<table>
<thead>
<tr>
<th>Title</th>
<th>On Auslander-Reiten components for certain group modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kawata, Shigeto</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 30(2) P.137–P.158</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1993</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/12847</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/12847</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

http://ir.library.osaka-u.ac.jp/dspace/

Osaka University
ON AUSLANDER-REITEN COMPONENTS FOR CERTAIN GROUP MODULES

SHIGETO KAWATA

(Received January 7, 1992)

Let G be a finite group and k a field of characteristic $p > 0$. Let $\Gamma_i(kG)$ be the stable Auslander-Reiten quiver of the group algebra kG. By Webb's theorem, the tree class of a connected component Δ of $\Gamma_i(kG)$ is a Euclidean diagram, a Dynkin diagram or one of the infinite trees $A_\infty, B_\infty, C_\infty, D_\infty,$ or A_∞. Moreover if Δ contains the trivial kG-module k, then the graph structure of Δ has been investigated (see [21], [16] and [17]). In this paper we study a connected component of $\Gamma_i(kG)$ containing an indecomposable kG-module whose k-dimension is not divisible by p. Suppose that M is an indecomposable kG-module and $p \nmid \dim_k M$. In Section 2, we will show that M lies in a connected component isomorphic to ZA_∞ if k is algebraically closed and a Sylow p-subgroup of G is not cyclic, dihedral, semidihedral or generalized quaternion. In Section 3 we make some remarks on tensoring the component containing the trivial kG-module k with M. In Sections 4 and 5 we consider the situation where $p = 2$ and a Sylow 2-subgroup of G is dihedral of order at least 8 or semidihedral.

The notation is almost standard. All modules considered here are finite dimensional over k. We write $W \approx W' (\text{mod projectives})$ for kG-modules W and W' if the projective-free part of W is isomorphic to that of W'. For an indecomposable non-projective kG-module W, we write $A(W)$ to denote the Auslander-Reiten sequence (AR-sequence) $0 \to \Omega^2 W \to m(W) \to W \to 0$ terminating at W, where Ω is the Heller operator, and we write $m(W)$ to denote the middle term of $A(W)$. If an exact sequence of kG-modules S is of the form $0 \to \Omega^2 W \oplus U' \to m(W) \oplus U \oplus U' \to W \oplus U \to 0$, where W is an indecomposable non-projective kG-module, and U, U' are projective or 0, we say that S is the AR-sequence $A(W)$ modulo projectives. The symbol \otimes denotes the tensor product over the coefficient field k. For an exact sequence of kG-modules $S: 0 \to A \to B \to C \to 0$ and a kG-module W, we write $S \otimes W$ to denote the tensor sequence $0 \to A \otimes W \to B \otimes W \to C \otimes W \to 0$. Concerning some basic facts and terminologies used here, we refer to [2], [10] and [11].
1. Preliminaries

We start by summarizing results on the graph structure of connected components of $\Gamma_{s}(kG)$.

Theorem 1.1 ([21], [17], [5], [9]). Let Δ be a connected component of $\Gamma_{s}(kG)$. Then the tree class of Δ is A_{n}, $A_{l,2}$, B_{3}, A_{o}, B_{o}, C_{o}, D_{o} or A_{\sim}. If k is algebraically closed, then the tree class is not B_{3}, B_{o} or C_{o}. Moreover if the tree class or the reduced graph of Δ is Euclidean, then the modules in Δ lie in a block whose defect group is a Klein four group.

Theorem 1.2 ([21], [16], [17], [7]). Let Δ_{0} be the connected component containing the trivial kG-module k, and let P be a Sylow p-subgroup of G. Then;

1. If P is not cyclic, dihedral, semidihedral or generalized quaternion, then $\Delta_{0} \cong ZA_{\sim}$ and k lies at the end of Δ_{0}.
2. If P is a dihedral 2-group of order at least 8, then $\Delta_{0} \cong ZA_{\sim}$.
3. If P is a semidihedral 2-group, then $\Delta_{0} \cong ZD_{o}$ and k lies at the end of Δ_{0}.
4. If P is a generalized quaternion 2-group, then Δ_{0} is a 2-tube.

We will need the following result on tensoring the AR-sequence by Auslander and Carlson [1].

Theorem 1.3 ([1], see also [3]). Assume that k is algebraically closed. Let $\mathcal{A}(k) : 0 \rightarrow \Omega k \rightarrow m(k) \rightarrow k \rightarrow 0$ be the AR-sequence terminating at the trivial kG-module k. Let M be an indecomposable kG-module. Then the tensor sequence $\mathcal{A}(k) \otimes M : 0 \rightarrow \Omega k \otimes M \rightarrow m(k) \otimes M \rightarrow M \rightarrow 0$ has the following properties.

1. If $p \nmid \dim_{k} M$, the tensor sequence $\mathcal{A}(k) \otimes M$ is the AR-sequence $\mathcal{A}(M)$ modulo projectives.
2. If $p | \dim_{k} M$, then the tensor sequence $\mathcal{A}(k) \otimes M$ is split.

Concerning tensor products, we will also need the following result by Benson and Carlson [3].

Theorem 1.4 ([3], see also [1]). Assume that k is algebraically closed. Let M and N be indecomposable kG-modules. Then;

1. The following are equivalent.
 a. $k | M \otimes N$.
 b. $p \nmid \dim_{k} M$ and $N \cong M^{*}$. Here $M^{*} = \text{Hom}_{k}(M, k)$ is the dual of M.
 Moreover if $p \nmid \dim_{k} M$, then the multiplicity of k in $M \otimes M^{*}$ is one.
2. Suppose that $p | \dim_{k} M$. Then for any indecomposable direct summand U of $M \otimes N$, we have $p \mid \dim_{k} U$.

As an immediate consequence of Theorem 1.3, we have;

Lemma 1.5. Assume that k is algebraically closed. Let M be an indecom-
posable kG-module with $p \neq \dim_k M$ and $\mathcal{A}(M) : 0 \to \Omega^2 M \to m(M) \to M \to 0$ be the AR-sequence terminating at M. Let W be a kG-module, and let $M \otimes W = (\oplus_i M_i) \oplus (\oplus_j N_j) \oplus U$, where M_i and N_j are non-projective indecomposable kG-modules (possibly 0) such that $p \neq \dim_k M_i$ and $p \mid \dim_k N_j$, and U is projective or 0. Then the tensor sequence $\mathcal{A}(M) \otimes W : 0 \to \Omega^2 M \otimes W \to m(M) \otimes W \to M \otimes W \to 0$ is a direct sum $\bigoplus_i \mathcal{A}(M_i)$ of the AR-sequences $\mathcal{A}(M_i)$ plus a split sequence $0 \to \left(\oplus_j \Omega^2 N_j \right) \oplus U' \to \left(\oplus_j \Omega^2 N_j \right) \oplus U \oplus U' \to \left(\oplus_j N_j \right) \oplus U \to 0$, where U and U' are projective or 0.

Let $(,)$ denote the inner product of the Green ring $a(kG)$ induced from $\dim \text{Hom}(,)$ (see [4]). For an exact sequence of kG-modules $\mathcal{S} : 0 \to A \to B \to C \to 0$, let $[\mathcal{S}] \in a(kG)$ be the element $[\mathcal{S}] = B - A - C$. Using the results of Benson and Parker [4, Section 3], we have the following two lemmas.

Lemma 1.6. Assume that k is an algebraically closed field. Let M be a non-projective indecomposable kG-module and H a subgroup of G. Suppose that exactly n non-isomorphic indecomposable kH-modules $L_i (i=1, 2, \ldots, n)$ satisfy $M \mid L_i \uparrow G$. Let t_i be the multiplicity of M in $L_i \uparrow G$. Then $[\mathcal{A}(M) \downarrow_H] = \Sigma_{i=1}^n t_i [\mathcal{A}(L_i)]$ as elements of the Green ring $a(kH)$. (n may be zero, and in this case, the right hand side of the above is understood to be zero.) In particular we have:

1. Let Q be a vertex of M and S a Q-source of M. Let $N = N_G(Q)$ and $T = \{ g \in G \mid S^g \simeq S \}$. Let t be the multiplicity of M in $S \uparrow G$. Then $[\mathcal{A}(M) \downarrow Q] = t (\Sigma_{g \in G/T} [\mathcal{A}(S^g)])$.

2. Suppose that H is a normal subgroup of G and M is H-projective. Let S be an H-source of M. Let $T = \{ g \in G \mid S^g \simeq S \}$ and t the multiplicity of M in $S \uparrow G$. Then $[\mathcal{A}(M) \downarrow H] = t (\Sigma_{g \in G/T} [\mathcal{A}(S^g)])$.

3. ([2, Proposition 2.17.10]) The AR-sequence $\mathcal{A}(M)$ splits on restriction to H if and only if M is not H-projective.

Proof. By [4, Theorem 3.4], it suffices to show that $(V, [\mathcal{A}(M) \downarrow_H] - \Sigma_{i=1}^n t_i [\mathcal{A}(L_i)]) = 0$ for any indecomposable kH-module V. Using the Frobenius reciprocity, we have $(V, [\mathcal{A}(M) \downarrow H] - \Sigma_{i=1}^n t_i [\mathcal{A}(L_i)]) = (V, [\mathcal{A}(M) \downarrow H]) - (V, \Sigma_{i=1}^n t_i [\mathcal{A}(L_i)]) = (V \uparrow G, [\mathcal{A}(M)]) - \Sigma_{i=1}^n t_i (V, [\mathcal{A}(L_i)])$. Now $M \mid V \uparrow G$ if and only if V is isomorphic to some L_i. Since k is algebraically closed, we have $(V \uparrow G, [\mathcal{A}(M)]) = t_i$ in this case, and hence $(V, [\mathcal{A}(M) \downarrow H] - \Sigma_{i=1}^n t_i [\mathcal{A}(L_i)]) = 0$ as desired.

