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Let G be a finite group and % a field of characteristic p>0. Let T'\(RG)
be the stable Auslander-Reiten quiver of the group algebra RG. By Webb’s the-
orem , the tree class of a connected component A of T'y(kG) is a Euclidean dia-
gram, a Dynkin diagram or one of the infinite trees Aw, Bw, Cw, Dw, or AZ.
Moreover if A contains the trivial #G-module k, then the graph structure of
A has been investigated (see [21], [16] and [17]). In this paper we study a
connected component of I'(kG) containing an indecomposable kG-module
whose k-dimension is not divisible by p. Suppose that M is an indecomposable
kG-module and p ¥ dim,M. In Section 2, we will show that M lies in a con-
nected component isomorphic to ZA.. if k is algebraically closed and a Sylow
p-subgroup of G is not cyclic, dihedral, semidihedral or generalized quaternion.
In Section 3 we make some remarks on tensoring the component containing the
trivial kG-module k2 with M. In Sections 4 and 5 we consider the situation
where p=2 and a Sylow 2-gubgroup of G is dihedral of order at least 8 or semidi-
hedral.

The notation is almost standard. All modules considered here are finite
dimensional over k. We write W=W' (mod projectives) for kG-modules W
and W’ if the projective-free part of W is isomorphic to that of W’. For an
indecomposable non-projective kG-module W, we write A (W) to denote the
Auslander-Reiten sequence (A4R-sequence) 0—>QW—->m(W)—>W—0 termi-
nating at W, where Q is the Heller operator, and we write m(WW) to denote the
middle term of A(W). If an exact sequence of 2G-modules & is of the form
0—-Q*WRU -»m(W)YBU PU'-WHU—0, where W is an indecomposable
non-projective kG-module, and U,U’ are proejctive or 0, we say that & is the
AR-sequecne A(W) modulo projectives. 'The symbol ® denotes the tensor
product over the coefficient field k. For an exact sequence of kG-modules
8§:0—-A—-B—->C—0 and a kG-module W, we write SQW to denote the tensor
sequence 0—-AQW—-BRQW—->CQW—0. Concerning some basic facts and
terminologies used here, we refer to [2], [10] and [11].
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1. Preliminaries

We start by summarizing results on the graph structure of connected com-
ponents of T',(kG).

Theorem 1.1 ([21], [17], [5], [9]). Let A be a connected component
of T(kG). Then the tree class of A is A,, 4, By, Aw, B, Cu, Dw or A2.
If k is algebraically closed, then the tree class is not B, B.. or C.. Moreover if
the tree class or the reduced graph of A is Euclidean, then the modules in A lie in a
block whose defect group is a Klein four group.

Theorem 1.2 ([21], [16], [17], [7]). Let A, be the connected component
containing the trivial kG-module k, and let P be a Sylow p-subgroup of G. Then;

(1) If P is not cyclic, dihedral, semidihedral or generalized quaternion, then
A=ZA.. and k lies at the end of A,.

(2) If Pis a dihedral 2-group of order at least 8, then Ay=ZAZ.

(3) If P is a semidihedral 2-group, then Ay=ZD.. and k lies at the end of A,.

(4) If Pis a generalized quaternion 2-group, then A, is a 2-tube.

We will need the following result on tensoring the AR-sequence by Aus-
lander and Carlson [1].

Theorem 1.3 ([1], see also [3]). Assume that k is algebraically closed. Let
A(R): 0>Qk—>m(k)—>k—>0 be the AR-sequence terminating at the trivial kG-module
k. Let M be an indecomposable kG-module. Then the tensor sequence A(k)QM:
0—->Q%kQ M—>m(k)RQM—>M—0 has the following properties.

(1) If p ¥ dim,M, the tensor sequence A(R)QM is the AR-sequence A(M)
modulo projectives.

(i) If p|dim,M, then the tensor sequence A(R)QM is split.

Concerning tensor products, we will also need the following result by Ben-
son and Carlson [3].

Theorem 1.4([3], see also [1]). Assume that k is algebraically closed. Let
M and N be indecomposable kRG-modules. Then
(1)  The following are equivalent.
(a) k|MQN.
(b) p X dimM and N=M*. Here M*=Hom,(M, k) is the dual of M.
Moreover if p ¥ dim,M, then the multiplicity of k in M QM* is one.
(2) Suppose that p|dim,M. Then for any indecomposable direct summand
U of MQN, we have p|dim,U.

As an immediate consequence of Theorem 1.3, we have;

Lemma 1.5. Assume that k is algebraically closed. Let M be an indecom-
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posable kRG-module with p } dim,M and A(M): 0—>Q*M—>m(M)—M—0 be the
AR-sequence terminating at M. Let W be a kG-module, and let MQW=
(B:; M;)B(D,; N,)DU, where M; and N, are non-projective indecomposable kG-
modules (possibly 0) such that p ¥ dim,M; and p|dim,N;, and U is projective or 0.
Then the tensor sequence A(M)QW: 0—-VMQW -»m(M)QW —->MQQW—0 is
a direct sum @D; A(M;) of the AR-sequences A(M,;) plus a split sequence 0—
(B, N,)BU'—(D,; ¥*N,)B(D,; N,)UDU'—(D; N,;)BU—0, where U and

U’ are projective or 0.

Let (, ) denote the inner product of the Green ring a(kG) induced from
dim;Hom( , ) (see [4]). For an exact sequence of kG-modlules &:0—-A4A—B
—C—0, let [S]€a(kG) be the element [S]=B—A—C. Using the results of
Benson and Parker [4, Section 3], we have the following two lemmas.

Lemma 1.6. Assume that k is an algebraically closed field. Let M be a
non-projective indecomposable kG-module and H a subgroup of G. Suppose that
exactly n non-isomorphic indecomposable kH-modules L; (i=1,2, .-+, n) satisfy
M|LC. Let t; be the multiplicity of M in LA°. Then [AM)|y]=
St [A(L,)] as elements of the Green ring a(kH). (n may be zero, and in this
case, the right hand side of the above is understood to be zero.) In particular we
have;

(1) Let @ be a vertex of M and S a Q-source of M. Let N=N(Q) and
T={geN|S¢=S}. Lett be the multiplicity of M in S1¢. Then [A(M)|q]=
H(Zgen/r[A(S9)]).

(2) ([14, Lemma 2.3]) Suppose that H is a normal subgroup of G and M is
H-projective. Let S be an H-source of M. Let T={g&€ G |S¢=<S} and t the multi-
plicity of M in S1°. Then [A(M)|u]=Zec/r[A(S?)]).

