I_\alpha > J + \max I$. Repeating this process, we obtain Lemma 3.18.

Now $\varphi_s: C_{2,s} \rightarrow \text{Ker } d_s$ will be defined just as before:

$$(3.19) \quad \varphi_s(e_I \langle e_J \rangle) = e_{I'} (1 - \sigma_{s-1} d_s)(e_{i_n, 2^{k_n}} \langle e_J \rangle).$$

To prove (D_s), (ii) it is sufficient to consider the special case $|I|=1$:

$$\varphi_s(e_{i, 2^k} \langle e_J \rangle) = (1 - \sigma_{s-1} d_s)(e_{i, 2^k} \langle e_J \rangle) \quad ((i, k) \geq \max J).$$

In view of (3.17), we have

$$(3.20) \quad \begin{aligned} \varphi_s(e_{i, 2^k} \langle e_J \rangle) &= e_{i, 2^k} \langle e_J \rangle + \sigma_{s-1}(e_{i, 2^k} \cdot d_s \langle e_J \rangle) \\ &= e_{i, 2^k} \langle e_J \rangle + \sigma_{s-1}(e_{i, 2^k} e_{j_s, 2^{l_s}} \langle e_J \rangle) \\ &\quad + \sum_{J_\gamma > J', \max J_\gamma \geq \max J} \sigma_{s-1}(e_{i, 2^k} \cdot e_{I_\gamma} \langle e_{J_\gamma} \rangle) \end{aligned}$$

Rewriting $e_{i, 2^k} e_{j_s, 2^{l_s}}$ and $e_{i, 2^k} \cdot e_{I_\gamma}$ in the admissible form:

$$e_{i, 2^k} e_{j_s, 2^{l_s}} = \sum_{\max I_\epsilon \geq (i, k)} e_{I_\epsilon}$$

$$e_{i, 2^k} \cdot e_{I_\gamma} = \sum_{\max I_{\gamma, \delta} \geq (i, k)} e_{I_{\gamma, \delta}}$$

we have, from Lemma 3.18,

$$(3.21) \quad \begin{aligned} \varphi_s(e_{i, 2^k} \langle e_J \rangle) &= e_{i, 2^k} \langle e_J \rangle + \sum_{\max I_\epsilon \geq (i, k)} \sigma_{s-1}(e_{I_\epsilon} \langle e_{J'} \rangle) + \sum_{\substack{J_\gamma > J', \max J_\gamma \geq \max J \\ \max I_{\gamma, \delta} \geq (i, k)}} \sigma_{s-1}(e_{I_{\gamma, \delta}} \langle e_{J_\gamma} \rangle) \\ &= e_{i, 2^k} \langle e_J \rangle + \sum_{\max I_\epsilon \geq (i, k)} \left(e_{I'_\epsilon} \langle e_{J' + \max I_\epsilon} \rangle + \Sigma \text{ higher terms} \right) \\ &\quad + \sum_{J_\gamma + \max I_{\gamma, \delta} > J' + (i, k) \geq J} \left(e_{I'_{\gamma, \delta}} \langle e_{J_\gamma + \max I_{\gamma, \delta}} \rangle + \Sigma \text{ higher terms} \right). \end{aligned}$$

Then we have in general

$$(3.22) \quad \begin{aligned} \varphi_s(e_I \langle e_J \rangle) &= e_{I'} \cdot \varphi_s(e_{i_n, 2^{k_n}} \langle e_J \rangle) \\ &= e_I \langle e_J \rangle + \sum_{\substack{J_\alpha > J \\ \max J_\alpha \geq \max I}} e_{I_\alpha} \langle e_{J_\alpha} \rangle \quad \text{for c.b.e. } e_I \langle e_J \rangle \in C_{2,s}. \end{aligned}$$

Thus we have proved (3.11), (D_s), (ii).