Lemma 1.7. Let M be a non-projective indecomposable kG-module. Let $\mathcal{E} : 0 \to \Omega^2 M \to X \to M \to 0$ be an exact sequence. Then:

1. \mathcal{E} is the AR-sequence $\mathcal{A}(M)$ if and only if $(M, [\mathcal{E}]) = d_M$. Here $d_M = \dim_k (\text{End}_{kG}(M) / \text{Rad}(\text{End}_{kG}(M)))$.

2. \mathcal{E} is the AR-sequence $\mathcal{A}(M)$ if and only if \mathcal{E} does not split and $(m(M),$
Proof. (1) Suppose that \(\mathcal{E} \) is the AR-sequence. Then by [2, 2.18.4 Theorem] we have \((M, [\mathcal{E}]) = d_M \). To show the converse assume by way of contradiction that \((M, [\mathcal{E}]) = d_M \) but \(\mathcal{E} \) is not the AR-sequence \(\mathcal{A}(M) \). Now the exact sequence \(\mathcal{E} \) does not split since \((M, [\mathcal{E}]) > 0 \). Letting \(\mathcal{A}(M): 0 \to \Omega^2 M \to m(M) \to M \to 0 \) be the AR-sequence terminating at \(M \), we have the following commutative diagram.

\[
0 \to \Omega^2 M \to X \to M \to 0
\]

Since the left-hand square is a pushout diagram, we get an exact sequence \(\mathcal{E}': 0 \to \Omega^2 M \to X \oplus \Omega^2 M \to m(M) \to 0 \). Since \(\mathcal{E}' \) is not the AR-sequence \(\mathcal{A}(M) \), \(\mathcal{E}' \) does not split: if \(\mathcal{E}' \) is a split sequence, then \(X \) is isomorphic to \(m(M) \) but this implies that \(\mathcal{E} \) is the AR-sequence \(\mathcal{A}(M) \), a contradiction. Thus we also have the following commutative diagram.

\[
0 \to \Omega^2 M \to m(M) \to M \to 0
\]

Since the right-hand square is a pullback diagram, we get an exact sequence \(\mathcal{E}'' : 0 \to m(M) \to X \oplus \Omega^2 M \to m(M) \to 0 \). Thus we get \([\mathcal{E}] = \mathcal{A}(M) + [\mathcal{E}'] \mathcal{A}(M) + [\mathcal{E}'']. \) Hence we have \((M, [\mathcal{E}]) = (M, \mathcal{A}(M)) + (M, [\mathcal{E}]) = 2d_M + (M, [\mathcal{E}'']) > d_M, \) a contradiction.

(2) Suppose that \(\mathcal{E} \) is the AR-sequence. Then by [2, 2.18.4 Theorem] we have \((m(M), [\mathcal{E}]) = 0 \) since \(M \not\cong m(M) \). Conversely suppose that \(\mathcal{E} \) does not split and \((m(M), [\mathcal{E}]) = 0 \). Let \([\mathcal{E}'] \) be as in the proof of (1). Since \([\mathcal{E}] = \mathcal{A}(M) + [\mathcal{E}] \mathcal{A}(M) + [\mathcal{E}'] \mathcal{A}(M) + [\mathcal{E}'']. \) Hence we have \((M, [\mathcal{E}']) = (M, \mathcal{A}(M)) + (M, [\mathcal{E}']) = 0, \) which implies that \(\mathcal{E}' \) splits. Thus \(X \) is isomorphic to \(m(M) \), and hence \(\mathcal{E} \) is the AR-sequence \(\mathcal{A}(M) \).

Remark. If \(k \) is algebraically closed, then \(d_M = 1 \) for any indecomposable \(kG \)-module \(M \).

The following two lemmas are useful for our investigation.

Lemma 1.8. Let \(\Delta \) be a connected component of \(\Gamma_s(kG) \). Suppose that the tree class of \(\Delta \) is \(A_\infty \). Let \(T: M_1 \leftarrow M_2 \leftarrow \cdots \leftarrow M_s \leftarrow \cdots \) be a tree in \(\Delta \) such that \(\Delta \cong \mathbb{Z}T/\Pi \) for some admissible group of automorphisms \(\Pi \subseteq \text{Aut} \mathbb{Z}T \). Then \(\dim_k M_s \equiv n(\dim_k M_1) \mod p \) for all \(n \geq 1 \).

Proof. We proceed by induction on \(n \). Clearly \(\dim_k M_1 = 1 \times \dim_k M_1 \) and
dim_k\Omega^2 M_i \equiv \dim_k M_i \pmod{p}$. Since the AR-sequence $\mathcal{A}(M_i)$ is of the form $0 \rightarrow \Omega^2 M_i \rightarrow M_2 \oplus U \rightarrow M_1 \rightarrow 0$, where U is projective or 0, we have $\dim_k M_2 \equiv 2(\dim_k M_i) \pmod{p}$.

Suppose then that $\dim_k M_i \equiv \dim_k \Omega^2 M_i \equiv i(\dim_k M_i) \pmod{p}$ for all i with $1 \leq i \leq n-1$. Now we have the AR-sequence $\mathcal{A}(M_{n-1}): 0 \rightarrow \Omega^2 M_{n-1} \rightarrow \Omega^2 M_{n-2} \oplus M_2 \oplus U \rightarrow M_{n-1} \rightarrow 0$, where U is projective or 0. Therefore $\dim_k M_{n-1} = \dim_k \Omega^2 M_{n-2} - \dim_k \Omega^2 M_{n-2} \equiv n(\dim_k M_i) \pmod{p}$.

Lemma 1.9. Let Θ be a connected component of $\Gamma(kG)$.

(1) If the tree class of Θ is A^∞, then $\dim_k M \equiv \dim_k M' \pmod{p}$ for all indecomposable kG-modules M and M' in Θ.

(2) Suppose that the tree class of Θ is $Z\lambda_0$. Let $M^\downarrow \rightarrow \Omega \rightarrow M_2 \rightarrow \cdots \rightarrow M_n \rightarrow M' \downarrow \rightarrow$ be a tree in Θ with $\Theta \cong ZT$. Then $\dim_k M \equiv \dim_k M' \pmod{p}$ and $\dim_k M_n \equiv 2(\dim_k M) \pmod{p}$ for all $n \geq 2$.

Proof. Let x be an element of G of order p and let $H = \langle x \rangle$. Then the group algebra kH has only p non-isomorphic indecomposable modules, say $V_1, V_2, \ldots, V_{p-1}$ and V_p, where $\dim_k V_t = t$ ($1 \leq t \leq p$) and V_p is projective. For a kG-module M, let $a(t, M)$ be the multiplicity of V_t in M^\downarrow.

(1) We show that $a(t, M) = a(t, M')$ for any indecomposable kG-modules M and M' in Θ and $1 \leq t \leq p-1$. Let a_i be the smallest integer in $\{a(t, M) \mid M \in \Theta\}$ and let M_i be a kG-module in Θ such that $a(t, M_i) = a_i$. Let $T: \cdots \rightarrow W_n \rightarrow \cdots \rightarrow W_2 \rightarrow W_1 \rightarrow W_0$ be a tree in Θ such that $\Theta \cong ZT/\Pi$ for some admissible group of automorphisms $\Pi \subseteq \text{Aut} ZT$. Then we have the AR-sequence $\mathcal{A}(M_i): 0 \rightarrow \Omega^2 M_i \rightarrow \Omega^2 M_2 \oplus M_1 \oplus U \rightarrow M_0 \rightarrow 0$, where U is projective or 0. Since the connected component containing M_i is not a tube, M_i is not periodic and in particular M_i is not H-projective. Thus $\mathcal{A}(M_i)$ splits on restriction to H by Lemma 1.6(3) and it follows that $\Omega^2 M_i \oplus M_2 \oplus U \cong M_1 \oplus \Omega^2 M_2$. This implies that $a(t, W_2) = a(t, M_2) = a_i$. Since $a(t, W_2) \geq a_i$, we proceed inductively, we obtain $a(t, M_n) = a(t, W_n) = a_i$ for all $n \geq 2$ and all t with $1 \leq t \leq p-1$. Thus the result follows.

(2) Since the tree class of Θ is D_∞, all indecomposable modules in Θ are not H-projective. Hence for any indecomposable kG-module M in Θ, the AR-sequence $\mathcal{A}(M)$ splits on restriction to H by Lemma 1.6(3). We have the AR-sequences $\mathcal{A}(M): 0 \rightarrow \Omega^2 M \rightarrow M_2 \oplus U \rightarrow M_1 \rightarrow 0$ and $\mathcal{A}(M'): 0 \rightarrow \Omega^2 M' \rightarrow M_2 \oplus U' \rightarrow M' \rightarrow 0$, where U and U' are projective or 0. Since both $\mathcal{A}(M)$ and $\mathcal{A}(M')$ split on restriction to H, we have $\Omega^2 M \oplus M_2 \oplus U \cong M_1 \oplus \Omega^2 M_2$ and $\Omega^2 M' \oplus M' \oplus U' \cong M_2 \oplus U' \oplus \Omega^2 M_2$. Thus we get $a(t, M_2) = 2a(t, M) = 2a(t, M')$ for $1 \leq t \leq p-1$.

