|

) <

The University of Osaka
Institutional Knowledge Archive

. On quasi-injective modules with a chain
Title o ; .
condition over a commutative ring

Author(s) |Harada, Manabu

Osaka Journal of Mathematics. 1972, 9(3), p.

Citation 421-426

Version Type|VoR

URL https://doi.org/10.18910/12866

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Harada, M.
Osaka J. Math.
9 (1972), 421-426

ON QUASI-INJECTIVE MODULES WITH A CHAIN
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In the previous paper [4] the author and T Ishii studied the endomorphism
rings of noetherian quasi-injective modules. As an application of it, we con-
sider, in this paper, quasi-injective modules over a commutative ring R. If Ris
noetherian, E. Matlis decided every indecomposable injective modules in [6].

Greatly making use of those results in [6], we shall decide all quasi-injective
(resp. injective) modules which are either artinian or noetherian in §82 and 3.
Especially, we shall give necessary and sufficient conditions of R for existence
of quasi-injective (resp. injective) modules which are either artinian or noetherian
(cf. [7], Theorem 5).

In this paper, a ring R is always commutative unless otherwise stated and
every R-module is unitary.

1. Preliminaries

Let K be any ring (not necessarily commutative) and M a right K-module.
Put S =Homg(M, M), then we assume that M is a left S-module. Let N be a
subset of M. Then we denote the annihilator ideal of NV in S and in K by I(N)
and ann N, respectively. Similarly, by 7(4) we denote the annihilator sub-
module of M for a left ideal 4 in S.

We call M a weakly distinguished K-module if for any K-submodules NV,D N,
in M such that N,/N, is K-irreducible, Homg(N,/N,, M)=+0. If M is K-quasi-
injective, then M is weakly distinguished if and only if 7[(N)=N for any K-
submodule N in M, (see [1], Proposition 6).

Finally, we shall add here some direct consequences of [4]. From now on
we shall assume that a ring R is commutative.

Proposition 1. Let R be a commutative ring and M a quasi-injective module.
If M is noetherian as an R-module, then S =Hompg(M, M) is left and right arti-
nian, (see Theorem 1 below).

Proof. Since R is commutative, .S is an R-submodule of a finite directsum
of copies of M. Therefore, S is artinian by [4], Theorem 1.
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Propostion 2, Let R and M be as above. We assume further that M is
weakly distinguished. Put S =Homg(M, M). Then M is R-noetherian if and only
if S is left artinian. In this case, M is R-artinian, S-injective and R|A 1is artinian,
where A=ann M.

Proof. If M is R-noetherian, S is artinian by Proposition 1. Hence, M
is S-injective by [4], Theorem 2 and M is R-artinian from the above remark,
since S is noetherian. Further, R/4 is an R-submodule of finite directsum of
copies of M. Hence, R/A is artinian. If S is (left) artinian, then M is R-
noetherian as above.

2. Noetherian quasi-injective modules

We shall decide quasi-injective noetherian modules in this section.

Lemma 1. Let K be any ring and M a quasi-injective and weakly distingui-
shed right K-module. Put S =Homg(M, M) and T=Homg(M, M). Then every
K-submodule of M is a T-submodule of M.

Proof. Let N be a K-module of M. Then r/(N)=N by the remark in §1.
Hence, N is a T-module.

Let R be a commutative noetherian ring and P a prime ideal in R. Let
E(R/P)=E be an injective hull of R/P. 'Then Matlis showed in [6] that E= U 4,

and Hompg(E, E) is a complete local noetherian ring, where 4,= {x| € E, xP‘=0}.

Lemma 2. Let R be a commutative noetherian ring and {P,} a finite set of
distinct maximal ideals in R. Then every R-submodule N of ZPDE(R/P;) is weakly
distinguished and quasi-injective.

Proof. We may assume that IV is an essential submodule of E=3 BE,,
where E;=E(R/P;). Then ann xDIIP;” for any x» in N. Let N, N, be R-
submodules of N such that N,/N, is R-irreducible, then N,/N,~R/P; for some
P,. Since NN R/P;#(0), Homg(N,/N,, N)=(0), which means that N is weakly
distinguished. Hence, E is an R-weakly distinguished injective module.
Moreover, if we put S=Homg(E, E), S=Homg(Z, E). Hence, every R-
submodule M is an S-submodule by Lemma 1. Let E’ be an injective hull of
M contained in E. Then E=E’@E” and E'DM. S’=Homg(E’, E’) may be
regarded as a subring of S. Hence, M is also an S’-module. Therefore, M is
R-quasi-injective by [5], Theorem 1. 1.

We are interested in a noetherian or artinian quasi-injective module M and
hence, we may assume that 3 is directly indecomposable.