(3) ([2, Proposition 2.17.10]) The AR-sequence A(M) splits on restriction
to H if and only if M is not H-projective.

Proof. By [4, Theorem 3.4], it suffices to show that (V, [A(M)}{x]—
St [ A(L;)])=0 for any indecomposable kH-module V. Using the Frobenius
reciprocity, we have (V, [A(M)|x]— =it [AL)]) = (V, [AM){x])—(V,

Tt [ AL)]))=(V16, [AM)])—Ziast(V, [A(L)]). Now M|V1€¢ if and only
if V is isomorphic to some L;. Since & is algeblaically closed, we have (V1¢,
[A(M)])=t¢, in this case, and hence (V, [A(M)|y]—="art;[A(L;)])=0 as de-

sired.

Lemma 1.7. Let M be a non-projective indecomposable kG-module. Let
&: 0>Q’M—X—>M—0 be an exact sqeuence. Then,

(1) & is the AR-sequence A(M) if and only if (M,[E])=dy. Here dy=
dim,(End,¢(M)/Rad(End,¢(M))).

(2) & is the AR-sequence A(M) if and only if & does not split and (m(M),
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[€])=0.

Proof. (1) Suppose that & is the AR-sequence. Then by [2, 2.18.4 Theo-
rem] we have (M, [€])=dy. To show the converse assume by way of contra-
diction that (M, [£])=d), but &€ is not the AR-sequence A(M). Now the exact
sequence & does not split since (M, [£])>0. Letting A(M): 0—->Q*M—>m(M)
—M—0 be the AR-sequence terminating at M, we have the following commu-
tative diagram.

0-0M—- X —-M-—0

y | I
0— Q*M — m(M) - M — 0

Since the left-hand square is a pushout diagram, we get an exact sequence
&' 0-0*M—-X PQ*M—->m(M)—0. Since & is not the AR-sequence A(M),
&’ does not split: if &’ is a split sequence, then X is isomorphic to m(M) but
this implies that £ is the AR-sequence A(M), a contradiction. Thus we also
have the following commutative diagram.

0>OM—> mM) - M —0

I ’ b
0 — Q*M - XDO*M — m(M) — 0

Since the right-hand square is a pullback diagram, we get an exact sequence
& 0»m(M)—X QM P M—>m(M)—0. Thus we get [E]=[AM)]+[E]=
[AM)]+[AM)]4[E7]. Hence we have (M, [E])=(M, [A(M)]+[AM)]+
[&")=2dy+(M, [E"])>dy, a contradiction.

(2) Suppose that & is the AR-sequence. Then by [2, 2.18.4 Theorem] we
have (m(M), [€])=0 since M ¥ m(M). Conversely suppose that & does not split
and (m(M), [€])=0. Let [£'] be as in the proof of (1). Since [E]=[A(M)]
+[€’] and (m(M), [£])=0, it follows that (m(M), [€'])=0, which implies that
&’ splits. Thus X is isomorphic to m(M), and hence &€ is the AR-sequence

ReEMARK. If & is algebraically closed, then d)=1 for any indecomposable
kG-module M.

The following two lemmas are useful for our investigation.

Lemma 1.8. Let A be a connected component of T'(kG). Suppose that the
tree class of A is Aw.. Let T: Mi<—M,<---<M,<--- be a tree in A such that
A=ZT|II for some admissible group of automorphisms I1CAut ZT. Then dim, M,
=n(dim,M,) (mod p) for all n>1.

Proof. We proceed by induction on n. Clearly dim, M;=1Xdim, M, and
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dim,Q?M, =dim,M, (mod p). Since the AR-sequence A(M,) is of the form
0—-0?M,—» M, U—>M,—0, where U is projective or 0, we have dim, M,=
2(dim, M,) (mod p).

Suppose then that dim, M;=dim,Q*M;=1(dim, M,) (mod p) for all 7 with
1<i<n—1. Now we have the AR-sequence A(M,-,): 0-Q*M,_,—Q*M,_,P
M, ®U—-M,_,—0, where U is projective or 0. Therefore dim, M,=dim,M,_,
+dim, Q*M,, ., —dim, Q*M, _,=n(dim, M,) (mod p).

Lemma 1.9. Let © be a connected component of T'((kG).

(1) If the tree class of © is Az, then dim, M =dim, M’ (mod p) for all in-
decomposable kG-modules M and M’ in ©.

(2) Suppose that the tree class of © is D,. Let T: M <—]i42<—M3<—---<—M,,<—m

MI
be a tree in ® with ©=ZT. Then dim,M=dim, M’ (mod p) and dim,M,=
2(dim, M) (mod p) for all n>2.

Proof. Let x be an element of G of order p and let H=<{x>. Then
the group algebra kH has only p non-isomorphic indecomposable modules,
say Vy, Vy, ++, Vpoy and V,, where dim, V,=t¢(1<t<p) and V, is projective.
For a kG-module M, let a(¢, M) be the multiplicity of V, in M|y.

(1) We show that a(t, M)=a(t, M’) for any indecomposable kG-modules
M and M’ in ® and 1<t<p—1. Let a, be the smallest integer in {a(¢, M) | M &
©} and let M, be a kG-module in © such that a(¢, M,)=a,. Let T: .---—W,
— o> Wy M« My« M<-+-<M,<—--- be a tree in © such that @=ZT/II for
some admissible group of automorphisms IICAut Z7. Then we have the AR-
sequence A(M,): 0-Q*M,— W, M, U—M,—0, where U is projective or 0.
Since the connected component containing M, is not a tube, M, is not periodic
and in particular M, is not H-projective. Thus (M) splits on restriction to
H by Lemma 1.6(3) and it follows that W,{sBM,|zDU|z=M,|sPOM,|.
This implies that a(t, W,)+a(t, M,)=a,~+a(t, Q*M,). Since a(t, W,)>a,, a(t, M,)
>a, and a(¢, O*M,)=a,, we have a(¢, W,)=a(t, M,)=a,. Proceeding inductively,
we obtain a(¢, M,)=a(t, W,)=a, for all n2>2 and all ¢ with 1<t<p—1. Thus
the result follows.