To show (D_s), (i), first note that $\varphi_s(e_I \langle e_J \rangle) \in \text{Ker } d_s$ and the set $\{\varphi_s(e_I \langle e_J \rangle); \text{ c.b.e. } e_I \langle e_J \rangle \in C_{2,s}\}$ are linearly independent in virtue of (3.22). This means that φ_s is injective. To show the surjectivity of φ_s , we replace each higher term $e_{I_\alpha} \langle e_{J_\alpha} \rangle$ of Type 2 in (3.22) by $\varphi_s(e_{I_\alpha} \langle e_{J_\alpha} \rangle)$. Repeating this process, we should finally obtain

$$(3.23) \quad \varphi_s(e_I \langle e_J \rangle) = e_I \langle e_J \rangle + \sum \varphi_s(e_{I_\beta} \langle e_{J_\beta} \rangle) + u_{I,J},$$

where $u_{I,J} \in C_{1,s}$ and $e_I \langle e_J \rangle + u_{I,J} \in \text{Im } \varphi_s$.

The difference $(1 - \sigma_{s-1} d_s)(e_I \langle e_J \rangle) - (e_I \langle e_J \rangle + u_{I,J})$ belongs to $\text{Ker } d_s \cap \text{Im } \sigma_{s-1} = 0$. Therefore we have

$$(3.24) \quad (1 - \sigma_{s-1} d_s)(e_I \langle e_J \rangle) = e_I \langle e_J \rangle + u_{I,J} \in \text{Im } \varphi_s.$$

Since $(1 - \sigma_{s-1} d_s)(C_{1,s}) = 0$ and $(1 - \sigma_{s-1} d_s)(C_{2,s}) = (1 - \sigma_{s-1} d_s)(X_s)$, we have $\text{Im } \varphi_s = \text{Im } (1 - \sigma_{s-1} d_s) = \text{Ker } d_s$.

This proves (3.11), (D_s), (i).

Now, for the remaining case of $n=1$, a proof of (D₁) can be performed in a literally parallel way as just described, so it will be omitted. Thus we have completed the induction process and a proof of the theorem 1.2.

Here we shall show some simple examples of boundaries and contracting homotopies:

$$(3.25) \quad \begin{aligned} d \langle e_{1,1}, e_{1,1} \rangle &= e_{1,1} \langle e_{1,1} \rangle \\ d \langle e_{1,1}, e_{1,2} \rangle &= e_{1,2} \langle e_{1,1} \rangle + e_{1,1} \langle e_{1,2} \rangle + \langle e_{2,1} \rangle \\ d \langle e_{j,2^l}, e_{j,2^l} \rangle &= e_{j,2^l} \langle e_{j,2^l} \rangle + \sigma_0(e_{j,2^l} \cdot e_{j,2^l}) \\ d \langle e_{i,2^k}, e_{j,2^l} \rangle &= e_{j,2^l} \langle e_{i,2^k} \rangle + e_{i,2^k} \langle e_{j,2^l} \rangle + \sigma_0[e_{i,2^k}, e_{j,2^l}] \text{ for } (i,k) < (j,l), \end{aligned}$$

where $[,]$ means the commutator.

$$\begin{aligned} d \langle e_{1,2}, e_{1,2}, e_{1,2} \rangle &= e_{1,2} \langle e_{1,2}, e_{1,2} \rangle + e_{1,1} \langle e_{1,2}, e_{2,1} \rangle + \langle e_{2,1}, e_{2,1} \rangle \\ \sigma(e_{i,2^k} \langle e_J \rangle) &= \langle e_{J+(i,k)} \rangle \quad \text{for } (i,k) \geq \max J \\ \sigma(e_{2,2} \cdot e_{3,1} \langle e_{1,4} \rangle) &= e_{2,2} \langle e_{1,4}, e_{3,1} \rangle + e_{2,1} \langle e_{3,1}, e_{3,1} \rangle \end{aligned}$$

where the last example shows that $\sigma_i \neq \sigma'_i$ in general.

4. Chain complex P and its dual

The construction P defined in §1 with the induced differential

$$(4.1) \quad \bar{d} = \mathbb{Z}/2 \otimes d: P \rightarrow P$$

becomes a chain complex.

