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0. Introduction

Our main objective in this work is to develop the linking concept via the
P-Ideal Index Theory developed in [6] and to show that that concept is useful
in critical point theory. This linking concept is based on the Fadell-Husseini
linking concept that was developed in [9]. They have employed the numerical-
valued cohomological index theory. More precisely, in this work we first shall
announce the P-Ideal Valued Cohomological Index Theory. Second, we shall
develop the P-Ideal linking concept, and some computational examples of P-
Ideal linking between two sets A and B will be provided. Finally, the P-Ideal
Linking Concept will be employed in critical point theory in order to obtain a
general version of the Li’s three critical point theorem.

1. P-Ideal Valued Cohomological Index Theory

The objective of this section is to announce the P-Ideal Valued Cohomologi-
cal Index Theory that was developed by Dos Santos in [6]. Such a theory gives
us the flexibility to choose H*(E)-submodule P of H*(A4), where A4 is a closed
subset of our ambient space E, permitting the development of some useful alge-
braic topological concepts such as P-Ideal linking between two sets 4 and B
which will be developed in the next section.

Let E be a paracompact space and (X, 4)EE; where &y is the category of
paracompact pair (X, A) in E for a fixed closed subset 4 of E. Let H*( ) be the
Alexander-Spanier cohomology theory with a field coefficient K.

Recall that the cup product defines a multiplication on H*(X, 4) as follows:

H*(X, 4) @ H¥(E)
| 1@+
H*(X, A) @ H¥(X) > H¥(X, A4)

* This work was supported by CNP4, FINEP and FACEPE.



102 J. Dos SanTos

where 1 is the identity on H*(X, 4) and ¢ is the inclusion map X5E. There-
fore, H*(X, A) is an H*(E)-module. In particular, H*(4) is also an H*(E)-
module.

DeriniTION 1.1. Let E be a paracompact space (X, A)e&;. For an
H*(E)-submodule P of H*(4) the P-Ideal Value Cohomological Index of (X, 4)
over K is an ideal denoted by

P-Indexy(X, A) = Ann M*(X, A) in A = H*(E)
— (AEAu-n =0, Yuc M*(X, A)}

where MY(X, A)=8%(P) for ¢>—1, M°(X, A)=E&(K), &* is the coboundary
operator for the pair (X, 4) and & is the augmentation.

1.2. 'The corresponding numerical value index is

A
P-Indexz(X, A)

The notion of P-Ideal Index Theory is a generalization of the Facell-Hus-
seini §-index theory (see [9] for the numerical value notion of the &-Index
theory and [10] for the ideal value notion). In fact, if P=H%*(A) then

| P-Indexz(X, A)| = dimy

M*(X, A) = Im{8: H*(4) -» H¥*(X, A)} and M°(X, 4) = EK).
Recall that Fadell-Husseini in [10] have defined the &-Index of the pair
(X, A)e&; as being
d-Index (X, 4) = AnnImd in H¥E),
and the corresponding numerical value as being

H*(E)
8-Index (X, 4)

| 8-Index (X, 4)| = dimg

Therefore,
3-Index (X, A) = P-Indexg(X, 4) when P = H*(4).

Numerical valued cohomological index theories have been applied in criti-
cal point theory (more precisely in minimax theory) successfully by Fadell-
Husseini-Rabinowitz in [11], [12], [9], [23]. In addition, Fadell-Husseini
have observed that for the Lasry-Magil example (which is a problem of the
Borsuk-Ulam type), the numerical value index theory does not provide a so-
lution to it. On the other hand, the Ideal-Valued theory provides a nice so-
lution (see Fadell-Husseini in [10]).

RemARKs. The preceeding definition could be considered in a more gen-
eral setting. In fact, one can consider any category & of topological pairs (X, 4)
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in E (E is a topological space) and of maps, and let 2*(X, 4) denote a multiplica-
tive cohomology theory on & ie. h*(,) is a contravariant functor into graded
algebra over a field K, and %*(,) is equipped with long exact sequences, exci-
sion, the homotopy property, and the unit in A*(X).
1.3. In case that A=¢. We can consider the following index theory [10].
Let (X, ¢)=€ and X3E be the inclusion map. Therefore

H*(X) @ H*(E)
| 1@%
H*(X) @ H*(X) — H*(X)
H*(X) is a H*(E)-module.