(2) Since the tree class of ® is D., all indecomposable modules in ® are
not H-projective. Hence for any indecomposable #G-module M in ®, the AR-
sequence A(M) splits on restriction to H by Lemma 1.6(3). We have the AR-
sequences A(M): 0-Q*M—->M,PU—-M—0 and A(M'): 0-QM'—>M,pU’
—M'—0, where U and U’ are projective or 0. Since both A(M) and A(M’)
split on restriction to H, we have Q?M | ;DM | =M, DU}y and Q*M'| D
M| y=M,|yBU'|y. Thus we get a(t, M,)=2a(t, M)=2a(t, M') for 1<t<
p—1.
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Next we show that a(¢, M,)=a(t, M,)=2a(t, M) for 1<t<p—1 and all
n>2 by indiction on n. We have the AR-sequence A(M,): 0—Q*M,—M;H
Q*M PQ*M' P U,—M,—0, where U, is projective or 0. Since A(M,) splits on
restriction to H, we get a(t, M;)=a(t, M)+ a(t, Q*M,)—a(t, Q*M)—a(t, Q*M")=
a(t, M,) for 1<¢t<p—1. Suppose then that a(t, M;)=a(t, M,) for all { with 2<
i<n—1. We have the AR-sequence A(M,,): 0-Q*M,_,—Q*M,_,M,HU"”"
—M,_,—0, where U” is projective or 0. As A(M,-,) splits on restriction to
H, we get aft, M,)=a(t, M,)+a(t, M, ) —a(t, M, ) —a(t, My) for 1<t<
p—1. Hence the result follows.

In the rest of this section, we consider the following situation.

(*) Assume that k is an algebraically closed field of characteristic p>0
and a Sylow p-subgroup P of G is normal. Let E be a connected component of
T, (kP). Assume that every module in & is G-invariant. Assume furthermore
that B is not a tube and every arrow in E is multiplicity free. Let S be an
indecomposable kP-module in E and M an indecomposable 2G-module having
S as a P-source. Let © be the connected component of I'y(kG) containing M.

REMARK. The assumption (*) implies that P is not a Klein four group
and E is isomorphic to ZA4.., ZD., or ZAZ.

Lemma 1.10. Assume (*). Then all the P-sources of the indecomposable
modules in © lie in E.

Proof. Let W be an indecomposable #G-module in ®. Then there is a
sequence of indecomposable kG-modules M=M,, M,, ---, M,=W such that
M; and M,;,, are connected by an irreducible map (1<:<n—1). We proceed
by induction on #.

By the assumption, a P-source S of M=M, lies in E. Suppose then that a
P-source S,_, of M,_, lies in BE. Now M,| m(M,-,) or M,| m(Q~*M,,),
where m(M,-,) (resp. m(Q~2M,_,)) is the middle term of the AR-sequence
AM,-,) (resp. AQ*M,-,)). By Lemma 1.6 (2), we have [A(M,-)s]=
t[A(S,-1)] and [A(Q2M, )| p]=t[A(Q72S,-,)], where ¢ is the multiplicity of
M,_,in S,_;1¢. This implies that a P-source of M,=W lies in E.

For an indecomposable 2G-module W in ©, let W be a (unique) P-
source of W. The following fact is an immediate consequence of the result of
Uno[20, Section 3].

Lemma 1.11. Assume (*). Then @ induces a graph isomorphism from
® onto E.

Proof. By [20, Theorem 3.5], the multiplicity of S in M|, is equal to
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that of M in S1¢. From Lemma 1.10 and [20, Theorem 3,7], we get the result.

2. ZA.-Components

In this section we consider a connected component of I'y(RG) containing an
indecomposable #G-module whose k-dimension is not divisible by p under the
following hypothesis:

(#) k is an algebraically closed field of characteristic p>>0 and a Sylow
p-subgroup P of G is not cyclic, dihedral, semidihedral or generalized quater-
nion.

Theorem 2.1. Assume (§). Suppose that © 1is a connected component
of T'(kG) and © contains an indecomposable kG-module whose k-dimension is
not divisible by p. Then © is isomorphic to ZA...

Proof. The tree class of ® is 4., D.. or A% by Theorem 1.1.

Step 1. 'The tree class of © is not A%.

Proof. We shall derive a contradiction assuming that the tree class of ® is
Az, Let T:---m»W,—-->W,> M« M,«M;<-+<—M,<--- be a tree in @
with ®=Z7T. Note that p { dim, M, p t dim, M, and p ¥ dim, W, for all n>2
from Lemma 1.9(1). On the other hand the connected component A, containing
k is isomorphic to ZA.. by Theorem 1.2. Let Ty: k=L« L,<:++<-L,<: be
a tree in A, with A =ZT,. Let A(k): 0-Q*%—L,HU—-k—0 be the AR-
sequence terminating at k, where U is projective or 0. Then the tensor se-
quence A(R)QM: 0->Q*RQM—(L,PU)QM—-M—0 is the AR-sequence
(M) modulo projectives by Theorem 1.3. Hence it follows that L,QM =M,
@ W, (mod projectives).

In case p=2, this is a contradiction, since 2|dim;L, by Lemma 1.8 and
thus L,QM does not have any odd dimensional indecomposable direct sum-
mand from Theorem 1.4(2).

In case p>2, applying Lemma 1.5, we have the tensor sequence A(L,)QM:
0—-Q’L,QM—(Q*kPL3)QM—L,QM—>0, which is a direct sum A(M,)D
A(W,) modulo projectives, as p { dim, L,, p 4 dim, M, and p ¥ dim, W,. Hence
we have L;QM =M,DW,PQ2M (mod projectives). Repeating this argument
until n=p, we have A(L,-,)QM is a direct sum of the AR-sequences modulo
projectives and M, W, |L,QM for n<p. In particular we obtain M,BW,|L,
®M. But this is also a contradiction, since p|dim,L, from Lemma 1.8 and
thus L,QM has no indecomposable direct summand whose k-dimension is not
divisible by p from Theorem 1.4(2).

Step 2. The tree class of ® is not D.,.

Proof. Assume contrary that the tree class of © is D.. Let
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T: M<—]i42<—M3<—---<—M,,<—~-- be a tree in ® with @ ZT.

w

Note that p f dim, M and p } dim, W from Lemma 1.9(2). Let JA(k): 0—-Q%
—>m(k)—>k—>0 be the AR-sequence terminating at k. By Theorem 1.3 the tensor
sequences A(k)QM and A(kK)QW are the AR-sequences A(M) modulo pro-
jectives and (W) modulo projectives respectively. Hence we have M,=<
m(kR)Q M =m(k)Q W (mod projectives). Thus m(k)QMQQM*=m(k)QW QM*
(mod projectives). Note that m(k)QMQM* and m(k)QW Q M* are the middle
terms of the tensor sequences A(R)QMQM* and A(R)QW QM* respec-
tively.