Define natural A -linear chain maps $f: X \rightarrow B(A)$ and $g: B(A) \rightarrow X$ in the usual way ([2]), using contracting homotopy σ of X resp. S of $B(A)$:

$$(4.2) \quad \begin{aligned} f_0 &= \text{id.} : X_0 = A \rightarrow A = B(A)_0, \\ f_s \langle e_J \rangle &= S f_{s-1} d \langle e_J \rangle \quad \text{for } s \geq 1, \\ f_s (e_I \langle e_J \rangle) &= e_I \cdot f_s \langle e_J \rangle \\ &\text{and similar for } g. \end{aligned}$$

By induction on dimension, we see easily that

$$(4.3) \quad g \circ f = \text{id} \quad \text{on } X \quad \text{and} \quad f_s \langle e_J \rangle \in \bar{B}(A).$$

This proves Prop. 1.3.

Similarly define a diagonal $\psi: X \rightarrow X \otimes X$ by

$$(4.4) \quad \psi_0: X_0 = A \rightarrow A \otimes A = (X \otimes X)_0, \quad \text{the diagonal of } A$$

$$\begin{aligned} \text{(i.e. } \psi_0(e_{i,k}) &= \sum_j e_{i,k-j} \otimes e_{i,j}, \\ \psi_s \langle e_J \rangle &= \tilde{\sigma} \psi_{s-1} d \langle e_J \rangle \quad \text{for } s \geq 1, \end{aligned}$$

where $\tilde{\sigma} = \sigma \otimes 1 + \varepsilon \otimes \sigma$ is the induced contracting homotopy of $X \otimes X$.

This ψ is a chain map, and there is a natural chain homotopy:

$$(4.5) \quad \begin{aligned} (\psi \otimes 1) \psi - (1 \otimes \psi) \psi &= d^{(3)} H + H d, \\ \text{with} \quad d^{(3)} &= d \otimes 1 \otimes 1 + 1 \otimes d \otimes 1 + 1 \otimes 1 \otimes d, \end{aligned}$$

where $H: X \rightarrow X \otimes X \otimes X$ is a $\mathbb{Z}/2$ -map of degree $(1,0)$.

The following example shows non-coassociativity of ψ .

$$(4.6) \quad \begin{aligned} \psi \langle e_{1,4} \rangle &= \langle e_{1,4} \rangle \otimes 1 + e_{1,1} \langle e_{1,2} \rangle \otimes e_{1,1} + \langle e_{1,2} \rangle \otimes e_{1,2} + \langle e_{1,1} \rangle \otimes e_{1,3} \\ &\quad + 1 \otimes \langle e_{1,4} \rangle \\ ((\psi \otimes 1) \psi - (1 \otimes \psi) \psi) \langle e_{1,4} \rangle &= e_{1,1} \otimes \langle e_{1,2} \rangle \otimes e_{1,1}. \end{aligned}$$

The diagonal ψ induces a diagonal $\Delta: P \rightarrow P \otimes P$,

$$(4.7) \quad \Delta = (\rho \otimes \rho) \circ \psi, \quad \rho = \varepsilon_A \otimes 1_P: X \rightarrow P, \quad \text{with}$$

$$\bar{d}^{(2)} \Delta = \Delta \bar{d}.$$

From (4.5), it follows that Δ is also homotopy coassociative.

We shall show a few examples of $\Delta \langle e_J \rangle$:

$$(4.8) \quad \begin{aligned} \Delta \langle e_{i,2^k} \rangle &= \langle e_{i,2^k} \rangle \otimes 1 + 1 \otimes \langle e_{i,2^k} \rangle \\ \Delta \langle e_{1,2}, e_{1,2} \rangle &= \langle e_{1,2}, e_{1,2} \rangle \otimes 1 + \langle e_{1,2} \rangle \otimes \langle e_{1,2} \rangle + 1 \otimes \langle e_{1,2}, e_{1,2} \rangle \\ \Delta \langle e_{1,1}, e_{1,4} \rangle &= \langle e_{1,1}, e_{1,4} \rangle \otimes 1 + \langle e_{1,1} \rangle \otimes \langle e_{1,4} \rangle + \langle e_{1,4} \rangle \otimes \langle e_{1,1} \rangle \\ &+ 1 \otimes \langle e_{1,1}, e_{1,4} \rangle + \underline{\langle e_{1,2} \rangle \otimes \langle e_{2,1} \rangle} \\ \Delta \langle e_{1,4}, e_{2,2}, e_{3,1} \rangle &= \langle e_{1,4}, e_{2,2}, e_{3,1} \rangle \otimes 1 + \langle e_{1,4} \rangle \otimes \langle e_{2,2}, e_{3,1} \rangle \\ &+ \langle e_{2,2} \rangle \otimes \langle e_{1,4}, e_{3,1} \rangle \\ &+ \langle e_{3,1} \rangle \otimes \langle e_{1,4}, e_{2,2} \rangle + \langle e_{2,2}, e_{3,1} \rangle \otimes \langle e_{1,4} \rangle + \langle e_{1,4}, e_{3,1} \rangle \otimes \langle e_{2,2} \rangle \\ &+ \langle e_{1,4}, e_{2,2} \rangle \otimes \langle e_{3,1} \rangle + 1 \otimes \langle e_{1,4}, e_{2,2}, e_{3,1} \rangle + \underline{\langle e_{2,1}, e_{3,1} \rangle \otimes \langle e_{3,1} \rangle} \end{aligned}$$

and, in general

$$\Delta \langle e_J \rangle = \text{shuffle} + \Sigma \text{ extra terms},$$

where an extra term $\langle e_{J_1} \rangle \otimes \langle e_{J_2} \rangle$, with $\langle e_{J_1} \rangle \cdot \langle e_{J_2} \rangle \neq \langle e_J \rangle$, is indicated by the underline.

Now the dual cochain complex P^* , with differential $\delta = \bar{d}^*$, has a product $\Delta^*: P^* \otimes P^* \rightarrow P^*$, which is 'homotopy associative' and δ is a derivation there.

The product Δ^* of P^* induces the usual associative product in the cohomology $H^*(P^*) = \text{Ext}_A^*(\mathbb{Z}/2, \mathbb{Z}/2)$ as stated in Corollary 1.5.

A few examples of boundaries are given by

$$(4.9) \quad \begin{aligned} \bar{d} \langle e_{1,1}, e_{1,4}, e_{1,4} \rangle &= \langle e_{2,2}, e_{2,1} \rangle \\ \bar{d} \langle e_{1,2}, e_{1,4}, e_{2,1} \rangle &= \langle e_{3,1}, e_{1,2} \rangle + \langle e_{2,2}, e_{2,1} \rangle \\ \bar{d} \langle e_{1,1}, e_{1,2}, e_{2,2} \rangle &= \langle e_{3,1}, e_{1,2} \rangle + \langle e_{2,2}, e_{2,1} \rangle \\ \delta \langle e_{2,2}, e_{2,1} \rangle^* &= \langle e_{1,1}, e_{1,4}, e_{1,4} \rangle^* + \langle e_{1,2}, e_{1,4}, e_{2,1} \rangle^* + \langle e_{1,1}, e_{1,2}, e_{2,2} \rangle^* \\ \delta \langle e_{3,1}, e_{1,2} \rangle^* &= \langle e_{1,2}, e_{1,4}, e_{2,1} \rangle^* + \langle e_{1,1}, e_{1,2}, e_{2,2} \rangle^* \\ \delta(\langle e_{2,2}, e_{2,1} \rangle^* + \langle e_{3,1}, e_{1,2} \rangle^*) &= \langle e_{1,1}, e_{1,4}, e_{1,4} \rangle^* \\ \bar{d} \langle e_{1,1}, e_{1,1}, e_{1,4} \rangle &= \langle e_{2,1}, e_{2,1} \rangle \end{aligned}$$

$$\begin{aligned}\bar{d}\langle e_{1,2}, e_{1,2}, e_{1,2} \rangle &= \langle e_{2,1}, e_{2,1} \rangle \\ \bar{d}\langle e_{1,1}, e_{1,2}, e_{2,1} \rangle &= 0 \\ \delta\langle e_{2,1}, e_{2,1} \rangle^* &= \langle e_{1,1}, e_{1,1}, e_{1,4} \rangle^* + \langle e_{1,2}, e_{1,2}, e_{1,2} \rangle^*, \text{ etc.}\end{aligned}$$