Next we show that \(a(t, M_n) = 2a(t, M) \) for \(1 \leq t \leq p - 1 \) and all \(n \geq 2 \) by induction on \(n \). We have the AR-sequence \(\mathcal{A}(M_2): 0 \to \Omega^2 M_2 \to M_3 \oplus \Omega^2 M' \oplus U_2 \to M_4 \to 0 \), where \(U_2 \) is projective or 0. Since \(\mathcal{A}(M_2) \) splits on restriction to \(S \), we get \(a(t, M_3) = a(t, M_2) + a(t, \Omega^2 M_2) - a(t, \Omega^2 M') = a(t, M_2) \) for \(1 \leq t \leq p - 1 \). Suppose then that \(a(t, M_i) = a(t, M_2) \) for all \(i \) with \(2 \leq i \leq n - 1 \). We have the AR-sequence \(\mathcal{A}(M_{n-1}): 0 \to \Omega^2 M_{n-1} \to \Omega^2 M_{n-2} \oplus M_n \oplus U'' \to M_{n-1} \to 0 \), where \(U'' \) is projective or 0. As \(\mathcal{A}(M_{n-1}) \) splits on restriction to \(S \), we get \(a(t, M_n) = a(t, M_{n-1}) \) for \(1 \leq t \leq p - 1 \). Hence the result follows.

In the rest of this section, we consider the following situation.

(*) Assume that \(k \) is an algebraically closed field of characteristic \(p > 0 \) and a Sylow \(p \)-subgroup \(P \) of \(G \) is normal. Let \(\Xi \) be a connected component of \(\Gamma(kP) \). Assume that every module in \(\Xi \) is \(G \)-invariant. Assume furthermore that \(\Xi \) is not a tube and every arrow in \(\Xi \) is multiplicity free. Let \(S \) be an indecomposable \(kP \)-module in \(\Xi \) and \(M \) an indecomposable \(kG \)-module having \(S \) as a \(P \)-source. Let \(\Theta \) be the connected component of \(\Gamma(kG) \) containing \(M \).

Remark. The assumption (*) implies that \(P \) is not a Klein four group and \(\Xi \) is isomorphic to \(ZA_1, ZD_5 \) or \(ZA_6^* \).

Lemma 1.10. Assume (*). Then all the \(P \)-sources of the indecomposable modules in \(\Theta \) lie in \(\Xi \).

Proof. Let \(W \) be an indecomposable \(kG \)-module in \(\Theta \). Then there is a sequence of indecomposable \(kG \)-modules \(M = M_1, M_2, \ldots, M_n = W \) such that \(M_i \) and \(M_{i+1} \) are connected by an irreducible map \((1 \leq i \leq n - 1) \). We proceed by induction on \(n \).

By the assumption, a \(P \)-source \(S \) of \(M = M_1 \) lies in \(\Xi \). Suppose then that a \(P \)-source \(S_{n-1} \) of \(M_{n-1} \) lies in \(\Xi \). Now \(M_n \) is \(\Omega^2 M_{n-1} \) or \(\Omega^{-2} M_{n-1} \), where \(m(M_{n-1}) \) \((\text{resp. } m(\Omega^{-2} M_{n-1}) \) is the middle term of the AR-sequence \(\mathcal{A}(M_{n-1}) \) \((\text{resp. } \mathcal{A}(\Omega^{-2} M_{n-1}) \). By Lemma 1.6 (2), we have \([\mathcal{A}(M_{n-1})] = t[\mathcal{A}(S_{n-1})] \) and \([\mathcal{A}(\Omega^{-2} M_{n-1})] = t[\mathcal{A}(\Omega^{-2} S_{n-1})] \), where \(t \) is the multiplicity of \(M_{n-1} \) in \(S_{n-1} \). This implies that a \(P \)-source of \(M_n = W \) lies in \(\Xi \).

For an indecomposable \(kG \)-module \(W \) in \(\Theta \), let \(\phi W \) be a (unique) \(P \)-source of \(W \). The following fact is an immediate consequence of the result of Uno [20, Section 3].

Lemma 1.11. Assume (*). Then \(\phi \) induces a graph isomorphism from \(\Theta \) onto \(\Xi \).

Proof. By [20, Theorem 3.5], the multiplicity of \(S \) in \(M \downarrow P \) is equal to
that of M in S^\dagger. From Lemma 1.10 and [20, Theorem 3.7], we get the result.

2. ZA_w-Components

In this section we consider a connected component of $\Gamma_s(kG)$ containing an indecomposable kG-module whose k-dimension is not divisible by p under the following hypothesis:

(4) k is an algebraically closed field of characteristic $p>0$ and a Sylow p-subgroup P of G is not cyclic, dihedral, semidihedral or generalized quaternion.

Theorem 2.1. Assume (4). Suppose that Θ is a connected component of $\Gamma_s(kG)$ and Θ contains an indecomposable kG-module whose k-dimension is not divisible by p. Then Θ is isomorphic to ZA_w.

Proof. The tree class of Θ is A_m, D_m or A_∞ by Theorem 1.1.

Step 1. The tree class of Θ is not A_∞.

Proof. We shall derive a contradiction assuming that the tree class of Θ is A_∞. Let $T : \cdots \rightarrow W_n \rightarrow \cdots \rightarrow W_2 \rightarrow M_1 \leftarrow M_2 \leftarrow \cdots \leftarrow M_n \leftarrow \cdots$ be a tree in Θ with $\Theta \cong ZT$. Note that $p \nmid \dim_k M$, $p \nmid \dim_k M_n$ and $p \nmid \dim_k W_n$ for all $n \geq 2$ from Lemma 1.9(1). On the other hand the connected component Δ_0 containing k is isomorphic to ZA_w by Theorem 1.2. Let $T_0 : k = L_1 \leftarrow L_2 \leftarrow \cdots \leftarrow L_n \leftarrow \cdots$ be a tree in Δ_0 with $\Delta_0 \cong ZT_0$. Let $\mathcal{A}(k) : 0 \rightarrow \Omega^2 k \rightarrow L_2 \oplus U \rightarrow k \rightarrow 0$ be the AR-sequence terminating at k, where U is projective or 0. Then the tensor sequence $\mathcal{A}(k) \otimes M : 0 \rightarrow \Omega^2 k \otimes M \rightarrow (L_2 \oplus U) \otimes M \rightarrow M \rightarrow 0$ is the AR-sequence $\mathcal{A}(M)$ modulo projectives by Theorem 1.3. Hence it follows that $L_2 \otimes M \cong M_2 \oplus W_2$ (mod projectives).

In case $p=2$, this is a contradiction, since $2|\dim_k L_2$ by Lemma 1.8 and thus $L_2 \otimes M$ does not have any odd dimensional indecomposable direct summand from Theorem 1.4(2).

In case $p>2$, applying Lemma 1.5, we have the tensor sequence $\mathcal{A}(L_2) \otimes M : 0 \rightarrow \Omega^2 L_2 \otimes M \rightarrow (\Omega^2 k \oplus L_3) \otimes M \rightarrow L_2 \otimes M \rightarrow 0$, which is a direct sum $\mathcal{A}(M_2) \oplus \mathcal{A}(W_2)$ modulo projectives, as $p \nmid \dim_k L_2$, $p \nmid \dim_k M_2$ and $p \nmid \dim_k W_2$. Hence we have $L_3 \otimes M \cong M_3 \oplus W_3 \oplus \Omega^2 M$ (mod projectives). Repeating this argument until $n=p$, we have $\mathcal{A}(L_{p-1}) \otimes M$ is a direct sum of the AR-sequences modulo projectives and $M_{n} \oplus W_{n} \mid L_{n} \otimes M$ for $n \leq p$. In particular we obtain $M_{p} \oplus W_{p} \mid L_{p} \otimes M$. But this is also a contradiction, since $p|\dim_k L_p$ from Lemma 1.8 and thus $L_p \otimes M$ has no indecomposable direct summand whose k-dimension is not divisible by p from Theorem 1.4(2).

Step 2. The tree class of Θ is not D_m.

Proof. Assume contrary that the tree class of Θ is D_m. Let
Let \(T: M \leftarrow M_2 \leftarrow \cdots \leftarrow M_n \leftarrow \cdots \) be a tree in \(\Theta \) with \(\Theta \in \text{ZT} \).

Note that \(p \not| \dim_k M \) and \(p \not| \dim_k W \) from Lemma 1.9(2). Let \(\mathcal{A}(k): 0 \rightarrow \Omega^2 k \rightarrow m(k) \rightarrow k \rightarrow 0 \) be the AR-sequence terminating at \(k \). By Theorem 1.3 the tensor sequences \(\mathcal{A}(k) \otimes M \) and \(\mathcal{A}(k) \otimes W \) are the AR-sequences \(\mathcal{A}(M) \) modulo projectives and \(\mathcal{A}(W) \) modulo projectives respectively. Hence we have \(M_2 \cong m(k) \otimes M \cong m(k) \otimes W \) (mod projectives). Thus \(m(k) \otimes M \otimes M^* \cong m(k) \otimes W \otimes M^* \) (mod projectives). Note that \(m(k) \otimes M \otimes M^* \) and \(m(k) \otimes W \otimes M^* \) are the middle terms of the tensor sequences \(\mathcal{A}(k) \otimes M \otimes M^* \) and \(\mathcal{A}(k) \otimes W \otimes M^* \) respectively.

