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Introduction

Let p be an odd prime. Let K be an algebraic number field of finite degree,
and let L/K be a p-extension. Throughout this paper, a p-extension means a
finite Galois extension whose Galois group is a p-group. In this paper, we study
the existence of a p-extension M/L/K such that M/L is unramified.

One of our results is the following.

Let % be the rational number field or an imaginary quadratic field with the
class number prime to p ( is not equal to 3 when k=Q(v/—3)). Let L/K/k be
a Galois tower satisfying the conditions (1), (2) and (3) in Theorem 1 below,
and E be a non-split central extension of Gal(L/k) by Z/pZ. Then there exists
a Galois extension M|k such that M/K is unramified and Gal(M/k) is isomorphic
to E.

We try to proceed by means of the theory of central imbedding problems.
In §1, we explain about the central imbedding problems. In §2, we study the
existence of unramified p-extensions, and in §3 and §4, we have an application
of results proved in §2. In 85, we study the central imbedding problem of
exponent p.

1. Central imbedding problems

Let & be an algebraic number field of finite degree, & its absolute Galois
group, and let L/k be a finite Galois extension with Galois group G. Let (€):

1—>A—>EG—1 be a central extension of finite groups. Then a central im-
bedding problem (L/k, €) is defined by the diagram

S
(%) . l @
(€:l—ed—eE Lo G—s1
where o is the canonical surjection. A solution of the imbedding problem (L/,&)
is, by definition, a continuous homomorphism +» of & to E with joyr=g¢. The
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Galois extension over k corresponding to the kernel of any solution is called a
solution field. A solution 4 is called a proper solution if it is surjective. The
existence of a proper solution of (L/k,€) is equivalent to the existence of a Galois
extension M D L>k with Galois group Gal(M/k) which is isomorphic to £ and
the canonical projection Gal(M/k)—Gal(L/k) coincides with the given homomor-
phism j: E—G. We say the imbedding problem (L/, €) is solvable (resp. proper-
ly solvable) if it has a solution (resp. proper solution). Now, we quote some
results of central imbedding problems without proofs. For details, see Neukirch
[1].
Let (L/k,€) be a central imbedding problem defined by the diagram (x).

Lemma 1. If L|k is unramified or € is split, then (L[k, €) is solvable.

For any prime number p, denote by G(p) one of the p-Sylow subgroups
of G. Let k® be the fixed field of G(p). Then the central imbedding problem
(L/R, &) induces the p-Sylow problem (L/k®), &(p)), which is defined by the

diagram

S(2)

Plec

ilg
&p) 1 l—— A— E(p) () ~G(p)—1

where E(p) (resp. &(p)) is the inverse of G(p) by j (resp. ).
The following reduction holds.

Lemma 2. If p-Sylow problems (L|k®, &(p)) are solvable for any prime
number p, then (L|k, €) is solvable.

ReMARK. Lemma 2 holds for general imbedding problems, For example,
let L/k be a Galois extension of a local field £ and @ the Galois group of L over
k, where L is the maximal unramified extension of L. Then an imbedding
problem (L/k, &) is defined, and Lemma 2 holds for this.

For any prime p of %, denote by ky(resp. L,) the completion of & (resp.
L) by p (resp. an extension of p to L). Then the local problem (Ly/k,, &,) of
(L/k, &) is defined by the diagram

S,
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where @, is the absolute decomposition group of p which is isomorphic to the
absolute Galois group of k,, and E, is the inverse of G, by j. Similary to the
case of (L/k, &), we define a solution and a solution field of local problem
(Lplkys &)

The following lemma is a generalization of Grunwald-Wang-Hasse’s The-
orem by Neukirch.

Lemma 3. (Neukirch [1; Example 1, Corollary 6.4]) Assume that (L|k,
€) is solvable. Let S be a finite set of primes of k. Let M, be a solution field
of (Lylky, &) for p of S. Then there exists a solution field M of (L|k, &) such
that the completion of M by p is equal to M, for any p of S.