5. Spectral sequence

We shall define a filtration on X which corresponds to May's filtration on $B(A)$ ([5]). This leads to a spectral sequence, essentially the same as the May spectral sequence.

Define a weight function w on X by

$$(5.1) \quad w(e_I \langle e_J \rangle) = \sum_{h=1}^n i_h + \sum_{m=1}^s j_m, \text{ for a c.b.e. } e_I \langle e_J \rangle,$$

where $I = \{(i_1, k_1) < \dots < (i_n, k_n)\}$ and $J = \{(j_1, l_1) \leq \dots \leq (j_s, l_s)\}$, and put $w(x+y) = \max(w(x), w(y))$.

Define a filtration F_u on X , for $u \leq 0$, by

$$(5.2) \quad e_I \langle e_J \rangle \in F_u, \quad \text{if } |J| - w(e_I \langle e_J \rangle) \leq u.$$

Then we have

$$X = F_0 \supset F_{-1} \supset \dots \supset F_u \supset F_{u-1} \supset \dots$$

$$(5.3) \quad \text{and}$$

$$dF_u \subset F_u.$$

Putting $Z'_u = \text{Ker}(F_u \xrightarrow{d} F_{u-1} \rightarrow F_u/F_{u-r})$ for $r \geq 0$, we get a spectral sequence $\{E'_u\}$:

$$(5.4) \quad \begin{aligned}E'_u &= Z'_u + F_{u-1}/dZ'_{u+r-1} + F_{u-1}, \\ d: E'_u &\rightarrow E'_{u-r}, \quad \text{induced by } d.\end{aligned}$$

It follows that

$$(5.5) \quad \begin{aligned}E^0 X &= \sum_{u \leq 0} F_u/F_{u-1} \cong E^0 A \otimes E^0 P, \\ d^0 &= 0.\end{aligned}$$

Here $E^0 A$ is the primitively generated Hopf algebra, isomorphic to the enveloping algebra $V(E^0 L)$ of restricted Lie algebra $E^0 L$ (in [5] and [10],

$E^0 L$ is simply denoted by L .

From (5.5), we have

$$(5.6) \quad E^1 X = E^0 X \quad \text{as } E^0 A\text{-module,}$$

$$d^1 \langle e_J \rangle = \sum_{(j,l)} e_{j,2^l} \langle e_{J-(j,l)} \rangle,$$

where (j,l) run over the index sequence J without dublication.

Thus we have an isomorphism:

$$(5.7) \quad (E^1 P, \bar{d}^1 = E^1(\bar{d})) \cong (\Gamma(sE^0 L), d),$$

the May complex (being divided polynomial algebra)

as a commutative DGA-coalgebra, in which $\langle e_{j,2^l} \rangle^n = \langle e_{j,2^l}, \dots, e_{j,2^l} \rangle$ corresponds to $\gamma_n(\bar{F}_j) \in \Gamma(sE^0 L)$. Thus we have $E^1 X \cong E^0 A \otimes \Gamma(sE^0 L)$, the May resolution.