DeriNiTION 1.4. The Ideal-Valued Cohomological Index of X over K
is the ideal

Index; X = Ann H¥(X) in H*E)= {A€H*E)|uxn =0, Vuec H*(X)} .

1.5. We observe that Index; X=ker i¥. In fact if A&Ker 7%, then i¥(0)

=0. Therefore
u-1¥(\) = 0, Vue H¥*(X)
showing that Ker 7fCIndex; X. On the other hand, given A EIndex; X then
u-i§(\)=0, Vuc H*(X). Since 1€ H*(X) implies
1-i¥(x) =0,

therefore,

Index; X CKeri%¥ then
Index; X = ker % .

It is important to observe that the above index theory satisfies those im-
portant properties of the Ljusternik-Schnirelmann theory.
Perhaps the first question that comes to mind is the following:

1.6. When is the P-Indexz(X, 4) a finitely generated ideal over K?

In order to answer this question it is important to observe that H*(E) is a
connected skew commutative grades K-algebra (see Dos Santos in [5]). Thus
one needs to have the concept of Noetherian ring R for a non-commutative ring
R. Following Passman in [22] (pages 423—424) one has:

1.7. Let R denote a non-commutative right ring.

DEFINITION. R is a right Noetherian ring if and only if all right ideals are
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finitely generated over R.

Theorem 1.8. Let S be a ring, RC S a subring and ucS. Assume
(1) R is right Noetherian.
(2) R+uR=R+Ru.
(3) S=(R, u)=ring generated by R and u.
Then S is right Noetherian.

Invoking the above theorem (1.8) one can prove the following property:

Property 1.9. Let H=®, HyH,=K denotes a graded skew commutative
algebra over K with a finite set b,, b,, ---, b, of generators as an algebra. Then H
is Noetherian.

Proof. See Dos Santos in [6].
An immediate consequence of (1.9) is the following Corollary.

1.10. Let M be a finitely generated right R-module and R be a right Noe-
therian ring, then M is Noetherian (as in R-module).

Therefore, the answer to the question (1.6) is if E is a connected para-
compact Banach manifold such that H*(E) is finitely generated as an algebra
over K then by (1.9), H*(E) is Noetherian. Consequently

(1.11) P-Indexg(X, 4A) is finitely generated over K.

The P-Ideal Valued Cohomological Index Theory satisfies those important
properties of the Ljusternik-Schnirelmann theory. In fact,

Monotonicity Property 1.12. Given a commutative diagram in &

(X, 4) A (X3, 4)
A2

Inducing a commutative diagram in cohomology level

H*(X,, A) r H*(X,, A)

. e 3
i% \ / tx,

H*(E)
If



P-IpeaL LINKING CONCEPT 105

Id = (fi)*: H¥(4) - H*(A4) then
P—P
P-Indexg(X,;, A)DP-Indexz(X,, 4) .

Proof. See Dos Santos in [6].

Subadditivity Property 1.13. Given a commutative diagram in Eg(X=
X,UX;)

(X, 4) = (XU X,, 4) < X,

then
P-Indexz(X,U X,, A) D P-Indexg(X;, 4). Index; X, .

Proof. See Dos Santos in [6].

Invariance Property 1.14. Given a morphism @ in €y

@: (X;, 4) = (X,, 4)
such that
@*: H¥(X,, A) - H*(X,, A)

is an isomorphism and
1d = (pd)*: H¥(4) > H¥A),
then
P-Indexz(p(X,), A) = P-Indexg(X,, 4).
The proof (1.14) is an application of the (1.12) twice.

1.15. Recall that the Alexander-Spanier Cohomology Theory [26] satisfies
the Continuity Property.

C.1 Suppose that (X, A) &, If T1={(V,, A)} is a family of neighborho-
ods (V,, 4) of (X, A), (V,, A)EE; is directed downward to (X, 4) by inclusion.
Then

lim H*(V,, A) = H*(X, A)
since E is a paracompact space.