Theorem 1. Let M be a directly indecomposable module over a commutative
ring R. Then M is quasi-injective and noetherian if and only if there exist an ideal
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I such that R|I is noetherian and a maximal ideal P containing I and M is contained
in a submodule A, of Eg;;(R/P). In this case, M is R-artinian, and hence R|I is
artinian®.

Proof. We assume that M is R-noetherian and quasi-injective. Put
I=ann M. Then R=RJ/I is noetherian as the proof of Proposition 2. Hence,
we may assume that R is noetherian. Let E be an injective hull of M. Then
E=Eg(R/P) with P prime by [6], Proposition 3.1. Put S=Homg(E, E).
We know from [6], Theorem 3. 4 and its proof that 4,=S(R/P)~Sa~K for any
non-zero element a in A,, where K is the quotient field of R/P. Since
MN A,#+(0) and M is quasi-injective, M contains a submodule which is isomor-
phic to K by [5], Theorem 1. 1. Hence, P is a maximal ideal in R, and M is
contained in some A,, since M is R-finitely generated and each A4, has a com-
position length by [6], Theorem 3.9. The remaining part is clear from the
above and Lemma 2.

Corollary. Let R be a commutative ring. Then there exists a noetherian
injective module if and only if R contains a maximal ideal P such that Rp is artinian,

(cf. [6], Theorem 3. 11).

Proof. It is an immediate consequence of Theorem 1 and [7], Theorem 5,

3. Artinian, quasi-injective modules

We shall decide quasi-injective, (resp. injective) artinian modules in this
section.

Theorem 2. Let R be a commutative ring and M a directly indecomposable
R-module and S=Hompgp(M, M). If M is quasi-injective and artinian, then

i. There exists a maximal ideal P in R such that M= UA; where
A;={x| €M, xP'=0}, and M may be regarded as an Rp-module and Rp-quasi-
injective.

il. M is S-injective and S is a commutative B-adic complete local noetherian
ring, where B is a unique maximal ideal of S. Furthermore, the set of the S-
submodules of M coincides with that of R-submodules of M.

ili. R is dense in S with repect to B-adic topology and hence, for any finite
elements m; in M and an element s in S, there exists an element r in R such that
ms=myr for all i.

Conversely, if S satisfies the first parts of ii and iii, then M is a quasi-injective
and artinian R-module.

Proof. We assume that M is a quasi-injective and artinian R-module. Let
m=0 be an element in M, then mR~R/ann m is an artinian ring. Hence, there

Added in proof: 1) In this case M is R/Ann M-injective by Theorem 1 of C. Faith
Modules finite over endomorphism ring, Lecture Notes in Math., Springer, Heidelberg, 246.



424 M. HaraDA

exists a unique maximal ideal P such that PDann m and P*Cann m, since M is
indecomposable and quasi-injective. Therefore, M contains a unique minimal
R-module R/P and P does not depend on a choice of m. Let s be in R— P and
x<I(s)NR/P. Since P is maximal, there exist p P, r&R such that 1=p+7s.
Hence, x=xp+xrs=0. Therefore, /(s)=(0). Since M is artinian, s gives an
automorphism of M. Hence, M may be regarded as an Rp-module. It is clear
that M is Rp-quasi-injective.

ii. Put S=Hompg(M, M). Then S is left noetherian by [3], Proposition
1. Furthermore, we know from [3], Theorem 2 that M is S-injective, since M
is R-weakly distinguished (cf. the proof of Lemma 2 and i). On the other hand,
we put S’ =Homg(M, M). Then S’C.S and hence, S’ is the center of S. More-
over, since M is an artinian S-injective, S’ is noetherian as above. Let N be the
radical of S then S/N is a division ring by [2], Theorem 1 in p. 44 and
Theorem 6 in p. 48, and R/P~S|N as S-modules. Hence, M is S-weakly
distinguished. Thus, M is also S’-injective as above. Since S =Homg/(M, M),
S=S8"is a complete local ring with respect to a P3-adic topology by [6],
Theorem 3. 7, where B is a unique maximal ideal in S’ and BN R=P. The
last part of ii is clear from the above and Lemma 1.

iti. The following argument is analogous to [6], Theorem 3.7. Put A;=
{x| €M, xPi=0}. We shall show for s in S that there exists 7; in R for each A4;
such that [(s—r;)DA;, Since A,=R/P=S/9¥, we haver,, We assume that
there exists 7; in R such that (s—r;)DA;. Let {m,, m,, ---, m,} be a system of
minimal generators of A;,, as an S-module (see Theorem 1), then we obtain
elements b; in R such that m;b,%0, m;5;=0 if i=j by [5], Theorem 2. 3. Put
g=s5—7;, g(A;)=0 and hence, g(m;)P=g(m; PB)=0, which means g(m,)CA,.
Since A, is essential in M as an R-module and R/P is irreducible, there exists ¢;
in R such that m;b,c;= g(m,) for each . Putr], =3 b;c;, then g(m;)=m;b;c;=
mjriy, for all j. Hence, (s—(r;+7.))) Ai+1:(0)' Since 7'(AJ'+1):$'H1 by [6],
Theorem 3.4, s=limr;, r;&R. Let {m,;} be a finite elements in M, then there
exists an A, containing all m;. Hence, if we take an element 7 in R such that
s—reP”, my=m;s for all i.