Let MQM*=k®D(D; L,)D(D; L;)DN, where L; is an indecomposable
kG-module lying in A, such that p { dim,L, and Lj is an indecomposable kG-
module lying in A, such that p|dim,L} and N has no indecomposable direct
summand lying in A,. Since the multiplicity of 2 in M QM?* is one, L, is not
isomorphic to k. By Lemma 1.5, we have m(k)QMQM*=m(k)P(P; m(L;))P
(D;(°L;DLj))DN’ for some kG-module N'. Note that N does not have any
indecomposable direct summand lying in A,. Therefore the number of inde-
composable direct summands of m(R)QMM* lying in A, is odd. On the
other hand k% is not a direct summand of W@M?*. Therefore the number of
indecomposable direct summands of m(k)@ W Q M* lying in A, is even, a con-
tradiction.

By Steps 1 and 2, the tree class of ® is 4. Since a Sylow p-subgroup P
of G is not generalized quaternion, indecomposable 2G-modules whose k-di-
mension is not divisible by p are not periodic. Hence ® is isomorphic to Z4...

Lemma 2.2. Assume (§). Suppose that © is a connected component of
Ty(kG) and ©® contains an indecomposable kG-module whose k-dimension is not
divisible by p. Then all modules in ® have the same vertex P.

Proof. By Theorem 2.1, ® is isomorphic to ZA4.. Let M, be an in-
decomposable kG-module lying at the end of ®. Then Lemma 1.8 implies that
p A dim, M,. Hence a Sylow p-subgroup P of G is a vertex of M, and the result
follows from [20, Theorem 4.3].

Let M be an indecomposable kG-module having a Sylow p-subgroup P
of G as vertex, and let S be a P-source of M. Then p } dim, M if and only if
p X dim, S from [3, Proposition 2.4].

Proposition 2.3. Assume (§). Suppose that © is a connected component of
T'(kG) containing an indecomposable kG-module whose k-dimension is not divisible
by p, and let T: My<—M,<---<M, <+ be a tree in ©® with ©=ZT. Let S, bea
P-source of M, and E, the connected component of T'(RP) containing S,. Then we
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have P-source S, of M, (n>1) and atree T': S;«<—Sy<«+++ <8, < withE=ZT".

Proof. Lemma 1.8 implies that p { dim, M;, and thus by the remark pre-
ceding Proposition 2.3 we have p ' dim,S,. Hence both ® and E are iso-
morphic to ZA4.. by Theorem 2.1.

Step 1. We may assume that P is a normal subgroup of G.

Proof. Let N=Ng(P) and f the Green correspondence with respect to (G,
P, N). Let ® be the connected component of T'y(kN) containing fM. Since
p X dim, fM,, ©’ is isomorphic to ZA. and all modules in 8’ have the same
vertex P by Theorem 2.1 and Lemma 2.2. Therefore f induces a graph isomor-
phism between ® and ©’ by [13, Theorem].

Step 2. 'We may assume that every module in & is G-invariant.

Proof. Let H={g=G|W*¢EE for all WEE} be the inertia group of E.
Since E=ZA.., H acts on E trivially. Hence H is the inertia group of S, and
all modules in & are H-invariant.

Suppose that S;1#=R,dR,D-- PR, is an indecomposable direct sum de-
composition such that R,1¢=M,(Note that each R;}¢ is indecomposable by
[12, VII. 9.6 Theorem]). Let ®” be the connected component of T'(kH)
containing R,. Then the inducing from H to G gives a graph isomorphism from
©®” onto ® by [14, Theorem].

Now we may assume that P is normal and every module in E is G-invariant.
Hence we can apply Lemma 1.11 and the conclusion holds.

As an immediate consequence of Proposition 2.3, we have;

Corollary 2.4. Assume (§). Let M be an indecomposable kG-module
whose k-dimension is not divisible by p, and let S be a P-source of M. Then M
lies at the end of a ZA..-component if and only if S lies at the end of a ZA.-
component.

In the rest of this section, we give examples of indecomposable kG-modu-
les lying at the end of a ZA4..-component.

Lemma 2.5. Suppose that © is a connected component isomorphic to ZA...
Let T: My«<My«-++<—M,<:-- be a tree in ® with ©=<ZT. Suppose that all
modules in @ have the same vertex P. Let Q be a proper subgroup of P, and let N
be the projective-free part of My} o. Then M,|o=@i=:Q%N (mod projectives) for
alln>1.

Proof. We proceed by induction on n. Clearly M,|,=N (mod projec-
tives) and Q?M,| ,=Q?N (mod projectives). Now the AR-sequence A(M,) is of
the form 0—Q2M,— M, U—M,—0, where U is projective or 0. Since A(M,)
splits on restriction to @ by Lemma 1.6(3), we have M, o= @P;-:Q*N (mod pro-
jectives).
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Suppose then that M;} = @iZQ*N (mod projectives) for all 7 with 1<i<
n—1. We have the AR-seqeunce A(M,-;): 0—-Q*M,_,—M,DPM,_,pU—
M,_,—0, where U is projective or 0. Since A(M,-,) splits on restriction to
by Lemma 1.6(3), we have (M,DQM,_,PU)| =M, | PUPM,_,|o. This
implies that M, | o= @:2:Q*N (mod projectives).

From Theorem 2.1 and Lemmas 2.2 and 2.5, we have;

Lemma 2.6. Assume (#). Let Q be a proper subgroup of P. Let M be an
indecomposable kG-module whose k-dimension is not divisible by p. Suppose that
NPEN Y M|, and NPQ2N Y M|, for some non-projective indecomposable
direct summand N of M|,. Then M lies at the end of a ZA..-component.

Corollary 2.7. Assume (#). Let M be an indecomposable kRG-module with
vertex P and S a P-source of M.

(1) Suppose that p is odd and dim, S=2. Then M lies at the end of a ZA..-
component.

(2) Suppose that p=+3 and dim,S=3. Then M lies at the end of a ZA..-
component.

(3) Suppose that p=5 and dim, S=5. Then M lies at the end of a ZA..-
component.

Proof. There exists an element x of P such that x does not act on S tri-
vially. Let Q=<x>. Then S|, satisfies the assumption in Lemma 2.6.
Therefore S lies at the end of a ZA.-component, and M lies at the end of a
ZA..-component by Corollary 2.4.