C.2 Given any open set U such that ACXCUCE there is an open set
V such that
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AcvcVcU and (V,4)ETl.

Continuity Property 1.16. Let E be a paracompact space such that H*(E)
is finitely generated over K as an algebra. Given any open set U such that
AcC X UCE, there is an open set V such that ACXCVcVcU and

P-Indexz(X, A) = P-Indexg(V, 4) .
Proof. See Dos Santos in [6].

(1.17) Let X€&;. If Indexy; X S H*(E) then X has a positive cohomology,
in particular X +¢

Proof. Recall that
Index; X = ker{i¥: H*(E) - H*(X)} S H*(E) .

Therefore there is ¢>0: H(X)=0 i.e. X has positive cohomology. Then
X=+¢.

2. The P-Ideal linking concept between two sets A and B

Various concepts of linking have been employed successfully by many
mathematicians in critical point theory, e.g. see [1], [2], [3], [8], [9], [18], [19],
[25] and [16]. Our main objective in this section is to develop linking concepts
via the P-Ideal Valued Cohomological Index Theory anounced in 1. These
linking concepts are based on the Fadell-Husseini linking concept that was
developed in [9]. They have employed the numerical-valued cohomological
index theory. More precisely, in this section we shall develop the linking con-
cept via the P-Ideal Valued Index Theory in the non-equivariant case called the
P-Ideal Linking concept. This linking concept is related to two conditions:
the geometric condition (HO). and the cohomological condition (CO). And
some important computational examples of P-Ideal Linking between two set
A and B will be provided. These examples of the P-Ideal linking between two
sets A and B will be useful in critical point theory.

DerFINITION 2.1.  Let E be a paracompact space and (X, 4)e&;. Let 4
and B be two disjoint closed sets in E. We say that 4 is P-Ideal linking to B
if and only if

P-Index(E\B, A) 2 P-Indexg(E, 4) .

Proposition 2.2. Let E be a Banach space, and A and B be disjoint closed
sets such that

(1) H*(A)=*0, A has positive cohomology

(2) H*(E\B)—H?%*(A) is an epimorphism
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then A is P-Ideal linking to B where P—=H%*(A).

Proof. P-Indexgz(E\B, A)=Ann Im {8: H*(4A)—H*(E\B, 4)} =K.
Therefore

P-Indexz(E\B, A) = K 2P-Indexg(E, 4) = (0).
This shows that A4 is P-Ideal Linking (over K) to B.

Corollary 2.3. Let E be a Banach space, and A and B two disjoint closed
sets such that iy: Hy(A)—Hy(E\B) is a monomorphism. If P=H*(A) then A
is P-Ideal linking to B.

Proof. ¢*: H¥(E\B)—H*(A) is an epimorphism since Zyx is a monomor-
phism. Therefore, the proof of (2.3) is completed by (2.2).

We shall generalize the above result. First, we need to introduce two geo-
metric conditions called Geometric Condition (HO). and Cohomological Con-
dition (CO). It is important to observe that in the Geometric Condition (HO).
we shall employ the Singular Homology Theory while in the Cohomological Con-
dition (CO). we can employ the Alexander-Spanier Cohomology Theory or
Singular Cohomology Theory since 4ACE will be a space locally contractible.

GeoMEeTRIC CONDITION (HO) 2.4. Let E be a paracompact Banach mani-
fold, 4 and B be two disjoint closed sets. Let & denote a singular cycle in 4 and
n=[x] its homology class (over a field K). Assume that Hy( ) is the singular
homology theory.

We say that 4 and B satisfy the Geometric Condition (HO) if there exists
an nE€H*(4) such that #(»)=+0 and 4,()=0 where

Hy(E\B)

ConomorocicaL ConNDITION (CO) 2.5. Let E, 4 and B be as in (2.4).
Let H*( ) be the Alexander-Spanier Cohomology Theory or the Singular Co-
homology Theory.

We say that 4 and B satisfy the Cohomology Condition (CO) if there is
an H*(E)-module P C H*(A) such that §, P=0 and 8, P=0 where:
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H*(E, A)
3

H*(4) J*

3,

Proposition 2.6. Let E, A and B be as in (2.5). If A and B satisfy the
Geometric Condition (HO)., A is locally contractible and

%
P = Image {H*(E\B) — H*(A)} .
Then
A and B satisfy the Cohomological Condition (CO).