Let \(M \otimes M^* = k \oplus (\oplus_i L_i) \oplus (\oplus_j L'_j) \oplus N \), where \(L_i \) is an indecomposable \(kG \)-module lying in \(\Delta_0 \) such that \(p \not| \dim_k L_i \) and \(L'_i \) is an indecomposable \(kG \)-module lying in \(\Delta_0 \) such that \(p | \dim_k L'_i \) and \(N \) has no indecomposable direct summand lying in \(\Delta_0 \). Since the multiplicity of \(k \) in \(M \otimes M^* \) is one, \(L_i \) is not isomorphic to \(k \). By Lemma 1.5, we have \(m(k) \otimes M \otimes M^* \cong m(k) \oplus (\oplus_i m(L_i)) \oplus (\oplus_j (\Omega L'_j \oplus L'_j)) \oplus N' \) for some \(kG \)-module \(N' \). Note that \(N' \) does not have any indecomposable direct summand lying in \(\Delta_0 \). Therefore the number of indecomposable direct summands of \(m(k) \otimes M \otimes M^* \) lying in \(\Delta_0 \) is odd. On the other hand \(k \) is not a direct summand of \(W \otimes M^* \). Therefore the number of indecomposable direct summands of \(m(k) \otimes W \otimes M^* \) lying in \(\Delta_0 \) is even, a contradiction.

By Steps 1 and 2, the tree class of \(\Theta \) is \(A_\infty \). Since a Sylow \(p \)-subgroup \(P \) of \(G \) is not generalized quaternion, indecomposable \(kG \)-modules whose \(k \)-dimension is not divisible by \(p \) are not periodic. Hence \(\Theta \) is isomorphic to \(ZA_\infty \).

Lemma 2.2. Assume \((\#)\). Suppose that \(\Theta \) is a connected component of \(\Gamma(kG) \) and \(\Theta \) contains an indecomposable \(kG \)-module whose \(k \)-dimension is not divisible by \(p \). Then all modules in \(\Theta \) have the same vertex \(P \).

Proof. By Theorem 2.1, \(\Theta \) is isomorphic to \(ZA_\infty \). Let \(M_1 \) be an indecomposable \(kG \)-module lying at the end of \(\Theta \). Then Lemma 1.8 implies that \(p \not| \dim_k M_1 \). Hence a Sylow \(p \)-subgroup \(P \) of \(G \) is a vertex of \(M_1 \) and the result follows from [20, Theorem 4.3].

Let \(M \) be an indecomposable \(kG \)-module having a Sylow \(p \)-subgroup \(P \) of \(G \) as vertex, and let \(S \) be a \(P \)-source of \(M \). Then \(p \not| \dim_k M \) if and only if \(p \not| \dim_k S \) from [3, Proposition 2.4].

Proposition 2.3. Assume \((\#)\). Suppose that \(\Theta \) is a connected component of \(\Gamma(kG) \) containing an indecomposable \(kG \)-module whose \(k \)-dimension is not divisible by \(p \), and let \(T: M_1 \leftarrow M_2 \leftarrow \cdots \leftarrow M_n \leftarrow \cdots \) be a tree in \(\Theta \) with \(\Theta \in \text{ZT} \). Let \(S_1 \) be a \(P \)-source of \(M_1 \) and \(\Xi \) the connected component of \(\Gamma(kP) \) containing \(S_1 \). Then we
have P-source S_n of M_n ($n \geq 1$) and a tree T': $S_1 \leftarrow S_2 \leftarrow \cdots \leftarrow S_n \leftarrow \cdots$ with $\Xi \cong \mathbb{Z}T$.

Proof. Lemma 1.8 implies that $p \not| \dim M_n$, and thus by the remark preceding Proposition 2.3 we have $p \not| \dim S_1$. Hence both Θ and Ξ are isomorphic to ZA_∞ by Theorem 2.1.

Step 1. We may assume that P is a normal subgroup of G.

Proof. Let $N = N^G(P)$ and f the Green correspondence with respect to (G, P, N). Let Θ' be the connected component of $\Gamma_\infty(kN)$ containing fM. Since $p \not| \dim fM$, Θ' is isomorphic to ZA_∞ and all modules in Θ' have the same vertex P by Theorem 2.1 and Lemma 2.2. Therefore f induces a graph isomorphism between Θ and Θ' by [13, Theorem].

Step 2. We may assume that every module in Ξ is G-invariant.

Proof. Let $H = \{g \in G \mid W^g \in \Xi \text{ for all } W \in \Xi\}$ be the inertia group of Ξ. Since $\Xi \cong ZA_\infty$, H acts on Ξ trivially. Hence H is the inertia group of S_1 and all modules in Ξ are H-invariant.

Suppose that $S_1^H - R_1 \oplus R_2 \oplus \cdots \oplus R_n$ is an indecomposable direct sum decomposition such that $R_1^G = M_1$ (Note that each R_i^G is indecomposable by [12, VII. 9.6 Theorem]). Let Θ'' be the connected component of $\Gamma_\infty(kH)$ containing R_1. Then the inducing from H to G gives a graph isomorphism from Θ'' onto Θ by [14, Theorem].

Now we may assume that P is normal and every module in Ξ is G-invariant. Hence we can apply Lemma 1.11 and the conclusion holds.

As an immediate consequence of Proposition 2.3, we have;

Corollary 2.4. Assume (¶). Let M be an indecomposable kG-module whose k-dimension is not divisible by p, and let S be a P-source of M. Then M lies at the end of a ZA_∞-component if and only if S lies at the end of a ZA_∞-component.

In the rest of this section, we give examples of indecomposable kG-modules lying at the end of a ZA_∞-component.

Lemma 2.5. Suppose that Θ is a connected component isomorphic to ZA_∞. Let T: $M_1 \leftarrow M_2 \leftarrow \cdots \leftarrow M_n \leftarrow \cdots$ be a tree in Θ with $\Theta \cong \mathbb{Z}T$. Suppose that all modules in Θ have the same vertex P. Let Q be a proper subgroup of P, and let N be the projective-free part of $M_1 \downarrow Q$. Then $M_n \downarrow Q = \bigoplus_{i=0}^{n-1} \Omega^i N \mod projectives$ for all $n \geq 1$.

Proof. We proceed by induction on n. Clearly $M_1 \downarrow Q = N$ (mod projectives) and $\Omega^2 M_1 \downarrow Q = \Omega^2 N$ (mod projectives). Now the AR-sequence $\mathcal{A}(M_1)$ is of the form $0 \rightarrow \Omega M_1 \rightarrow M_2 \oplus U \rightarrow M_1 \rightarrow 0$, where U is projective or 0. Since $\mathcal{A}(M_1)$ splits on restriction to Q by Lemma 1.6(3), we have $M_2 \downarrow Q = \bigoplus_{i=0}^{1} \Omega^i N$ (mod projectives).
Suppose then that $M_i M_n = \Omega_i \Omega N (\text{mod } \text{projectives})$ for all i with $1 \leq i \leq n - 1$. We have the AR-sequence $\mathcal{A}(M_{n-1})$: $0 \rightarrow \Omega^2 M_{n-1} \rightarrow M_n \oplus \Omega^2 M_{n-2} \oplus U \rightarrow M_{n-1} \rightarrow 0$, where U is projective or 0. Since $\mathcal{A}(M_{n-1})$ splits on restriction to Q by Lemma 1.6(3), we have $(M_n \oplus \Omega^2 M_{n-2} \oplus U) \downarrow Q \cong M_{n-1} \ominus Q \oplus \Omega^2 M_{n-1} \downarrow Q$. This implies that $M_i M_n = \Omega_i \Omega N (\text{mod } \text{projectives})$.

From Theorem 2.1 and Lemmas 2.2 and 2.5, we have:

Lemma 2.6. Assume $(\#)$. Let Q be a proper subgroup of P. Let M be an indecomposable kG-module whose k-dimension is not divisible by p. Suppose that $M \ominus \Omega S \not\simeq M \ominus Q$ and $N \oplus \Omega^{-2} N \not\simeq M \ominus Q$ for some non-projective indecomposable direct summand N of $M \ominus Q$. Then M lies at the end of a ZA_{∞}-component.

Corollary 2.7. Assume $(\#)$. Let M be an indecomposable kG-module with vertex P and S a P-source of M.

1. Suppose that p is odd and $\dim_S S = 2$. Then M lies at the end of a ZA_{∞}-component.

2. Suppose that $p \neq 3$ and $\dim_S S = 3$. Then M lies at the end of a ZA_{∞}-component.

3. Suppose that $p \neq 5$ and $\dim_S S = 5$. Then M lies at the end of a ZA_{∞}-component.

Proof. There exists an element x of P such that x does not act on S trivially. Let $Q = \langle x \rangle$. Then $S \downarrow Q$ satisfies the assumption in Lemma 2.6. Therefore S lies at the end of a ZA_{∞}-component, and M lies at the end of a ZA_{∞}-component by Corollary 2.4.

Remark. In [8], Erdmann proved that there are infinitely many kP-modules of dimension 2 or 3 lying at the ends of ZA_{∞}-components under the hypothesis $(\#)$ ([8, Propositions 4.2 and 4.4]). Consequently she showed that for a block B over an algebraically closed field, the stable Auslander-Reiten quiver $\Gamma_s(B)$ has infinitely many components isomorphic to ZA_{∞} if a defect group of B is not cyclic, dihedral, semidihedral or generalized quaternion ([8, Theorem 5.1]).

3. Remarks on Tensoring with a Certain Module

Suppose that M is an indecomposable kG-module such that $p \not\mid \dim_S M$, and let Θ be the connected component of $\Gamma_s(kG)$ containing M. Let Δ_0 be the connected component of $\Gamma_s(kG)$ containing the trivial kG-module k. In this section we consider tensoring modules in Δ_0 with M under the same hypothesis as in Section 2:

$(\#) k$ is an algebraically closed field of characteristic $p > 0$ and a Sylow
\(p \)-subgroup \(P \) of \(G \) is not cyclic, dihedral, semidihedral or generalized quaternion.