Dualizing the above things, we shall have a filtration \mathcal{F}_u on $X^* = A_* \otimes P^*$ such that

$$(5.8) \quad \begin{aligned} \mathcal{F}_u &= (X/F_{u-1})^*, \quad \text{for } u \leq 0, \\ 0 &= \mathcal{F}_1 \subset \mathcal{F}_0 \subset \mathcal{F}_{-1} \subset \dots \subset \mathcal{F}_u \subset \mathcal{F}_{u-1} \subset \dots \subset \mathcal{F}_{-\infty} = X^*, \\ \delta \mathcal{F}_u &\subset \mathcal{F}_u, \\ Z_r^u &= \text{Ker}(\mathcal{F}_u \xrightarrow{\delta} \mathcal{F}_u \rightarrow \mathcal{F}_u / \mathcal{F}_{u+r}), \\ E_r^u &= Z_r^u + \mathcal{F}_{u+1} / \delta Z_{r-1}^{u+1} + \mathcal{F}_{u+1}, \\ \delta_r &: E_r^u \rightarrow E_r^{u+r}. \end{aligned}$$

Thus we have

$$(5.9) \quad \begin{aligned} E_0 X^* &= E_0(A_*) \otimes E_0(P^*), \quad \delta_0 = 0, \\ E_1 X^* &= E_0 X^* \text{ as a module,} \\ E_1(P^*) &\cong \Gamma(sE^0 L)^* = \mathfrak{R} \text{ as a DGA-polynomial algebra ([5],[10])}, \\ E_2 X^* &\cong H^*(E^0 A), \end{aligned}$$

and $E_r X^*$ coincide with those of the May spectral sequence for $r \geq 2$. Here $\langle e_J \rangle^* \in E_1(P^*)$ corresponds to $R_{j_1}^{l_1} \cdots R_{j_s}^{l_s} \in \mathfrak{R}$ ([5],[10]).

Returning to the complex P^* , we denote $\langle e_{j,2^l} \rangle^*$ by $\varepsilon_{j,2^l}$. Then we have

$$\begin{aligned}
\delta \varepsilon_{j,2^i} &= \sum_{i=1}^{j-1} \varepsilon_{j-i,2^{i+1}} \cdot \varepsilon_{i,2^i}, \quad [\varepsilon_{j-i,2^{i+1}}, \varepsilon_{i,2^i}] = 0, \\
(5.10) \quad \text{and} \quad \langle e_J \rangle^* &= \varepsilon_{j_s,2^{l_s}} \cdot \langle e_{J'} \rangle^*, \quad \text{for } J = J' + (j_s, l_s) \\
\text{and} \quad (j_s, l_s) &= \max J,
\end{aligned}$$

because $\langle e_{j_s,2^{l_s}} \rangle \otimes \langle e_{J'} \rangle$ appears, with non-zero coefficient, only in $\Delta \langle e_J \rangle$, and not in $\Delta \langle e_{\tilde{J}} \rangle$ for other \tilde{J} .

P^* has no zero-divisor and contains the polynomial ring $\mathbf{Z}/2[\varepsilon_{1,2^i}; i \geq 1]$.

6. Appendix

Consider the case of the mod p Steenrod algebra A for an odd prime p . We shall sketch similar argument as in the preceeding sections.

Lemma 6.1. (i) A is multiplicatively generated by $\{e_{i,p^k}, f_j; i \geq 1, k \geq 0$ and $j \geq 0\}$, $e_{i,p^k} = (\zeta_i^{p^k})^*$ (resp. $f_j = \tau_j^*$) the dual element $\zeta_i^{p^k}$ (resp. τ_j) with respect to the Milnor monomial basis of the dual Hopf algebra A_* of A . (ii) The set $\{1, e_I^L \cdot f_J = e_{i_1,p^{k_1}}^{l_1} \cdots e_{i_m,p^{k_m}}^{l_m} \cdot f_{j_1} \cdots f_{j_n};$ with index sequences $I: (i_1, k_1) < \cdots < (i_m, k_m)$, $L = (l_1, \cdots, l_m)$ with $1 \leq l_i < p$, and $J: j_1 < \cdots < j_n\}$ forms a basis of A .