ReMARK. In [8], Erdmann proved that there are infinitely many kP-
modules of dimension 2 or 3 lying at the ends of ZA.-components under the
hypothesis (#) ([8, Propositions 4.2 and 4.4]). Consequently she showed that
for a block B over an algebraically closed field, the stable Auslander-Reiten
quiver T'y(B) has infinitely many components isomorphic to ZA4. if a defect
group of B is not cyclic, dihedral, semidihedral or generalized quaternion ([8,
Theorem 5.1]).

3. Remarks on Tensoring with a Certain Module

Suppose that M is an indecomposable kG-module such that p 4 dim, M,
and let ® be the connected component of I'y(kG) containing M. Let A, be
the connected component of I',(kG) containing the trivial kG-module k. In this
section we consider tensoring modules in Ay with M under the same hypothe-
sis as in Section 2:

(#) % is an algebraically closed field of characteristic p>0 and a Sylow
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p-subgroup P of G is not cyclic, dihedral, semidihedral or generalized quater-
nion.

Thus both © and A, are isomorphic to ZA.. by Theorem 2.1. We fix some
notation: Ty: k=L« L,«Lj<+++<L,< is a tree in A, with A;=ZT,.

Proposition 3.1. Assume (#). Suppose that M is an indecomposable kG-
module such that p } dim, M and M Les at the end of its component ©. Let
S be a P-source of M. Let E and A, be the connected components of T'(kP) con-
taining S and the trivial kP-module k respectively. Then tensoring with M induces
a graph isomorphism from A, onto © if and only if tensoring with S induces a
graph isomorphism from A, onto E.

Remark. The assumption in Proposition 3.1 implise that both A, and E
are isomorphic to ZA4. and S lies at the end of E by Theorem 2.1 and Corol-
lary 2.4.

Proof of Proposition 3.1. Let T: M=M,«<M,«:-+<M,<++- be a tree in
O with ®@=ZT. Then we have P-sources S, of M, (r>1) and a tree T': S=
Sj«S,<-++<=S, <+ with E==ZT' by Proposition 2.3. Let T": k=H,«<H,«
Hy«-.-«—H,<-- be a tree in A, with Aj=ZT".

Suppose that the tensoring with S; induces a graph isomorphism from A,
onto E. This means that H,®.S,=S, (mod projectives) and A(H,)Q®S, is the
AR-sequence A(S,) modulo projectives for n>1. We show that L,QM,=M,
(mod projectives) for all z>1 by induction on #. Clearly L,Q M,=k® M,=<M,.
By Theorem 1.3, A(k)®M, is the AR-sequence A(M,) modulo projectives.
Hence L,@M,=M, (mod projectives). Suppose then that L,QM,=<M; (mod
projectives) for all 7 with 1<¢<n—1. We claim that A(L,-,)QM, is the AR-
sequence A(M,-,) modulo projectives: Since L,_,|L,-,QM,QMF by Theo-
rem 1.4, we have 0= (L,_,Q M, Q@M?¥, [ A(L,-))])=(Ly-,Q M, [A(Ly,-,) Q@ M,]).
This implies that A(L,-;)QM, does not split. Thus in order to show that
A(L,-,))Q@M, is the AR-sequence A(M,-,) modulo projectives, it is enough to
show that (m(M,-,), [A(L,-,)@M,])=0 by Lemma 1.7(2). From Proposition
2.3, we have m(M,,_,)|m(S,-,)1¢ and M,|S;1¢. Thus it follows that (m(S,-,)1¢,
[A(La-)(S11)]) Z (m(M,-1), [A(Ly-1)@M,]) 20. Now we have (m(S,-1)1,
[A(L,-)R(S11))=(m(S,-1), [A(Ly-1){pR(S:1¢){p]) from the Frobenius reci-
procity. By the Mackey decomposition theorem, we have (S;1°)|,=®,ecpcir
(S§lpnpe)t?. Since [A(L,-y){p]=[A(H,-,)] as elements of the Green ring
a(kP) by Lemma 1.6(1), we get [A(L,-1)|»@(Si1) pl=2engeyp [A(SE-1)]
by our assumption. Since S§_; ¥ m(S,-,) for any g in N(P), we get (m(S,-,),
[ALn- ) p@(Si1Np])=0. Thus we obtain (m(M,-,), [A(Ly-1)@M])=0
as desired. Therefore A(L,-,)QM,: 0—QL, ,QM,— (Q’L,-,DL,)QM,—
L,.,@M,—0 is the AR-sequence A(M,-,) modulo projectives. This implies
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that L,Q M,=<M, (mod projectives).

Conversely suppose that the tensoring with M, induces a graph isomorphism
from A, onto ®. We show that H,®.S,=<S, (mod projectives) for all z>1 by
induction on n. Clearly H®S,=k®S,=S,. By Theorem 1.3, JA(k)QS, is
the AR-seqeunce JI(S,;) modulo projectives. Hence H,®.8S,==S, (mod projec-
tives). Suppose then that H;®S,=<S; (mod projectives) for all 7 with 1<i<
n—1. We claim that JA(H,-,)®S, is the AR-sequence A(S,-,) modulo pro-
jectives: Since H,.,®85,=<S,-, (mod projectives) and Q’H,_,®S,=Q2S,_,
(mod projectives), it is enough to show that (m(S,-;), [A(H,-)®5S;])=0 by
Lemma 1.7(2). From Lemma 1.6(1), we have m(S,-,)|m(M,-)){p, S;| M|
and [A(H,-)]=[A(L,-1)}p]. Hence it follows that (m(S,-,), [A(Ly-1)}r®
(M p)]) =(m(S,-1), [A(H,-)®S;])=0. Using the Frobenius reciprocity, we
have (m(Sy-1), [ ALy p @Ml N)=(m(S,-)1%, [ALyo) @ M) =(m(S,-)1°,
[A(M,-,)]), which is zero since m(S,-,)=3S,PQ*S,, yields M,_, ¥ m(S,-,)1¢.
This implies that (m(S,-,), [A(H,-,)®S,])=0 as desired. Therefore J(H,-,)
®S,: 0-QH, ,S,—~(Q*H,_,®H,)®S,—~H,,Q5,—0 is the AR-sequence
A(S,-,) modulo projectives. This implies that H,®.S,=<S, (mod projectives).

Corollary 3.2. Let M be a trivial source module with vertex P. Let © be
the connected component of T'(kG) containing M. Then © is isomorphic to ZA.
and M lies at the end of ®. Moreover tensoring with M induces a graph isomor-
phism from A, onto ©.