Conversely, we assume that S satisfies the first parts of ii and iii. Then
every R-submodule N of M is an S-module and every R-homomorphism of N
to M is an S-homomorphism. Hence, M is a quasi-injective and artinian by
Lemma 2, since M is S-artinan.

Corollary. Let M, R and S be as above. If M is a quasi-injective, artinian
R-module, then for any intermediate ring T between R and S, M is T-quasi-injective.

RemaRK. In Theorem 2 we have shown that S is noetherian, however R/A4
is not noetherian in general, where 4=ann M. For example, let Z be the ring
of integers and P a prime. Zp~ is Zp-artinian, injective and indecomposable.
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We can obtain a non-noetherian intermediate local ring 7" between Zp and Zp =
Hom, (Zp«, Zp~) (see [3], Lemma 1) and M is T-quasi-injective and T-artinian.

Next, we shall consider a case of injective modules.

Theorem 3. Let R be a commutative ring and M an R-artinian, injective
module. Then there exists a finite set of maximal ideals P,, P, ---, P, such that
Ry is noetherian, where T=R—(P,UP,U - UP,) and n is the number of non-
isomorphic indecomposable direct summands of M. Conversely, if Ry is noetherian,
there exists an R-artinian, injective module which is a directsum of n non isomorphic
indecomposable modules.

Proof. LetM= é @M, and the M, be directly indecomposable. We may

assume M;A<M ; if i4=j. Each M; corresponds to a maximal ideal P; and M;
may be regraded as Rp,-module by Theorem 2. Further, M, is an injective
hull of R/P; as an R-module. Put T=R—(P,U--- UP,), then R;/P;R;~R|P.
Hence, M is an Rp-cogenerator. Therefore, Ry is noetherian by [8], Lemma 2.
Conversely, we assume Ry is noetherian and put M;=Eg(R/P;). Since R/P; is
a unique minimal sub-module of M;, M;=Eg,(R/P;). Let ¢;; R—>Rp, be
the canonical homomorphism. Then the operation of elements r in R on
M;=Eg,(R/P;) is given via @;. Hence, M;=Eg, (R/P;R7) and Hom g, (M,,
M,)=Homg(M;, M;) by the standard argument. Furthermore, since Rp, is
noetherian, for any element x in M;ann g, x2P;"Rp D ¢(P;") for some n;
and hence, xP ;*=(0). Put M=3 PM,;, then M is an R-weakly distingui-
shed module from the above, (cf. the proof of Lemma 2). Since Ry is
noetherian, Homg (M, M)=3 © Homg, (M;, M;)=Homg(M, M) is noetherian
by [6], Theorem 3.9. Therefore, M is R-artinian, since M is R-weakly
distinguished.

Lemma 3. Let R be a local noetherian ring with maximal ideal P and
M=Eg(R/P). Let S=Homg(M, M) and T be an intermediate ring between R
and S. If for any element x in E4(M), xP"=(0) for some n, then M is T-injective.

Proof. Ef(M)=M®K as R-modules. If K=(0), for any k40 in
K, kP"=(0) by the assumption. Hence, ann ¥ =P for some kK. Since
E(M) is indecomposable, it contains a unique minimal 7-module R/P. Which
is a contradiction.

Proposition 3. Let R, M and S be as in Lemma 3. Then for any inter-
mediate local ring T between R and S, M is T-injective if and only if T is noe-
therian and PN\ T =P’, where B and P’ are maximal ideals in S and T, respectively.

Proof. “Only if part” is an immediate consequence of Theorem 3. We
assume that T is noetherian as in the proposition. Since M=Eg(R/P) and
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(R/P)S=R|/P, RIP~T|P’ and PNR=P. Let M’=E(T/P’), then for any x
in M’ xP*cC xP"*=(0) for some n. Hence, M =M’ by Lemma 3.

RemARK. Let Z, P be as in the previous remark. Then there exists a tower
of noetherian local rings ZpCR,CR,C -+ such that R; dominates R;_, and
T= UR; is not noetherian. Then M is R -injective for each 7, but not
T-injective.
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