Put $L^+ = \mathbf{Z}/p\{e_{i,p^k}; (i,k) \geq (1,0)\}$, $L^- = \mathbf{Z}/p\{f_j\}$. Let $sL^+ = \mathbf{Z}/p\{\langle e_{i,p^k} \rangle\}$, $sL^- = \mathbf{Z}/p\{\langle f_j \rangle\}$ be the suspensions with bideg $\langle e_{i,p^k} \rangle = (1, 2p^k(p^i - 1))$, bideg $\langle f_j \rangle = (1, 2p^j - 1)$ respectively. And let $s^2\pi L^+$ denote a vector space $\mathbf{Z}/p\{y_{i,p^k}; (i,k) \geq (1,0)\}$ spanned by indeterminates y_{i,p^k} of bidegree $(2, 2p^{k+1}(p^i - 1))$.

Define

$E(sL^+) =$ the exterior algebra on sL^+ ,

$P(sL^-) =$ the polynomial algebra on sL^- ,

and

$P(s^2\pi L^+) =$ the polynomial algebra on $s^2\pi L^+$.

Theorem 6.2. The A -module $X = A \otimes E(sL^+) \otimes P(s^2\pi L^+) \otimes P(sL^-)$ with an inductively defined differential d gives an acyclic, A -free resolution of \mathbf{Z}/p : $X \xrightarrow{\epsilon} \mathbf{Z}/p$.

Corollary 6.3. A suitable filtration on X induces a spectral sequence in which $E^1 \bar{X} \cong E(sE^0 L^+) \otimes \Gamma(sE^0 L^-) \otimes \Gamma(s^2\pi E^0 L^+)$, the May's construction,

as a cocommutative DGA-coalgebra ([5]) and the E^r -terms are the same as those of May S.S. ($r \geq 2$).

We can prove this theorem quite similarly as in the mod 2 case, although we need here a more fine classification of the canonical basis elements $e_I^L \cdot f_J \cdot \langle e_G \rangle \cdot y_M \cdot \langle f_K \rangle$ as follows.

Introduce first the following notation on the index sequences:

$$(6.4) \quad a_1(I) = \max I = (i_m, k_m) \quad \text{for } I = (i_1, k_1) < \dots < (i_m, k_m),$$

and $a_1(\phi) = (0,0)$, ϕ being the empty set.

$$b(G) = \max G \quad \text{for } G = (g_1, h_1) < \dots < (g_t, h_t),$$

and $b(\phi) = (0,0)$,

$$c(M) = \max M \quad \text{for } M = (m_1, q_1) \leq \dots \leq (m_u, q_u),$$

and $c(\phi) = (0,0)$,

and

$$a_2(J) = \max J \quad \text{for } J = (j_1 < \dots < j_n),$$

and $a_2(\phi) = -1$,

$$d(K) = \max K \quad \text{for } K = (k_1 \leq \dots \leq k_v),$$

and $d(\phi) = -1$.

A c.b.e. $e_I^L \cdot f_J \cdot \langle e_G \rangle \cdot y_M \cdot \langle f_K \rangle$ belongs to one of the following types:

Provided that $J = K = \phi$ the empty set,

$$\begin{cases} I_1: a_1 \leq b \geq c \text{ and,} \\ \text{if } a_1 = b, l_m < p-1, \end{cases} \quad \begin{cases} II_1: b < a_1 \geq c, \\ II_2: a_1 = b \geq c, \text{ and } l_m = p-1, \end{cases}$$

$$(6.5) \quad I_2: a_1 < c > b, \quad II_3: a_2 \geq d.$$

Otherwise, if J or $K \neq \phi$, put

$$I_3: a_2 < d, \quad II_3: a_2 \geq d.$$

Thus we have a direct sum decomposition

$$(6.6) \quad X = C_I \oplus C_{II}, \quad C_I = C_{I_1} \oplus C_{I_2} \oplus C_{I_3}, \quad C_{II} = C_{II_1} \oplus C_{II_2} \oplus C_{II_3},$$

where

$C_{I_i} = \mathbf{Z}/p\{c.b.e. \text{ of type } I_i\}$ and $C_{II_i} = \mathbf{Z}/p\{c.b.e. \text{ of type } II_i\}$