Proof. Proposition 2.3 and Corollary 2.4 imply that ® is isomorphic to
ZA. and M lies at the end of ®. The second statement follows by Proposition
3.1.

In the following, we give some conditions each of which implies that tensor-
ing an indecomposable 2G-module M induces a graph isomorphism from A,
onto a component isomorphic to ZA4...

Proposition 3.3. Assume (§). Let M be an indecomposable kG-module
such that p } dim, M, and let ® be the connected component of T'(kG) contain-
ing M. Let Q be a proper subgroup of P. Suppose that M satisfies the following
conditions (with respect to Q).
(1) The trivial kQ-module k is a direct summand of (M QM*)| o with multiplicity
one;
(2) If Q is generalized quaternion, then Q?k Y (MQM*)| .

Then tensoring with M induces a graph isomorphism from A, onto ©.

ReMARK. (i) From Theorem 1.4, the above condition (1) is equivalent to
the following condition:
(1) We have an indecomposable direct sum decomposition NH(B,W,) of
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M| o, where p ¥ dim, N and p|dim, W, for all 2.
(ii) © is isomorphic to ZA. by Theorem 2.1. Moreover M lies at the
end of ® by Lemma 2.6.

In ordre to prove Proposition 3.3, we need the following.

Lemma 3.4. Under the same assumption as in Proposition 3.3, L, is a
direct summand of L,QM QM* with multiplicity one for all n>1.

Proof. Note that L, is a direct summand of L,QM Q M* since k| M Q M*.
From Lemma 2.5, we have L,| o= @®72:Q%k (mod projectives). Since the multi-
plicity of & in (M Q@M*)|, is one (and Q% is not a direct summand of (M Q
M*)|, if @ is generalized quaternion), it follows that 2(P?ZsQ%k) ¥ (L,QMQ®
M#*)}o. This implies that the multiplicity of L, in L,QMQM?* is one.

Proof of Proposition 3.3. Let T: M=M,«M,«~M;<---<M,<-+ be a
tree in ® with @=ZT. We show that L,QM==M, (mod proejctives) for all
n>1 by induction on 7.

Clearly Li,QM=kQM,=M,. Let A(k): 0->Q*%—L,U—>k—>0 be the
AR-sequence terminating at &, where U is projective or 0. Then the tensor
sequence A(k)QM is the AR-sequence A(M) modulo projectives by Theorem
1.3. Hence L,QM =M, (mod projectives).

Suppose then that L;QM =M, (mod projectives) for all 7 with 1<i<n—1.
We claim that A(L,-,)QM is the AR-sequence A(M,-,) modulo projectives:
By lemma 1.7(1), it suffices to show that (M,,, [A(L,-,)@M])=1. Since L,_,
is a direct summand of L,.,Q@MQ@M* with multiplicity one by Lemma 3.4,
we have (Myey, [A(Ly-) @MI)=(Lyrs @M, [A(Ly-)) @ M])=(L,-, @ M M*,
[A(L,-,)]) =1 as desired.

Now A(L,-)QM: 0—-QL,_ ,QM—(Q*L,_,BL, DU \QM—L, ., M—0
is the AR-sequence A(M,-,) modulo projectives, where U’ is projective or 0.
Thus we get L,QM==M, (mod projectives).

Corollary 3.5. (1) Suppose that p is odd. Let M be an indecomposable
kG-module with vertex P and S a P-source of M. Suppose that dim,S=2. Then
tensoring with M induces a graph isomorphism from A, onto the connected com-
ponent containing M.

(2) Suppose that p=2. Let M be an indecomposable kG-module with ver-
tex P and S a P-source of M. Suppose that dim, S=3. Then tensoring with M
induces a graph isomorphism from A, onto the connected component containing M.

Proof. The result follows from Corollary 2.7 and Propositions 3.1 and
3.3.

Proposition 3.6. Assume (§). Let M be an indecomposable kG-module
with p A dim, M, and let © be the connected component containing M. Suppose
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that M satisfies the following conditions.

(1) M lies at the end of ©.

(2) MQRM*=kPD(D, W,), where each W, is indecomposable and p|dim, W,.
Then tensoring with M induces a graph isomorphism from A, onto ©.

In order to prove Proposition 3.6, we need the following.

Lemma 3.7([22, p.16, Konstruktionslemmal). Let M and N be non-
projective indecomposable KG-modules and

/a N
\N,
an exact sequence. Suppose that a: Q*M—>N and 3: N—M are irreducible maps
and N Y N'. Then £ is the AR-sequence A(M).

E: 0-0*M

&‘
/M—~>O

Proof of Proposition 3.6. Let T: M=M,«M,«M;«--+«M, <+ be a
tree in ® with ®=ZT. We will show that L,QM=M, (mod projectives) and
the tensor sequence A(L,)QM is the AR-sequence A(M,) modulo projectives
for all #>1 by induction on #n. Clearly L,QM=kQM,=M,. By Theorem
1.3, the tensor sequence A(R)QM is the AR-sequence A(M) modulo projec-
tives. Hence L,Q M= M, (mod projectives).

Suppose then that L, @M =M, (mod projectives) for all 7 with 1<i<n—1
and the tensor sequence A(L,)Q@M is the AR-sequence A(M;) modulo pro-
jectives for all 7 with 1</<n—2. We will show that the tensor sequence
A(L,-,) QM is the AR-sequence A(M,-,) modulo projectives.

Now A(L,-,)Q@M: 0—-QL, ,QM—->QL, ;. QM®DL,-,QM—L,_,Q M—0
and A(QL,-,)QM: 0—-Q*L, ,QM—>Q*'L, . MPQL, .\ QM—QL,_ ,QM—
0 are the AR-sequences A(M,-,) modulo projectives and A(Q?M,-,) modulo
projectives respectively. Let a: Q2L,,—QL,_, and B: Q*L,-,—L,-, be irre-
ducible maps. Then a®idy: Q2L, ,QM—-QL, ,QM is an irredicible map
Q*M,_,—~Q*M,_, plus some split map from the projective part of Q*L,-,QM to
the projective part of Q2L,_,QM, and BQidy: QL, ,QM—L, QM is an ir-
reducible map Q*M,_,—>M,_, plus some split map from the projective part of
Q2L,_,QM to the projective part of L,-,QM.