Proof. By the Geometric Condition (HO) we have the following diagram
Hy(E\B)
)

Hy(A) J*

and there exist & Hy(A4) such that ()0 and 7,(»)=0. Denote
io(n) = ¥
P = H*(E)-module generated by »*

where »* is the dual class of 5 (over a field K). Note that

Hom(Hy(E\B; K)) _
if
Hom (Hy(A4); K) .
i¥
HAom (Hy(E); K)
Moreover
(2.7) F¥) =< =<t o =1

and for any £E€(y™) we have
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B p=<F v, ={*%4E=0
if(p*) 7 = ¥ (p*), > = p*, ap> = 0.
Furthermore, the following diagram holds

H*(E, A)

% 3, /‘

12

(2.9) H*(E\B) > H*(4) % H*(E\B, A)

H*(E)

(2.8)

hence (2.7) and (2.3) guarantee that i§(v*) is not in the image of H*(E) by z¥.
Therefore

6;P#+0 and §,P=0.

2.10. Let E, A and B be as in (2.7) assuming that 4 and B satisfy the
geometrical condition (HO). Is 4 P-Ideal linking to B for some H*(E)-module
PCH*(A):?

In order to answer the above question, one needs to compute P-Indexy
(E\B, A4) and P-Indexg(E, A). Let us take
¥
P = Im{H*(E\B) — H*(A)} .

By (2.6) A and B satisfy the Condition (CO)., since 4 and B satisfy the Geo-
metrical Condition (HO). Therefore §, P=£0 and 8§, P=0. Then

P-Indexg(E, A) = Ann 8, P = {A€H*(E): uxn = 0,Vucd, P} =«
Furthermore
P-Indexg(E\B, A) = Ann §, P in H¥*(E)
= (ANEH*E): uxn =0, Vucs, P =0}
— H¥(E)
then 4 might be P-Ideal linking to B. In order to get 4 and B P-Ideal linking
one needs to have

H¥E)DH¥E)Ra
2.11. For example, let E be a Banach space. Hence
- = H¥E) - H*(4) - H**YE, A) > H**Y(E) — .-+
Therefore
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P-Indexz(E, A) = {N\€H*(E): uxn =0, Vu€d, P} =0
since 8; P==0 then
P-Indexz(E\B, A) = H*(E)> B*(E) 2 P-Indexz(E, A) = (0)
ie. 4 is P-Ideal linking to B.

Proposition 2.12. Assume that E is a Banach space, A and B are two dis-
joint sets in E. If A is P-Ideal Linking to B, then

(1) H*(A)=*0, A has positive cohomology.

(2) A can not be contractible to a point in E\B.

Proof. We observe that P-Indexgz(E\B, A)=K and P-Indexz(E, A)=(0)
since A4 is P-Ideal Linking to B in a Banach space E.

By the exact sequence of the (E, 4):

)
coo = H¥(E) — H(A) > HXE, A) — H*@E) — -
we have H*(4)=H*(E, A)=0 then A has positive cohomology. On the other
hand, if 4 is contractible to point in E\B, we have
i* S,
. = H¥(E—B) — H*(4) = H*(E\B, 4) — -
then &, is a monomorphism. Therefore
P-Indexz(E\B, A) =0 since §,P=+0.

This is a contradiction. Then the above proposition is proved.

3. A Critical Point Theory

3.1. A General Version of Li’s Theorem

The aim of this section is to prove an abstract critical point theorem which
is a general version of Li’s theorem in [16]. The P-Ideal Linking concept is ap-
plied successfully in order to obtain a critical value of a functional J by the
minimax procedure. Furthermore, if J is bounded from below we shall use the
P-Ideal Linking concept to obtain a third critical point of J.

Theorem 3.2. Let E be a connected paracompact Banach manifold and J be
a C'-functional. Assume that there are ¢, a, b, c. ER:

— 00 L H<a<h<Cuw<L oo

such that
(Jy) J satisfies the (P.S) condition in J~Y(]c,, c-[).
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([J2) There are two disjoint sets A and B such that A is P-Ideal Linking to B, PC
H*(4)
(Js) J@)=bonB

(Js) Jw)<aon A
(Js) There exists a closed set X A in E such that X\ A is precompact and P-Index,

(X, A)=P-Index,(E, A).
Then J possesses at least one critical value ¢ >b.