For a finite set .S of primes of &, let B,(S)={ack*| (a)=a’ for some ideal
a of k, and e kg’ for any q of S}. Then the following lemma is well-known.

Lemma 4. (Safarevic [2; Theorem 1]) Assume that B,(S)=k*F. Let q
be a prime of k, not contained in S. If N(q), the absolute norm of q, is congruent
to 1 (mod. p), then there exists a cyclic extension k(q)/k of degree p which is un-
ramified outside S U {q}, and in which q is ramified.

ReMARK. Let k be either the rational number field or an imaginary quad-
ratic field with the class number prime to p (p=3, when k=Q(v/—3)). In this
case, By(¢)=Fk*", and hence B,(S)=F~k*f for any S.

2. On unramified extensions

In this section, let p be an odd prime and let & denote either the rational
number field or an imaginary quadratic field with the class number prime to p
(p=*3, when k=Q(v/ —3).

The following theorem is our main result.

Theorem 1. Let L/K|k be a Galois tower satisfying the following conditions.

(1) The degree of K|k is prime to p.

(2) L/K is an unramified p-extension.

(3) For any prime q of k ramified in K|k, the inertia degree of q in K|k is
equal to 1 or Lqfkq is cyclic.

Put G=Gal(L|k), and let (§): 1>Z[pZ—>E—->G—1 be a non-split central

extension. Then there exists a Galois extension M|k such that
(i) Mk gives a proper solution of the central imbedding problem (L/k, €),
(i) MJK is unramified.

Proof. By Lemma 1 and Lemma 2, it is easy to see that (L/k, €) is solvable.
Now, we consider the local problem (Ly/k,, &,) for any prime p of & lying above
p. By the remark of Lemma 2, as a solution field of (L,/k,, &), we can take an
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unramified extension M,/K,. By Lemma 3, there exists a solution field M/k of
(LR, €) such that its localization is equal to M, for any prime p lying above p.
Let y: @—E be a solution of (L/k, €) corresponding to the solution field M,/k.
Since & is non-split, the central extension &(p): 1=Z/pZ—E(p)—G(p)—1 of
finite p-groups which is induced by §&, is also non-split. It is clear that the gener-
ator rank of E(p) is equal to that of G(p). Then the restriction ¥ |®(p): S(p)—
E(p) is surjective, and then yr: &—E is surjective. Hence v is a proper solution
of (L/k, ). By the choice of My/k, any prime of L lying above p is unramified
in My/L. If M,/L is unramified, then My/k is a required Galois extension. Sup-
pose that My/L is not unramified, and take a prime q of M, ramified in M,/L.
Let q be a prime of k that is the restriction of § to 2. We claim that N(q)=1
(mod.p). If q is ramified in K/k and the inertia degree in K/k is equal to 1, then
N(§)=N(q)”" =1 (mod.p) for some integer ». Hence N(§)=1 (mod.p). Assume
that q is not as above. We consider the extension M,z /kq which is the localiza-
tion of M,/k with respect to §. Then M,j/kq is abelian since Lg/kq is cyclic and
MRy is a central extension of Lg/kq. Thus q is ramified in a p-extension over
kq. Hence N(q)=1 (mod.p). This proves the claim. By Lemma 4, there exists
a cyclic extension k(q)/k of degree p whcih is unramified outside q and in which
q is totally ramified. Then k(q) N M,=k because q is unramified in L/K and the
generator rank of Gal(M,y/K) is equal to that of Gal(L/K). Let q be an exten-
sion of q to M,-k(q), and let M, be the inertia field of q in M,-k(q)/L.

M,-K(q)
M, L-k(q)
L K -k(a)
K k(q)

k

Then M, is not equal to L, M, and M,-k(q) by the Hilbert theory of ramifica-
tion. Since Gal(M,-k(q)/L) is contained in the center of Gal(M,-k(q)/k), M,/k
is a Galois extension. Moreover, Gal(M,/k) is isomorphic to Gal(M,/k) and
M, |k gives a proper solution of (L/k, £). By the choice of M,, any prime of
L which is unrmaified in M,/L is also unramified in M,/L, and § is unramified
in M,/L. By continuing this procedure, we can take a required extension M|/k.
This proves the theorem.