Consider the tensor sequence A(L,-,)QM:

a®id QL, ,QM __ BQid,
0—Q2L, ., @M / 2 \ML,_@M—»O .
\ LM /
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Here O*M,_, /' L,QM: Assume not. Then Q*M,_,|L,QM and Q*M,_,Q M*|
L,QMQ@M*. Now by the inductive hypothesis L, ,QM=M,_, (mod projec-
tives) and Q?L,_ ,QM=Q?M,_, (mod projectives). Thus the condition (2) im-
plies that Q?M,_,QM*=Q?L,_,D(P, W}), where each W} is indecomposable
and p|dim,W;i. Also the condition (2) implies that L,QMQM*=L,P
(B, W}’), where each W}’ is indecomposable and p|dim, W;’. This implies
that L,=QL,_,, a contradiction.

Now the tensor sequence A(L,-,)QM satisfies the assumption in Lemma
3.7. Thus JA(L,-)®@M is the AR-sequence A(M,-,) modulo projectives.
This implies that L, @M =M, (mod projectives).

Corollary 3.8. Assume (§). Suppose that M is an endotrivial kG-module.
Let © be the connected component containing M. Then tensoring with M induces
a graph isomorphism from A, onto ©.

Proof. Let JA(k): 0—-Q%—L,U—-k—>0 be the AR-sequence. Here
L, is non-projective indecomposable and U is projective or 0 by our assump-
tion. By Theorem 1.3, the tensor sequence A(kK)@M is the AR-sequence
A(M) modulo projectives. Since tensoring with an endotrivial module preser-
ves the number of non-projective indecomposable direct summands, the pro-
jective-free part of L,QM is indecomposable. This implies that M lies at the
end of ®. Hence M satisfies the conditions in Proposition 3.6 and the result
follows.

REMARK. In [6], Bessenrodt studied endotrivial modules in the Auslander-
Reiten quiver. She showed that without the hypothesis (§), if M is an endo-
trivial kG-module, then tensoring with M induces a graph isomorphism from
the connected component containing the trivial .G-module % onto the con-
nected component containing M ([6, Theorem 2.3]).

4. ZAZ-Components of Dihedral 2-Groups

Throughout this section we assume that

k is a field of characteristic 2 and a Sylow 2-subgroup P of G is dihedral
of order at least 8.

Let A, be the connected component containing the trivial 2G-module k.
Then A, is isomorphic to ZAZ by Theorem 1.2. It is known that all modules
in A, are endotrivial 2G-modules (see, e.g., [6]).

Proposition 4.1. Let M be an odd dimensional indecomposable kG-module.
Let © be the connected component of T'(kG) containing M and A, the connected
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component containing k. Then @ is isomorphic to ZAZ and tensoring with M in-
duces a graph isomorphism from A, onto ©.

Proof. Let Ty: -:+—V,—>..+—>V,>k<L,«Lz<+:-<L,<- be atree in A,
with Ay==ZT,. Since tensoring with an endotrivial module preserves the num-
ber of non-projective indecomposable direct summands, the projective-free part
M, (resp. W,) of L,QM (resp. V,QM) is indecomposable and odd dimension-
al. Therefore the tensor seqences A(L,)QM and A(V,) QM are the AR-
sequences A(M,) and A(W,) modulo projectives respectively by Lemma 1.5.
Thus we obtain a tree T «--—>W,—---—>Wy—> M<M,«M<-++<—M,<-+ with
8=ZT.

Corollary 4.2. Let M be an odd dimensional indecomposable kG-module
and © the connected component containing M. Then all modules in © have the
same vertex P.

Proof. By Proposition 4.1, the tree class of ® is AZ. Therefore all mo-
dules in ® are odd dimensional by Lemma 1.9(1). This implies the result.

5. ZD.-Components of Semidihedral 2-Groups

Throughout this section, we assume that

k is an algebraically closed field of characteristic 2 and a Sylow 2-subgroup
P of G is semidihedral.

Let A, be the connected component of T'y(kG) containing the trivial
kG-module k. Then A, is isomorphic to ZD.. by Theorem 1.2 (see [7, p 76 II.
10.7 Remark]). Thus a part of A, is as follows for some indecomposable kG-
modules L,, L; and 1.

/

~.O.ZI / ~Q'2L /v
S N e \

Let P=(x,y; #*=y" '=1, y*=y """ and E={D}. Let 0—>Qzk—
U—k—0 be an X-projective cover resolution of the trivial kG-module k. Con-
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cerning some basic facts on relative projective cover, we refer to [15], [19] and
[18]. The following result is due to Okuyama.

Theorem 5.1([18]). With the same assumption and notation as above,
(1) I=Q(Qzk) and I is an endotrivial RG-module.

(2) I is self-dual and odd dimensional.

(3) If I' is self-dual, odd dimensional and indecomposable, then I' =k or I.

Lemma 5.2. Let M be an odd dimensional indecomposable RG-module.
Then M}y MQ1.

Proof. Assume contrary that M|M®JI. Then M®I=M (mod projecti-
ves), since tensoring with an endotrivial module preserves the number of non-
projective indecomposable direct summands. Moreover it follows by Theorem
1.4 that kK| MQM*|(MQM*)®I. This implies that I|MQM*.

Since 2 Y dim, M, & is a direct summand of M Q@ M* with multiplicity one.
If an indecomposable kG-module W is a direct summand of M QM*, then W*
is also a direct summand of MQM*. Let MQM*=kDID(D;(W,DWF))PD
(6, T;) be an indecomposable direct sum decomposition, where W; is not self-
dual and 7 is self-dual. Since M@M* is odd dimensional, some T, is odd
dimensional. By Theorem 5.1(3), this 7, must be isomorphic to . Hence we
get IQI | MQRQM* and kDR|(IDRQI |(MQOIM*)QI=MQQM* (mod projec-
tives). But this contradicts that the multiplicity of 2 in M Q@ M* is one.

Theorem 5.3. Let M be an odd dimensional indecomposable kG-module
and © the connected component of T'(kG) containing M. Then © is isomorphic
to ZD.. and M lies at the end of ©.

Proof. We continue to use the same notation as above.

Let A(k): 0->Q%—>m(k)—k—0 and JA(I): 0->Q*—-m([)—>I—0 be the
AR-sequences terminating at k and I respectively. Note that L,==m(k)=m(I)
(mod projectives). By Theorem 1.3, the tensor sequence A(k)Q@M is the AR-
sequence A(M) modulo projectives. Since I is an endotrivial #G-module, the
projective-free part M’ of I @M is indecomposable. Hence by Lemma 1.5, the
tensor sequence A(I)@M is the AR-sequence A(M') modulo projectives. Note
that M’ is not isomorphic to M by Lemma 5.2.