Thus both \(\Theta \) and \(\Delta_0 \) are isomorphic to \(ZA_m\) by Theorem 2.1. We fix some notation: \(T_0: k=L_1 \leftarrow L_2 \leftarrow L_3 \leftarrow \cdots \leftarrow L_n \leftarrow \) is a tree in \(\Delta_0 \) with \(\Delta_0 \cong ZT_0 \).

Proposition 3.1. Assume \((\#)\). Suppose that \(M \) is an indecomposable \(kG \)-module such that \(p \not| \dim_k M \) and \(M \) lies at the end of its component \(\Theta \). Let \(S \) be a \(P \)-source of \(M \). Let \(B \) and \(\Lambda_0 \) be the connected components of \(T_S(kP) \) containing \(S \) and the trivial \(kP \)-module \(k \) respectively. Then tensoring with \(M \) induces a graph isomorphism from \(\Delta_0 \) onto \(\Theta \) if and only if tensoring with \(S \) induces a graph isomorphism from \(\Lambda_0 \) onto \(\Xi \).

Remark. The assumption in Proposition 3.1 implies that both \(\Lambda_0 \) and \(\Xi \) are isomorphic to \(ZA^*\) and \(S \) lies at the end of \(H \) by Theorem 2.1 and Corollary 2.4.

Proof of Proposition 3.1. Let \(T: M=M_1 \leftarrow M_2 \leftarrow \cdots \leftarrow M_n \) be a tree in \(\Theta \) with \(\Theta \cong ZT \). Then we have \(P \)-sources \(S_n \) of \(M_n \) (\(n \geq 1 \)) and a tree \(T': S=S_1 \leftarrow S_2 \leftarrow \cdots \leftarrow S_n \) with \(\Xi \cong ZT' \) by Proposition 2.3. Let \(T'': k=H_1 \leftarrow H_2 \leftarrow \cdots \leftarrow H_n \) be a tree in \(\Delta_0 \) with \(\Delta_0 \cong ZT'' \).

Suppose that the tensoring with \(S \) induces a graph isomorphism from \(\Lambda_0 \) onto \(H \). This means that \(H_n \otimes S \cong S_n \) (mod projectives) and \(J_1(H_n) \otimes S \) is the AR-sequence \(J_1(M_n) \) modulo projectives for \(n > 1 \). We show that \(L_n \otimes M \cong M_n \) (mod projectives) for all \(n \) by induction on \(n \). Clearly \(L_1 \otimes M_1 \cong k \otimes M_1 \cong M_1 \).

By Theorem 1.3, \(J_1(k) \otimes M \) is the AR-sequence \(J_1(M^*) \) modulo projectives. Hence \(L_2 \otimes M_1 \cong M_2 \) (mod projectives). Suppose then that \(L_i \otimes M_i \cong M_i \) (mod projectives) for all \(i \) with \(1 \leq i \leq n-1 \). We claim that \(J_1(L_{n-1}) \otimes M_i \) is the AR-sequence \(J_1(M_{n-1}) \otimes M_i \) modulo projectives: Since \(L_{n-1} | M_{n-1} \otimes M_i \otimes M_i^* \) by Theorem 1.4, we have \(0= \mbox{Tor}(L_{n-1} \otimes M_i \otimes M_i^*, J_1(L_{n-1} \otimes M_i))= \mbox{Tor}(L_{n-1} \otimes M_i, J_1(L_{n-1} \otimes M_i)) \). This implies that \(J_1(L_{n-1}) \otimes M_i \) does not split. Thus in order to show that \(J_1(L_{n-1}) \otimes M_i \) is the AR-sequence \(J_1(M_{n-1}) \otimes M_i \) modulo projectives, it is enough to show that \(\mbox{Tor}(L_{n-1} \otimes M_i, J_1(M_{n-1}))=0 \) by Lemma 1.7(2). From Proposition 2.3, we have \(m(M_{n-1}) \mid m(S_{n-1} \otimes M_i) \) and \(M_i \mid S_{n-1} \). Thus it follows that \(m(S_{n-1} \otimes M_i) \cong (m(S_{n-1} \otimes M_i) \otimes S_{n-1} \otimes M_i) \cong 0 \). Now we have \(m(S_{n-1} \otimes M_i) \cong (m(S_{n-1} \otimes S_{n-1} \otimes M_i)) \cong m(S_{n-1} \otimes S_{n-1}) \) from the Frobenius reciprocity. By the Mackey decomposition theorem, we have \((S_{n-1} \otimes M_i) \otimes \bigotimes_{\tilde{g} \in N_G(P)/P} (S_{n-1} \otimes M_i) \otimes \bigotimes_{\tilde{g} \in N_G(P)/P} (S_{n-1} \otimes M_i) \) as elements of the Green ring \(a(kP) \) by Lemma 1.6(1), we get \(\mbox{Tor}(L_{n-1} \otimes M_i \otimes S_{n-1} \otimes M_i) = \mbox{Tor}(L_{n-1} \otimes M_i \otimes S_{n-1} \otimes M_i) = 0 \) by our assumption. Since \(S_{n-1} \not\subset M \) and \(m(S_{n-1}) \) for any \(g \) in \(N_G(P) \), we get \(m(S_{n-1}) \), \(\mbox{Tor}(L_{n-1} \otimes M_i \otimes S_{n-1} \otimes M_i) = 0 \). Thus we obtain \(m(M_{n-1}) \cong (m(S_{n-1}) \otimes M_i) \cong 0 \) as desired. Therefore \(J_1(L_{n-1}) \otimes M_i: \Omega^2 L_{n-1} \otimes M_i \rightarrow (\Omega^2 L_n \otimes L_n) \otimes M_i \rightarrow L_{n-1} \otimes M_i \rightarrow 0 \) is the AR-sequence \(J_1(M_{n-1}) \) modulo projectives. This implies
that $L_n \otimes M_1 \cong M_n$ (mod projectives).

Conversely suppose that the tensoring with M_1 induces a graph isomorphism from Δ_0 onto Θ. We show that $H_n \otimes S_1 \cong S_n$ (mod projectives) for all $n \geq 1$ by induction on n. Clearly $H_1 \otimes S_1 = k \otimes S_1 \cong S_1$. By Theorem 1.3, $\mathcal{A}(k) \otimes S_1$ is the AR-sequence $\mathcal{A}(S_1)$ modulo projectives. Hence $H_2 \otimes S_1 \cong S_2$ (mod projectives). Suppose then that $H_i \otimes S_1 \cong S_i$ (mod projectives) for all i with $1 \leq i \leq n-1$. We claim that $\mathcal{A}(H_{n-1}) \otimes S_1$ is the AR-sequence $\mathcal{A}(S_{n-1})$ modulo projectives. Since $H_{n-1} \otimes S_1 \cong S_{n-1}$ (mod projectives) and $\Omega^2 H_{n-1} \otimes S_1 \cong \Omega^2 S_{n-1}$ (mod projectives), it is enough to show that $(m(S_{n-1}), [\mathcal{A}(H_{n-1} \otimes S_1)]) = 0$ by Lemma 1.7(2). From Lemma 1.6(1), we have $m(S_{n-1}) \mid m(M_{n-1}) \otimes (M_1 \otimes P)$ and $[\mathcal{A}(H_{n-1})] = [\mathcal{A}(L_{n-1}) \otimes P]$. Hence it follows that $(m(S_{n-1}), [\mathcal{A}(L_{n-1}) \otimes P] \otimes (M_1 \otimes P)) \geq (m(S_{n-1}), [\mathcal{A}(H_{n-1}) \otimes S_1]) \geq 0$. Using the Frobenius reciprocity, we have $(m(S_{n-1}), [\mathcal{A}(L_{n-1}) \otimes P] \otimes (M_1 \otimes P)) = (m(S_{n-1}) \otimes \mathcal{A}(M_1)) = (m(S_{n-1}) \otimes \mathcal{A}(M_1))$, which is zero since $m(S_{n-1}) = S_n \otimes \Omega^2 S_n = 0$. This implies that $m(S_{n-1}) \mid \mathcal{A}(H_{n-1} \otimes S_1) = 0$ as desired. Therefore $\mathcal{A}(H_{n-1}) \otimes S_1: 0 \rightarrow \Omega^2 H_{n-1} \otimes S_1 \rightarrow (\Omega^2 H_{n-2} \otimes H_n) \otimes S_1 \rightarrow H_{n-1} \otimes S_1 \rightarrow 0$ is the AR-sequence $\mathcal{A}(S_{n-1})$ modulo projectives. This implies that $H_n \otimes S_1 \cong S_n$ (mod projectives).

Corollary 3.2. Let M be a trivial source module with vertex P. Let Θ be the connected component of $\Gamma_s(kG)$ containing M. Then Θ is isomorphic to ZA_n and M lies at the end of Θ. Moreover tensoring with M induces a graph isomorphism from Δ_0 onto Θ.

Proof. Proposition 2.3 and Corollary 2.4 imply that Θ is isomorphic to ZA_n and M lies at the end of Θ. The second statement follows by Proposition 3.1.

In the following, we give some conditions each of which implies that tensoring an indecomposable kG-module M induces a graph isomorphism from Δ_0 onto a component isomorphic to ZA_n.

Proposition 3.3. Assume $(\#)$. Let M be an indecomposable kG-module such that $p \not\mid \dim_k M$, and let Θ be the connected component of $\Gamma_s(kG)$ containing M. Let Q be a proper subgroup of P. Suppose that M satisfies the following conditions (with respect to Q).