3. An application to quadratic extensions

As in §2, let p be an odd prime, and let & be either the rational number
field or an imaginary quadratic field with the class number prime to p (p=+3
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when k=Q(Vv/—3)). Let K be a quadratic extension over k. We first prove
the following lemma.

Lemma 5. Let K,/K be an unramified cyclic extension of degree p, and p
a prime of k lying above p. Then we have the following.

(1) K, is a Galois extension over k, and the Galois group is isomorphic to the
group <o, 7| e?=7=1, ror'=0"1).

(2) If p is ramified in K|k, the inertia degree of p in K|k is equal to 1.

Proof. (1) Suppose that K,/k is non-Galois. Let K, be a conjugate field
of K, over k, which is distinct from K, and put Gal(K,-K,/K;)=<{x)> and
Gal(K/k)=<y,>. Lety be an extension of y, to K;+K,. Then Gal(K,-K,/K,)=
{yxy~"> and Gal(K,- K,/k) is generated by x and y. The fixed field of {yxy~'x™*)
is an abelian extension over k& of degree 2p. By considering the ramification
index, we see that there exists an unramified cyclic extension over k of de-
gree p. This is a contradiction. And it is easy to see that Gal(K,/k) is isomor-
phic to the group <o, 7|o?=7*=1, To77'=0"")>. (2) Let b be an extension of
p to K, and put G=<g, 7|6?=7=1, 7o7"'=¢"")>. Suppose that § is also prime
of K,. Then the inertia group of p in K /k is a normal subgroup of G, which is
of order 2. But G has no normal subgroup of order 2. This is a contradiction.

Let H be a group of order p* defined by
lay 2|a? = y? = 2t = 1, 27z = xy, y~ oy = x, y7'zy = 2.

Let CI(p) be the p-Sylow subgroup of the ideal class group of K. Denote by
d,Clyg, the p-rank of Clg(p).
Then we have the following.

Theorem 2. If d,Cly>2, then there exists an unramified Galois extension
M|K with Galois group Gal(M|K) isomorphic to H.

Proof. Let K,/K, K,/K be unramified cyclic extensions of degree p such
that K, N K,=K. Then by Lemma 5, KK, is a Galois extension over k, whose
Galois group is isomorphic to the group

G:=lu, v, w|w=v’=w'=1, w uw=u"?, w lvw=o"
Now, we take a following group E of order 2p°,

1 1

, 0 uo=u).

=y == =1,z =xy, yxy = x,>

E=x21
<x ’ y-xzy =z, t" %t = &7}, t—lyt =9, tlop — o1

Then,
1> y>>EHG—1

is a non-split central extension, where j is defined by x—u, 2—v, t—>w. By
Theorem 1, there exists a Galois extension M|k such that M/K, - K, is unramified
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and that the Galois group Gal(M/k) is isomorphic to E. Since the p-Sylow
subgroup of E is isomorphic to H, Gal(M/K) isisomorphic to H. 'This proves
the theorem.

From the proof of Theorem 2, we have,

Corollary. Assume that L|K is unramified extension with Galois group
isomorphic to Z|pZ X Z|pZ. Then the class number of L is divisible by p.

4. An application to cubic extensions

Let p be an odd prime which is congruent to —1 (mod.3), and & be the
same as in §3. Let K/k be a cyclic extension of degree 3. In this section, we
prove the following.

Theorem 3. Assume that the class number of K is divisible by p. Then there
exists an unramified Galois extension M|K with the Galois group isomorphic to H,
where H is the same group as in §3.

First we prove the following lemma.