for $i = 1, 2, 3$,

with linear isomorphisms

$$C_{I_i, s} \xrightarrow{\tau_s} C_{II_i, s-1}$$

defined by

$$(6.7) \quad \tau_s(e_I^L \langle e_G \rangle y_M) = (-1)^{|G|-1} e_I^L \cdot e_{g_t, p^{h_t}} \langle e_{G-(g_t, h_t)} \rangle y_M$$

on c.b.e. of type I_1 ($(g_t, h_t) = \max G$)

$$\tau_s(e_I^L \langle e_G \rangle y_M) = e_I^L \cdot e_{m_u, p^{q_u}}^{p-1} \langle e_{G+(m_u, q_u)} \rangle y_{M-(m_u, q_u)}$$

on c.b.e. of type I_2 ($(m_u, q_u) = \max M$)

$$\tau_s(e_I^L f_J \langle e_G \rangle y_M \langle f_K \rangle) = (-1)^{|G|+|K|-1} e_I^L \cdot f_J \cdot f_{k_v} \cdot \langle e_G \rangle \cdot y_M \langle f_{K-(k_v)} \rangle$$

on c.b.e. of type I_3 ($k_v = \max K$)

where $|G|$ denotes the length of the index sequence G and similarly for others, and $s = |G| + 2|M| + |K|$ the homology dimension.

The inverse σ'_{s-1} of τ_s will be defined obviously.

Then, starting from

$$d_1 \langle e_{j, p^l} \rangle = e_{j, p^l}, \quad d_1 \langle f_j \rangle = f_j,$$

$$\sigma_0(e_I^L)' \cdot \langle e_{i_m, p^{k_m}} \rangle, \text{ with } (i_m, k_m) = \max I \text{ and}$$

$$(e_I^L)' = \begin{cases} e_{i_1, p^{k_1}}^{l_1} \cdots e_{i_m, p^{k_m}}^{l_m-1} & \text{if } l_m > 1 \\ e_{i_1, p^{k_1}}^{l_1} \cdots e_{i_{m-1}, p^{k_{m-1}}}^{l_{m-1}-1} & \text{if } l_m = 1 \end{cases}$$

$$\sigma_0(e_I^L \cdot f_J) = e_I^L \cdot f_J \langle f_{j_n} \rangle \quad \text{with } j_n = \max J \quad \text{and} \quad J' = J - \{j_n\},$$

we could define differential d and contracting homotopy σ inductively in X as before, and as well carry out all the parallel discussion.

References

- [1] J.F. Adams: *On the structure and applications of the Steenrod algebra*, Comment. Math. Helv. **32** (1958), 180–214.
- [2] J.F. Adams: *On the non-existence of elements of Hopf invariant one*, Ann. of Math. **72** (1960), 20–104.
- [3] J. Adem: *The iteration of the Steenrod squares in algebraic topology*, Proc. Nat. Acad. Sci. USA **38** (1952), 720–726.
- [4] H.R. Margolis: *Spectra and the Steenrod Algebra*, North-Holland, 1983.
- [5] J.P. May: *The cohomology of restricted Lie algebras and of Hopf algebras*,

Application to the Steenrod algebra, Dissertation, Princeton Univ. 1964.

- [6] J. Milnor: *The Steenrod algebra and its dual*, Ann. of Math. **67** (1958), 150–171.
- [7] S.P. Novikov: *On the cohomology of the Steenrod algebra* (Russian), Doklady Acad. Nauk, SSSR **131** (1959), 893–895.
- [8] N. Shimada: *Some resolutions for the Landweber-Novikov algebra*, Q. & A. in General Topology **8** (1990), Special issue, 201–206.
- [9] N.E. Steenrod and D.B.A. Epstein: Cohomology operations, Ann. of Math. Studies 50, Princeton, 1962.
- [10] M.C. Tangora: *On the cohomology of the Steenrod algebra*, Math. Z. **116** (1970), 18–64.

Okayama University of Science
Ridaicho 1–1, Okayama 700
Japan