1. The trivial kQ-module k is a direct summand of $(M \otimes M^*) \downarrow_{Q}$ with multiplicity one;
2. If Q is generalized quaternion, then $\Omega^2 k \not\mid (M \otimes M^*) \downarrow_{Q}$.

Then tensoring with M induces a graph isomorphism from Δ_0 onto Θ.

Remark. (i) From Theorem 1.4, the above condition (1) is equivalent to the following condition:

1'. We have an indecomposable direct sum decomposition $N \oplus (\oplus_i W_i)$ of
\(M \downarrow_{\Theta}, \) where \(p \not\mid \dim N \) and \(p \not\mid \dim W_t \) for all \(t \).

(ii) \(\Theta \) is isomorphic to \(\mathbb{Z}A_m \) by Theorem 2.1. Moreover \(M \) lies at the end of \(\Theta \) by Lemma 2.6.

In order to prove Proposition 3.3, we need the following.

Lemma 3.4. Under the same assumption as in Proposition 3.3, \(L_n \) is a direct summand of \(L_n \otimes M \otimes M^* \) with multiplicity one for all \(n \geq 1 \).

Proof. Note that \(L_n \) is a direct summand of \(L_n \otimes M \otimes M^* \) since \(k \not\mid M \otimes M^* \).

From Lemma 2.5, we have \(L_n \downarrow_\Theta = \oplus \otimes^{\Pi}_{i=1} \Omega^2 k \) (mod projectives). Since the multiplicity of \(k \) in \((M \otimes M^*) \downarrow_\Theta \) is one (and \(\Omega^2 k \) is not a direct summand of \((M \otimes M^*) \downarrow_\Theta \) if \(Q \) is generalized quaternion), it follows that \(2(\oplus \otimes^{\Pi}_{i=1} \Omega^2 k) \not\mid (L_n \otimes M \otimes M^*) \downarrow_\Theta \). This implies that the multiplicity of \(L_n \) in \(L_n \otimes M \otimes M^* \) is one.

Proof of Proposition 3.3. Let \(T: M=M_1 \rightarrow M_2 \rightarrow \cdots \rightarrow M_n \rightarrow \cdots \) be a tree in \(\Theta \) with \(\Theta \cong \mathbb{Z}T \). We show that \(L_n \otimes M \cong M_n \) (mod projectives) for all \(n \geq 1 \) by induction on \(n \).

Clearly \(L_1 \otimes M = k \otimes M_1 \cong M_1 \). Let \(\mathcal{A}(k): 0 \rightarrow \Omega^2 k \rightarrow L_2 \oplus U \rightarrow k \rightarrow 0 \) be the AR-sequence terminating at \(k \), where \(U \) is projective or 0. Then the tensor sequence \(\mathcal{A}(k) \otimes M \) is the AR-sequence \(\mathcal{A}(M) \) modulo projectives by Theorem 1.3.

Hence \(L_1 \otimes M \cong M_1 \) (mod projectives).

Suppose then that \(L_i \otimes M \cong M_i \) (mod projectives) for all \(i \) with \(1 \leq i \leq n-1 \). We claim that \(\mathcal{A}(M_{n-1}) \otimes M \) is the AR-sequence \(\mathcal{A}(M_{n-1}) \) modulo projectives: By Lemma 1.7(1), it suffices to show that \((M_{n-1}, [\mathcal{A}(L_{n-1}) \otimes M]) = 1 \). Since \(L_n \) is a direct summand of \(L_{n-1} \otimes M \otimes M^* \) with multiplicity one by Lemma 3.4, we have \((M_{n-1}, [\mathcal{A}(L_{n-1}) \otimes M]) = (L_{n-1} \otimes M \otimes M^*, [\mathcal{A}(L_{n-1})]) = 1 \) as desired.

Now \(\mathcal{A}(L_{n-1}) \otimes M: 0 \rightarrow \Omega^2 L_{n-1} \otimes M \rightarrow (\Omega^2 L_{n-2} \oplus L_n \oplus U') \otimes M \rightarrow L_{n-1} \otimes M \rightarrow 0 \) is the AR-sequence \(\mathcal{A}(M_{n-1}) \) modulo projectives, where \(U' \) is projective or 0. Thus we get \(L_n \otimes M \cong M_n \) (mod projectives).

Corollary 3.5. (1) Suppose that \(p \) is odd. Let \(M \) be an indecomposable \(kG \)-module with vertex \(P \) and \(S \) a \(P \)-source of \(M \). Suppose that \(\dim S = 2 \). Then tensoring with \(M \) induces a graph isomorphism from \(\Delta_0 \) onto the connected component containing \(M \).

(2) Suppose that \(p = 2 \). Let \(M \) be an indecomposable \(kG \)-module with vertex \(P \) and \(S \) a \(P \)-source of \(M \). Suppose that \(\dim S = 3 \). Then tensoring with \(M \) induces a graph isomorphism from \(\Delta_0 \) onto the connected component containing \(M \).

Proof. The result follows from Corollary 2.7 and Propositions 3.1 and 3.3.

Proposition 3.6. Assume (\#). Let \(M \) be an indecomposable \(kG \)-module with \(p \not\mid \dim M \), and let \(\Theta \) be the connected component containing \(M \). Suppose
that M satisfies the following conditions.

(1) M lies at the end of Θ.

(2) $M \otimes M \approx k \oplus (\oplus_t W_t)$, where each W_t is indecomposable and $p \mid \dim_k W_t$.

Then tensoring with M induces a graph isomorphism from Δ_0 onto Θ.

In order to prove Proposition 3.6, we need the following.

Lemma 3.7 ([22, p.16, Konstruktionslemma]). Let M and N be non-projective indecomposable kG-modules and

$$\begin{array}{ccc}
\alpha & N & \beta \\
\tau & M & 0 \\
N' & \\
\end{array}$$

an exact sequence. Suppose that $\alpha: \Omega^2 M \to N$ and $\beta: N \to M$ are irreducible maps and $N \not\cong N'$. Then τ is the AR-sequence $\mathcal{A}(M)$.

Proof of Proposition 3.6. Let $T: M = M_1 \hookrightarrow M_2 \hookrightarrow \cdots \hookrightarrow M_n$, be a tree in Θ with $\Theta \simeq ZT$. We will show that $L_n \otimes M \simeq M_n$ (mod projectives) and the tensor sequence $\mathcal{A}(L_n) \otimes M$ is the AR-sequence $\mathcal{A}(M_n)$ modulo projectives for all $n \geq 1$ by induction on n. Clearly $L_1 \otimes M = k \otimes M_1 \simeq M_1$. By Theorem 1.3, the tensor sequence $\mathcal{A}(k) \otimes M$ is the AR-sequence $\mathcal{A}(M)$ modulo projectives. Hence $L_2 \otimes M \simeq M_2$ (mod projectives).

Suppose then that $L_i \otimes M \simeq M_i$ (mod projectives) for all i with $1 \leq i \leq n-1$ and the tensor sequence $\mathcal{A}(L_i) \otimes M$ is the AR-sequence $\mathcal{A}(M_i)$ modulo projectives for all i with $1 \leq i \leq n-2$. We will show that the tensor sequence $\mathcal{A}(L_{n-1}) \otimes M$ is the AR-sequence $\mathcal{A}(M_{n-1})$ modulo projectives.

Now $\mathcal{A}(L_{n-2}) \otimes M: 0 \to \Omega^2 L_{n-2} \otimes M \to \Omega^2 L_{n-3} \otimes M \oplus L_{n-1} \otimes M \to L_{n-2} \otimes M \to 0$ and $\mathcal{A}(\Omega^2 L_{n-2}) \otimes M: 0 \to \Omega^2 L_{n-2} \otimes M \to \Omega^2 L_{n-3} \otimes M \oplus \Omega^2 L_{n-1} \otimes M \to \Omega^2 L_{n-2} \otimes M \to 0$ are the AR-sequences $\mathcal{A}(M_{n-2})$ modulo projectives and $\mathcal{A}(\Omega^2 M_{n-2})$ modulo projectives respectively. Let $\alpha: \Omega^2 L_{n-1} \to \Omega^2 L_{n-2}$ and $\beta: \Omega^2 L_{n-2} \to L_{n-1}$ be irreducible maps. Then $\alpha \otimes \text{id}_M: \Omega^2 L_{n-1} \otimes M \to \Omega^2 L_{n-2} \otimes M$ is an irreducible map $\Omega^2 M_{n-1} \to \Omega^2 M_{n-2}$ plus some split map from the projective part of $\Omega^2 L_{n-1} \otimes M$ to the projective part of $\Omega^2 L_{n-2} \otimes M$, and $\beta \otimes \text{id}_M: \Omega^2 L_{n-2} \otimes M \to L_{n-1} \otimes M$ is an irreducible map $\Omega^2 M_{n-2} \to M_{n-1}$ plus some split map from the projective part of $\Omega^2 L_{n-2} \otimes M$ to the projective part of $L_{n-1} \otimes M$.