We claim that the projective-free part M, of L,QM is indecomposable:
Assume not. Then we have X,@X,|L,QM for some non-projective indecom-
posable kG-modules X; and X,. Note that X is not isomorphic to X, by Theo-
rem 1.1. Since X,PX,|m(M) and X,BX,|m(M’), where m(M) and m(M’)
are the middle terms of A(M) and A(M’) respectively, we get a part of © as fol-
lows.
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QM \

X,
QFM'<
/ Xz
But this is a contradiction since © can not have such a subquiver by Theorem
1.1.

Consequently we have m(M)=<M, (mod projectives) and m(M')=<M, (mod
projectives). This implies that ®=ZD., and M lies at the end.

Q*M

Lemma 54. Let M be an odd dimensional indecomposable kG-module
and © the connected component containing M. Then all modules in © have the
same vertex P.

Proof. By Theorem 5.3 and Lemma 1.9(2), @ is isomorphic to ZD., and M
lies at the end of ®. Since M is odd dimensional, a Sylow 2-subgroup P of
G is a vertex of M. 'The result follows from [20, Theorem 4.3].

Lemma 5.5. Let M be an odd dimensional indecomposable kG-module and
O the connected component of T'(kG) containing M. Let
T: M<—M,«~M;—M,«++<—M,<-- be a tree in © with @=ZT. Let S be a
v

MI
P-source of M and E. the connected component of T'(kP) containing S. Then we
have P-sources S’ and S, of M' and M, (n>2) respectively and a tree
T': S« S« Sy =S, <+ with E=ZT'.

V

SI

Proof. All modules in ® have the same vertex P by Lemma 5.4. Thus
applying the similar argument in the proof of Proposition 2.3, Steps 1 and 2,
we may assume that P is a normal subgroup of G and G is the inertial group of
E. Since the order of G/P is odd and E is isomorphic to ZD.,, G acts on E
trivially. Therefore we may also assume that every module in E is G-invari-
ant. Applying Lemma 1.11, we get the result.

In the rest we consider tensoring A, with an odd dimensional indecompo-

sable AG-module.

Proposition 5.6. Let S be an odd dimensional indecomposable kP-module
and E, the connected component of T'y(kP) containing S. Let A, be the connect-
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ed component of T'(kP) containing the trivial kP-module k. Then tensoring with
S induces a graph isomorphism from A, onto E.

In order to prove Proposition 5.6, we need the following Lemmas 5.7 and
58. Let Ty:k<H,«H;<-+«<H,<:+ be a tree in A, with Aj=ZT, Let
V

IO
P={a, y; B2=y?"'=1, yF=y 17",

Lemma 5.7. H,|(=k®Dk (mod projectives) for all n>2.

Proof. Use induction on n. Since all modules in Ay have the same vertex
P, the AR-sequences A(k), A(l,) and A(H,) split on restriction to {x>. Hence
(RDYE)| ¢,y ==m(R) > Hpl oy m=m(Io)| oy == (I, DL ) {¢,>. Thus we get Lo} ¢»==
k (mod projectives), Q| (,>=2k (mod projectives) and H,|(,»=kPk (mod pro-
jectives). Also A(H,): 0—Q?H,—H,®Q*kPO*,—H,—0 splits on restrictio to
<x>. So we have (H;PQRPO,)| (.»==2(QH,PH,)| (s and H,|(,y=kPk (mod
projectives).

Suppose then that H,|(>=k@k (mod projectives) for all  with 2<i<n—1.
Since A(H,-,): 0-Q*H,_,—H,PQ*H,_,—H,_,—0 splits on restriction to <{x,
we have (H,®QH, ) (»=(Q*H,-,PH,-)){¢;>. This implies that H,} (=2
k@®k (mod projectives).

Lemma 5.8. Let S be an odd dimensional kP-module.

(1)  The trivial k{x)>-module k is a direct summand of S\,> with multiplicity
one.

(2) H, is a direct summand of H,QS®S* with multiplicity one for all n>2.

Proof. (1) The statement follows from [7, p 73. Lemma II 10.5].

'(2) From (1) we have (S®S*)|}(,>=2k (mod projectives). Hence (H,®S®
S*)|(»»==kDk (mod projectives) from Lemm 5.7. Thus we have 2H, | A
(H,®S®S*)| (>, which implies the result.

Proof of Proposition 5.6. Let T: S<S,<S;<S;«:++<S,<: be a tree

SI

in E with E=ZT. Since kQS=S and I,QS=.S’, it suffices to show that
H,®S=8, (mod projectives) for all z>2. We proceed by induction on 7.

From the argument in the proof of Theorem 5.3, we have H,®S =S, (mod
proejctives) and Q?H,® S=02S, (mod projectives). Also we have (S, [A(H,)®
S)=(H,®S, [A(H,)®S])=(H,QS®S*, [ A(H,)])=1 since the multiplicity of
H, in H,Q@S®S* is one by Lemma 5.8(2). This implies that the tensor se-
quence JA(H,)®S: 0—-Q0H,QS—(H,;PQ*kPO)RQS—>H,RS—0 is the AR-
sequence JA(S;) modulo projectives by Lemma 1.7(1). Thus we get H;Q S=.S,
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(mod projectives).

Suppose then that H;®S==.S; (mod projectives) for all ¢ with 2<i<n—1.
Using Lemma 5.8(2) again, we have (S,-,, [A(H,-)®S])=(H,-,QSRS*,
[A(H,-1)])=1. Thus the tensor sequence A(H,-,)®S: 0—-0H,_,Q S—(H,D
Q?H,_,)®S—H,_ ,®@S—0 is the AR-sequence A(S,-;) modulo projectives.
Therefore we get H,®S=<S, (mod projectives).

Proposition 5.9. Let M be an odd dimensional indecomposable kG-module
and © the connected component containing M. Let A, be the connected compo-
nent containing the trivial kRG-module k. Then tensoring with M induces a graph
isomorphism from A, onto 8.

Proof. Let S be a P-source of M. Let E and A, be the connected
components of I",(kP) containing S and & respectively. Then tensoring with S
induces a graph isomorphism from A, onto E by Proposition 5.6. Using an
argument similar to the one in the proof of Proposition 3.1 (use Lemma 5.5 in
place of Proposition 2.3), we get the result.
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