Proof. Denote
a = P-Indexz(E, A) and @B = P-Indexz(E\B, 4).
Since A4 is P-Ideal Linking to B, hence 82a. Define
¢ = inf sup J (%)

xezm uEX

where

Se = {(X, A)e&;: P-Indexy(X, 4) = a}

and &y is the class of all paracompact pairs (X, 4) in E. Note that %,=¢ since
(X, )=,

SteP 1. ¢ is well defined as a real number. First, note that

c<oo,
In fact
sup,ex J(#)<co and P-Indexz(X,A)=a by (J)
therefore
(3.3) ¢ = inf sup J(u)< sup J(u)<<oo.

xes, uex ¥
The following intersection property is verified:
VXe3,: X NB+¢, since A is P-Ideal Linking to B.
Otherwise, there is a X;€3,: X,NB=¢. Thus
(X, A)c(E\B, 4) .

Hence
P-Indexz(X,;, A)DP-Indexz(E\B, 4A)2«a

therefore

(X, A) &3,

which is a contradiction. This shows that
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vVXes,= XNB+¢
and hence
bS":BrPB](u)S 11;)](14) , YXe3,
implying
(34) ¢ = inf sup J(u)>b

xes, vex

by (3.3) and (3.4) c is indeed a real number. Moreover
a<b<c<oo.

STEP 2. ¢ is indeed a critical value of J. Suppose

¢ = inf sup J(u)

xeim 1= 4

is a regular value of J. Therefore, there is a set X, E3,:
sup J(u)<c+¢&
ueX 1
by taking & as in the deformation theorem. Suppose otherwise:

sup J(u)>c+€&, VXEZ,
therefore
¢ = inf sup J(u)>c+¢&

XE2¢ uEX

that is a contradiction. Indeed, there is a set X;E€3,:
X, Jo+e
by invoking the deformation theorem (see [25]). One can get a homeomorphism

X E— E, V¢<€[0.1]

3.5) p(u) =u, Yu:|Jw)—c|=¢&
(3.6) (X"

Let us choose & such that: a<<c—&. Hence

3.7) Jw<a<c—e&, Yu€4
and

) =u, Yucsd, Vt€[0,1].
From (3.7) and the invariance property of P-Ideal valued index theory:

P-Indexg(y (X)), A) = P-Indexg(X,, 4) = .
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Therefore
Y=yp(X)ES, and YCJ-*.
Furthermore
sup Ju)< sup J(u)<c—é
uEY e J.t‘ -2
therefore

¢ = inf sup J(u)<c—&

Xez, veXx
which is a contradiction. Consequently c¢ is indeed a critical value of J.
Corollary 3.8. Let E be a Banach space and J be a C'-functional. As-

sume all hypotheses of the preceding theorem. Assume either ([J5) or A is compact.
If ] is bounded from below then J possesses at least three critical points.

Proof. Let m be the minimum value of J

m= r“réiglj(u).

m is indeed a real number, since J is bounded from below. Furthermore,
there exists a 4, €E:

J () = m = min J ()
and
Jl(uﬂ) = 0 ’

since J is bounded from below and satisfies the (P.S) condition. In fact, ac-
cording to Zeidler in [27] (p. 158). V&>0, JucskE:

J@)<inf J(o)+¢

and

1T m)ll<€
since J is lower semicontinuous, G-differentiable, and bounded from below.
Define now

m= inﬁ](v)

m is well defined, since J is bounded from below. Taking 8=i, there exists
a sequence {v,} n

m< J(v,) Sm-}-%

and



114 J. Dos SanTos

o<l J @<+
n

therefore
J(@)—=m and ||[J'(,)]| > 0asn— oo
By (P.S) condition there is a subsequence {v, } of the sequence {v,}
V,, —> 7y, as k— oo,
By continuity of J and J’
J(@a) = J(20) and J'(2,,) = J' ()

in norm operator. 'Then there is a v,EE:
J (o) = m = min J(v)
vel
and
J'(@)=0.