Consider the tensor sequence $\mathcal{A}(L_{n-1}) \otimes M$:

$$\begin{array}{ccc}
\alpha \otimes \text{id}_M & \Omega^2 L_{n-2} \otimes M & \beta \otimes \text{id}_M \\
0 \to \Omega^2 L_{n-1} \otimes M & L_{n-1} \otimes M \to 0.
\end{array}$$
Here $\Omega^2 M_{n-2} \not\cong L_n \otimes M$: Assume not. Then $\Omega^2 M_{n-2} \cong L_n \otimes M$ and $\Omega^2 M_{n-2} \otimes M^* \cong L_n \otimes M \otimes M^*$. Now by the inductive hypothesis $L_{n-2} \otimes M \cong M_{n-2} \pmod{\text{projectives}}$ and $\Omega^2 L_{n-2} \otimes M \cong \Omega^2 M_{n-2} \pmod{\text{projectives}}$. Thus the condition (2) implies that $\Omega^2 M_{n-2} \otimes M^* \cong \Omega^2 L_{n-2} \oplus (\bigoplus W'_i)$, where each W'_i is indecomposable and $p \mid \dim_k W'_i$. Also the condition (2) implies that $L_n \otimes M \otimes M^* \cong L_n \oplus (\bigoplus W''_i)$, where each W''_i is indecomposable and $p \mid \dim_k W''_i$. This implies that $L_n \cong \Omega^2 L_{n-2}$, a contradiction.

Now the tensor sequence $\mathcal{A}(L_{n-1}) \otimes M$ satisfies the assumption in Lemma 3.7. Thus $\mathcal{A}(L_{n-1}) \otimes M$ is the \mathcal{A}-sequence $\mathcal{A}(M_{n-1})$ modulo projectives. This implies that $L_n \otimes M \cong M_n \pmod{\text{projectives}}$.

Corollary 3.8. Assume (♯). Suppose that M is an endotrivial kG-module. Let Θ be the connected component containing M. Then tensoring with M induces a graph isomorphism from Δ_0 onto Θ.

Proof. Let $\mathcal{A}(k): 0 \to \Omega k \to L_2 \oplus U \to k \to 0$ be the AR-sequence. Here L_2 is non-projective indecomposable and U is projective or 0 by our assumption. By Theorem 1.3, the tensor sequence $\mathcal{A}(k) \otimes M$ is the AR-sequence $\mathcal{A}(M)$ modulo projectives. Since tensoring with an endotrivial module preserves the number of non-projective indecomposable direct summands, the projective-free part of $L_2 \otimes M$ is indecomposable. This implies that M lies at the end of Θ. Hence M satisfies the conditions in Proposition 3.6 and the result follows.

Remark. In [6], Bessenrodt studied endotrivial modules in the Auslander-Reiten quiver. She showed that without the hypothesis (♯), if M is an endotrivial kG-module, then tensoring with M induces a graph isomorphism from the connected component containing the trivial kG-module k onto the connected component containing M ([6, Theorem 2.3]).

4. ZA_∞-Components of Dihedral 2-Groups

Throughout this section we assume that

k is a field of characteristic 2 and a Sylow 2-subgroup P of G is dihedral of order at least 8.

Let Δ_0 be the connected component containing the trivial kG-module k. Then Δ_0 is isomorphic to $Z A_\infty$ by Theorem 1.2. It is known that all modules in Δ_0 are endotrivial kG-modules (see, e.g., [6]).

Proposition 4.1. Let M be an odd dimensional indecomposable kG-module. Let Θ be the connected component of $\Gamma'_s(kG)$ containing M and Δ_0 the connected
component containing \(k \). Then \(\Theta \) is isomorphic to \(\mathbb{Z}A_{\infty} \) and tensoring with \(M \) induces a graph isomorphism from \(\Delta_0 \) onto \(\Theta \).

Proof. Let \(T_0: \cdots \rightarrow V_n \rightarrow \cdots \rightarrow V_2 \rightarrow k \leftarrow L_2 \leftarrow \cdots \leftarrow L_n \leftarrow \cdots \) be a tree in \(\Delta_0 \) with \(\Delta_0 \cong \mathbb{Z}T_0 \). Since tensoring with an endotrivial module preserves the number of non-projective indecomposable direct summands, the projective-free part \(M_n \) (resp. \(W_n \)) of \(L_n \otimes M \) (resp. \(V_n \otimes M \)) is indecomposable and odd dimensional. Therefore the tensor sequences \(\mathcal{A}(L_n) \otimes M \) and \(\mathcal{A}(V_n) \otimes M \) are the AR-sequences \(\mathcal{A}(M_n) \) and \(\mathcal{A}(W_n) \) modulo projectives respectively by Lemma 1.5. Thus we obtain a tree \(T: \cdots \rightarrow W_n \rightarrow \cdots \rightarrow W_2 \rightarrow M \leftarrow M_2 \leftarrow \cdots \leftarrow M_n \leftarrow \cdots \) with \(\Theta \cong \mathbb{Z}T \).

Corollary 4.2. Let \(M \) be an odd dimensional indecomposable \(kG \)-module and \(\Theta \) the connected component containing \(M \). Then all modules in \(\Theta \) have the same vertex \(P \).

Proof. By Proposition 4.1, the tree class of \(\Theta \) is \(A_{\infty} \). Therefore all modules in \(\Theta \) are odd dimensional by Lemma 1.9(1). This implies the result.

5. **\(\mathbb{Z}D_{\infty} \)-Components of Semidihedral 2-Groups**

Throughout this section, we assume that

\(k \) is an algebraically closed field of characteristic 2 and a Sylow 2-subgroup \(P \) of \(G \) is semidihedral.

Let \(\Delta_0 \) be the connected component of \(\Gamma(kG) \) containing the trivial \(kG \)-module \(k \). Then \(\Delta_0 \) is isomorphic to \(\mathbb{Z}D_{\infty} \) by Theorem 1.2 (see [7, p 76 II. 10.7 Remark]). Thus a part of \(\Delta_0 \) is as follows for some indecomposable \(kG \)-modules \(L_2, L_3 \) and \(I \).

```
\begin{tikzcd}
\Omega^2 L_2 & \Omega^2 I \arrow[r] & L_2 \arrow[l] & I \arrow[r] & \Omega^{-2} L_2 \\
\Omega^2 k \arrow[u] & & & & \Omega^{-2} L_3 \arrow[u]
\end{tikzcd}
```

Let \(P = \langle x, y; x^2 = y^{2^k - 1} = 1, y^2 = y^{-1 + 2^i} \rangle \) and \(\mathcal{F} = \{ x \} \). Let \(0 \rightarrow \Omega_2 k \rightarrow U \rightarrow k \rightarrow 0 \) be an \(\mathcal{F} \)-projective cover resolution of the trivial \(kG \)-module \(k \). Con-
cerning some basic facts on relative projective cover, we refer to [15], [19] and [18]. The following result is due to Okuyama.

Theorem 5.1([18]). With the same assumption and notation as above,

1. \(I \cong \Omega(k) \) and \(I \) is an endotrivial \(kG \)-module.
2. \(I \) is self-dual and odd dimensional.
3. If \(I' \) is self-dual, odd dimensional and indecomposable, then \(I' \cong k \) or \(I \).

Lemma 5.2. Let \(M \) be an odd dimensional indecomposable \(kG \)-module. Then \(M \not\cong M \otimes I \).

Proof. Assume contrary that \(M | M \otimes I \). Then \(M \otimes I \cong M \) (mod projectives), since tensoring with an endotrivial module preserves the number of non-projective indecomposable direct summands. Moreover it follows by Theorem 1.4 that \(k|M \otimes M^*|(M \otimes M^*) \otimes I \). This implies that \(I|M \otimes M^* \).

Since \(2 \not\mid \dim_k M \), \(k \) is a direct summand of \(M \otimes M^* \) with multiplicity one. If an indecomposable \(kG \)-module \(W \) is a direct summand of \(M \otimes M^* \), then \(W^* \) is also a direct summand of \(M \otimes M^* \). Let \(M \otimes M^* \cong k \oplus I \oplus (\bigoplus_i (W_i \oplus W_i^*)) \oplus (\bigoplus_j T_j) \) be an indecomposable direct sum decomposition, where \(W_i \) is not self-dual and \(T_j \) is self-dual. Since \(M \otimes M^* \) is odd dimensional, some \(T_j \) is odd dimensional. By Theorem 5.1(3), this \(T_j \) must be isomorphic to \(I \). Hence we get \(I \oplus I | M \otimes M^* \) and \(k \oplus k | (I \oplus I) \otimes I | (M \otimes M^*) \otimes I \cong M \otimes M^* \) (mod projectives). But this contradicts that the multiplicity of \(k \) in \(M \otimes M^* \) is one.

Theorem 5.3. Let \(M \) be an odd dimensional indecomposable \(kG \)-module and \(\Theta \) the connected component of \(\Gamma_s(kG) \) containing \(M \). Then \(\Theta \) is isomorphic to \(\mathbb{Z}_{D_m} \) and \(M \) lies at the end of \(\Theta \).

Proof. We continue to use the same notation as above.

Let \(\mathcal{A}(k): 0 \rightarrow \Omega k \rightarrow m(k) \rightarrow k \rightarrow 0 \) and \(\mathcal{A}(I): 0 \rightarrow \Omega I \rightarrow m(I) \rightarrow I \rightarrow 0 \) be the AR-sequences terminating at \(k \) and \(I \) respectively. Note that \(L_n \cong m(k) \cong m(I) \) (mod projectives). By Theorem 1.3, the tensor sequence \(\mathcal{A}(k) \otimes M \) is the AR-sequence \(\mathcal{A}(M) \) modulo projectives. Since \(I \) is an endotrivial \(kG \)-module, the projective-free part \(M' \) of \(I \otimes M \) is indecomposable. Hence by Lemma 1.5, the tensor sequence \(\mathcal{A}(I) \otimes M \) is the AR-sequence \(\mathcal{A}(M') \) modulo projectives. Note that \(M' \) is not isomorphic to \(M \) by Lemma 5.2.