Lemma 6. (1) Let K,/K be an unramified cyclic extension of degree p.
Then K|k is non-Galois. (2) Let L|k be the Galois closure of K,|[k. Then
Gal(L/[k) is isomorphic to the group

G:=,v,w|wt=v?P =’ =1, 07w =9, w ow = u 0™, u"lou = ).

Proof. (1) Assume that K,/k is Galois. Since p is congruent to —1
(mod. 3), the group of order 3p is abelian, so K, /k is an abelian extension. Then
it is easy to see that there exists an unramified cyclic extension of degree p.
This is a contradiction. (2) The order of Gal(L/k) is either 3p* or 3p°. We
notice that a p-Sylow subgroup of Gal(L/k) is normal subgroup which is iso-
morphic to an elementary abelian p-group, and Gal(L/k) does not have a normal
subgroup of order 3. The group of order 3p? or 3p® with this property is iso-
morphic to G (see Western [3]).

Proof of Theorem 3. By Lemma 6, there exists a Galois extension L/K/k
such that L/K is unramified and Gal(L/k) is isomorphic to G. Now, we take a
following group E of order 3p°.

H=y=2=Ff=1xme=yz,xyx =9, yRy==2

E={xz1
NP =g Tt = a7l y Ty =t

Then,
1>( y>—>ELG—1

is a non-split central extension, where j is defined by x—u, 2—v, t—>w. In the
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same manner of the proof of Theorem 2, we can take a required extension MJk.

5. On central imbedding problems of exponent p

Let p be an odd prime and L/k a Galois extension of an algebraic number
field & with Galois group G. In this section, we asusme that G is of exponent
P (not necessary abelian). Let S, be the set of primes of & which are ramified
in L and prime to p.

We prove the following.

Theorem 4. Assume that By(S,)=k*?, and that Lq/kq is cyclic for any

prime q of k. Let E be a p-group of exponent p and (€): 1—>Z/pZ—>E—J->G—>

1 a non-sprit central extension. Then there exists a Galois extension M|k such that
(1) M]k gives a proper solution of the central imbedding problem (L|k, €),
(it) M]L is unramified.

Proof. For any prime q of &, & is split by the assumption, so (Lg/kq, &)
is solvable. Then (L/k, &) is solvable. Now, we consider the local problem
(Ly/ky, €p) for any prime p of k lying above p. It is clear we can take Ly/k, as a
solution field of (Ly/k,, &,). Then, by Lemma 3, there exists a Galois extension
M, /L/k such that any prime p lying above p is unramified in M,/L and that M,k
gives a proper solution of (L/k, €). Let S, be the set of primes of & which are
ramified in M,. Let q be a prime of S| not contained in SoU {p}. Then, in the
same manner of the proof of Theorem 1, we can take a Galois extension M,/k
that is unramified outside S,—{q}, and can take a Galois extension M/k that
is unramified outside S,U {p}.

Let q be a prime contained in S, and q a prime of L which is an extension
of q. Since E is of exponent p, § is unramified in M by the Hilbert theory of
ramification. . Then M/L is unramified, therefore M|k is a required extension.

Let H be the same group as in §3. As a corollary of Theorem 4, we have

Corollary. Let L|k be a Galois extension with the Galois group isomorphic
to ZIpZX Z|pZ. Assume that By(S,)=k**. Then the following conditions (i)
(i1) are equivalent.

(i) There exists a Galois extension M|L|k such that Gal(M|k) is isomorphic
to H and that M|L is unramified.

(i) Any prime of k which is ramified in L[k is decomposed in Ljk.

Proof. (ii)—(i) is clear by Theorem 4. We prove (i)—>(ii). Assume that
there exists a prime q of & which is ramified in L/k and is not decomposed in
Ljk. Let q be a prime of M which is an extension of q. Since H is of ex-
ponent p, the decomposition group of § in M/k is of order p>. Then the de-
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composition group is normal subgroup of H, so the decomposition field is a
cyclic extension over k of degree p. Therefore it is contained in L/k. This is
a contradiction.
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