This assures us that m is indeed a critical value of J. Observe now that
—oo<m<a, since J(u)<a for all u€ 4 and m is the minimum value of J.

3.9. Suppose that the minimum m is attached at more than one point %,
then by Theorem (3.2), J possesses at least one critical value ¢,, m<a<<b<c,,
and the result is immeditae.

3.10. Now, let us suppose that there exists a unique point %, such that
the minimum value of J is attained. Thus it is enough to show that J has a
critical value ¢;E(m, a]. In fact, m<a. Otherwise m=a. Note m< J(u)<m,
VYucsA. Hence J(u)=m,VucA. By (J,) and (2.12) A has positive cohomolo-
gy. Hence 4 must have more than a point. This contradicts the fact that there
exists a unique minimum point %,.

3.11. In order to show that there is a critical value of J ¢,E(m, a], let us
assume that J has no critical value in (m, a].
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By invoking the deformation theorem there is £&(0, &) and a homeomorphism
7€C([0, 11X E, E) such that

p:J'—J° and p(J)c ™"

for all £€[0,1]. Let D, (%) and D,,(4,) be two disk neighborhoods of #, for
0<r,<r, such that D, (u,)C J*.

Claim 3.12. For & small enough J™**CD,(4). In order to prove the
claim, first note that J has no critical point in J*\D, (%), since otherwise the
corollary is proved.

By (P.S) condition there is an r>0 such that

(3.13) |1 J (@)l =r, Yus J°\D, (u) .
Otherwise there exists a sequence of 7,—0 and %, € J*\D, (4,) such that
1T @ )ll<r, .

By (P.S) condition there is a subsequence u,, of {u,} such that u, —»u& J*\D, (u,)
but # is a critical point of J in J*\D, (%) which is a contradiction to the hypo-
thesis (3.11).

Based on an analogous argument in the proof of Theorem A.4 in [25] pp.
82-86, one can be assured that there is a pseudogradient vector field v for J at
u. i.e:

(3.14) Il <2 (1] (@)l

3.15. J'(w). v=||J'(w)|* and v is Lipschitz for any v € J*\D,,(4,). Define
the flow @ by

{Zz% *= IO
?(0) =u
therefore
52| = -5 e |

Ilrp(t)—<p(0)||gss%;)($lll% 5

<['2 W@ Ol g,
N @@

<of 14
olT (@@
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gzg 12t
r
taking T S% (r,—n). Hence

lp(T)—ul| <r,—n,

then for [0, T'] the flow ¢, is not in D,‘(uo). Furthermore

2 J6®) = @), L o)

e o( (1)
JCO: el

s S (@ (9)), v(e()>

@
and

[ L J@@)ds = [ = KT (o), o) ds

o ds o T @I

1 @I 4
by (3.15
(by (3.15) <L
<—t.

Therefore
(3.16) J@ @)~ J(@(0)<—t

J(@(T)<Jw)—-T

suppose that J"**dD,,(u) for all £>0. Then there is a € J"+*\D,,(4) such
that

J@)<m+T for some small &>0
if not
Jw)y=m-+&+T for every &£>0
and u€ J"**\D,,(4,). By taking the infimum in &
J@=m—+T,Vue J"*\D, (u,)

which is a contradiction. Therefore, there exists an &€ and u& J"**\D,,(1,) such
that

(3.17) J@w)y<m+-T
by (3.16) and (3.17)
J@(M)<Jw)—T<m+T-T
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J(@(T))<m

which is a contradiction since m is the minimum value of J. Therefore, for
some small £>0:

7(A)C J" " C D, (u) -

That is, 4 is deformable into a disk neighborhood D,, (1) in the complement of
B. Therefore 4 contains a q-cycle S such that there exists a (¢+1)-chain & in
E which is also a (¢g+ 1)-chain in E\B with boundary S or 4 can be deformable to
a point in E\B. This assures us of a contradiation with (J;) therefore (2.12)
are verified. Then one must have a critical value ¢, E(m, a] of J. Consequen-
tly, J possesses at least three distinct critical points.
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