We claim that the projective-free part \(M_2 \) of \(L_2 \otimes M \) is indecomposable: Assume not. Then we have \(X_1 \oplus X_2 | L_2 \otimes M \) for some non-projective indecomposable \(kG \)-modules \(X_1 \) and \(X_2 \). Note that \(X_1 \) is not isomorphic to \(X_2 \) by Theorem 1.1. Since \(X_1 \oplus X_2 | m(M) \) and \(X_1 \oplus X_2 | m(M') \), where \(m(M) \) and \(m(M') \) are the middle terms of \(\mathcal{A}(M) \) and \(\mathcal{A}(M') \) respectively, we get a part of \(\Theta \) as follows.
But this is a contradiction since Θ can not have such a subquiver by Theorem 1.1.

Consequently we have $m(M) \cong M_2 \pmod{\text{projectives}}$ and $m(M') \cong M_2 \pmod{\text{projectives}}$. This implies that $\Theta \cong \mathbb{Z}D_\omega$ and M lies at the end.

Lemma 5.4. Let M be an odd dimensional indecomposable kG-module and Θ the connected component containing M. Then all modules in Θ have the same vertex P.

Proof. By Theorem 5.3 and Lemma 1.9(2), Θ is isomorphic to $\mathbb{Z}D_\omega$ and M lies at the end of Θ. Since M is odd dimensional, a Sylow 2-subgroup P of G is a vertex of M. The result follows from [20, Theorem 4.3].

Lemma 5.5. Let M be an odd dimensional indecomposable kG-module and Θ the connected component of $\Gamma_s(kG)$ containing M. Let $T: M \twoheadrightarrow M_2 \twoheadrightarrow M_3 \twoheadrightarrow \cdots \twoheadrightarrow M_n \twoheadrightarrow \cdots$ be a tree in Θ with $\Theta \cong \mathbb{Z}T$. Let S be a P-source of M and Ξ the connected component of $\Gamma_s(kP)$ containing S. Then we have P-sources S' and S_n of M' and M_n ($n \geq 2$) respectively and a tree $T': S \twoheadrightarrow S_2 \twoheadrightarrow S_3 \twoheadrightarrow \cdots \twoheadrightarrow S_n \twoheadrightarrow \cdots$ with $\Xi \cong \mathbb{Z}T'$.

Proof. All modules in Θ have the same vertex P by Lemma 5.4. Thus applying the similar argument in the proof of Proposition 2.3, Steps 1 and 2, we may assume that P is a normal subgroup of G and G is the inertial group of Ξ. Since the order of G/P is odd and Ξ is isomorphic to $\mathbb{Z}D_\omega$, G acts on Ξ trivially. Therefore we may also assume that every module in Ξ is G-invariant. Applying Lemma 1.11, we get the result.

In the rest we consider tensoring Δ_0 with an odd dimensional indecomposable kG-module.

Proposition 5.6. Let S be an odd dimensional indecomposable kP-module and Ξ the connected component of $\Gamma_s(kP)$ containing S. Let Λ_0 be the connect-
ed component of $T_k(kP)$ containing the trivial kP-module k. Then tensoring with S induces a graph isomorphism from Δ_0 onto Ξ.

In order to prove Proposition 5.6, we need the following Lemmas 5.7 and 5.8. Let $T_0: k \to H_1 \to H_2 \to \cdots \to H_n \cdots$ be a tree in Δ_0 with $\Delta_0 \cong \mathbb{Z}T_0$. Let $\downarrow I_0 P = \langle x, y; x^2 = y^{a-1} = 1, y^x = y^{-1+2^{-1}} \rangle$.

Lemma 5.7. $H_n \downarrow \langle x \rangle \cong k \oplus k$ (mod projectives) for all $n \geq 2$.

Proof. Use induction on n. Since all modules in Δ_0 have the same vertex P, the AR-sequences $\mathcal{A}(k)$, $\mathcal{A}(I_0)$ and $\mathcal{A}(H_n)$ split on restriction to $\langle x \rangle$. Hence $(k \oplus \Omega^2 k) \downarrow \langle x \rangle \cong m(k) \downarrow \langle x \rangle \cong H_1 \downarrow \langle x \rangle \cong m(I_0) \downarrow \langle x \rangle \cong (I_0 \oplus \Omega^2 I_0) \downarrow \langle x \rangle$. Thus we get $I_0 \downarrow \langle x \rangle \cong k$ (mod projectives), $\Omega^2 I_0 \downarrow \langle x \rangle \cong k$ (mod projectives) and $H_2 \downarrow \langle x \rangle \cong k \oplus k$ (mod projectives). Also $\mathcal{A}(H_3): 0 \to \Omega^2 H_2 \to H_3 \to \Omega^2 I_1 \to H_2 \to 0$ splits on restriction to $\langle x \rangle$. So we have $(H_3 \oplus \Omega^2 H_2 \oplus \Omega^2 I_0) \downarrow \langle x \rangle \cong (\Omega^2 H_2 \oplus H_3) \downarrow \langle x \rangle$ and $H_3 \downarrow \langle x \rangle \cong k \oplus k$ (mod projectives).

Suppose then that $H_i \downarrow \langle x \rangle \cong k \oplus k$ (mod projectives) for all i with $2 \leq i \leq n-1$. Since $\mathcal{A}(H_{n-1}): 0 \to \Omega^2 H_{n-1} \to H_n \oplus \Omega^2 H_{n-2} \to H_{n-1} \to 0$ splits on restriction to $\langle x \rangle$, we have $(H_n \oplus \Omega^2 H_{n-2}) \downarrow \langle x \rangle \cong (\Omega^2 H_{n-1} \oplus H_{n-1}) \downarrow \langle x \rangle$. This implies that $H_n \downarrow \langle x \rangle \cong k \oplus k$ (mod projectives).

Lemma 5.8. Let S be an odd dimensional kP-module.

1. The trivial $k(x)$-module k is a direct summand of $S \downarrow \langle x \rangle$ with multiplicity one.
2. H_n is a direct summand of $H_n \otimes S \otimes S^*$ with multiplicity one for all $n \geq 2$.

Proof. (1) The statement follows from [7, p 73. Lemma II 10.5].

(2) From (1) we have $(S \otimes S^*) \downarrow \langle x \rangle \cong k$ (mod projectives). Hence $(H_n \otimes S \otimes S^*) \downarrow \langle x \rangle \cong k \oplus k$ (mod projectives) from Lemm 5.7. Thus we have $2H_n \downarrow \langle x \rangle / (H_n \otimes S \otimes S^*) \downarrow \langle x \rangle$, which implies the result.

Proof of Proposition 5.6. Let $T: S \to S_2 \to S_3 \to S_4 \to \cdots \to S_n \to \cdots$ be a tree in Ξ with $\Xi \cong \mathbb{Z}T$. Since $k \otimes S \cong S$ and $I_0 \otimes S \cong S'$, it suffices to show that $H_n \otimes S \cong S_0$ (mod projectives) for all $n \geq 2$. We proceed by induction on n.

From the argument in the proof of Theorem 5.3, we have $H_2 \otimes S \cong S_2$ (mod projectives) and $\Omega^2 H_2 \otimes S \cong \Omega^2 S_2$ (mod projectives). Also we have $(S_2, [\mathcal{A}(H_2) \otimes S]) = (H_2 \otimes S, [\mathcal{A}(H_2) \otimes S]) = (H_2 \otimes S \otimes S^*, [\mathcal{A}(H_2)]) = 1$ since the multiplicity of H_2 in $H_2 \otimes S \otimes S^*$ is one by Lemma 5.8(2). This implies that the tensor sequence $\mathcal{A}(H_2) \otimes S: 0 \to \Omega^2 H_2 \otimes S \to (H_2 \otimes \Omega^2 k \oplus \Omega^2 I_0) \otimes S \to H_2 \otimes S \to 0$ is the AR-sequence $\mathcal{A}(S_2)$ modulo projectives by Lemma 1.7(1). Thus we get $H_2 \otimes S \cong S_2$.

Suppose then that $H_i \otimes S \cong S_i$ (mod projectives) for all i with $2 \leq i \leq n - 1$. Using Lemma 5.8(2) again, we have $(S_{n-1}, [\mathcal{A}(H_{n-1}) \otimes S]) = (H_{n-1} \otimes S \otimes S^*, [\mathcal{A}(H_{n-1})]) = 1$. Thus the tensor sequence $\mathcal{A}(H_{n-1}) \otimes S: 0 \to \Omega H_{n-1} \otimes S \to (H_n \oplus \Omega^2 H_{n-2} \otimes S \to H_{n-1} \otimes S \to 0$ is the AR-sequence $\mathcal{A}(S_{n-1})$ modulo projectives. Therefore we get $H_n \otimes S \cong S_n$ (mod projectives).

Proposition 5.9. Let M be an odd dimensional indecomposable kG-module and Θ the connected component containing M. Let Δ_0 be the connected component containing the trivial kG-module k. Then tensoring with M induces a graph isomorphism from Δ_0 onto Θ.

Proof. Let S be a P-source of M. Let Ξ and Λ_0 be the connected components of $\Gamma_s(kP)$ containing S and k respectively. Then tensoring with S induces a graph isomorphism from Λ_0 onto Ξ by Proposition 5.6. Using an argument similar to the one in the proof of Proposition 3.1 (use Lemma 5.5 in place of Proposition 2.3), we get the result.

Acknowledgements. The author would like to thank Professor T. Okuyama for his helpful advice. He also wishes to thank the referee for his careful reading the manuscript and many comments.

References

AUSLANDER-REITEN COMPONENTS

Department of Mathematics
Osaka City University
Osaka 558, Japan