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Introduction

It is well-known that ANR's (absolute neighbourhood retracts) for metric
spaces have various good properties (c.f., [7]), and all paracompact topological
manifolds are ANR's. From a homotopic point of view, they have the homo-
topy types of CW-complexes (c.f., [14]).

Throughout this paper, G will be assumed to be a compact Lie group.
In the present work we study G-equivariant ANR's (abbreviated to G-ANR

hereafter) for metrizable G-spaces (defined in §4) and mainly discuss parallel
properties to ANR's as in Hu [7] (§§ 4-7) and show that G-ANR's have the
G-homotopy types of G-CW complexes (§§ 13-14).

For a finite G, the G-homotopy types of G-ANR's were discussed in [16].
This paper is devided as follows:

1. Paracompactness and G-coverings
2. TN G-coverings and G-nerves
3. G-CW complexes and metrizability
4. G-ANR's and G-ANE's
5. An equivariant version of Dugundji's extension theorem
6. Relation between G-ANR's and G-ANE's
7. Union of G-ANR's
8. Relation for subgroups and G-manifolds
9. Small G-homotopies and G-homotopy extension property

10. G-domination
11. Mapping spaces
12. Small G-deformation and adjunction spaces
13. G-homotopy types of G-ANR's
14. G-homotopy types of countable G-CW complexes.

First we discuss topological properties of G-spaces as preliminaries (§§1-3):
In § 1 we consider paracompactness of G-spaces to prepare for the construc-
tion of TN G-coverings. In § 2 we introduce the notion of TN G-coverings
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of G-spaces and their G-nerves which corresponds to numerable coverings
and their nerves and plays a basic role to develop our discussion on G-ANR's.

The exsistence of TN G-coverings is based on paracompactness and the ex-

sistence of tubes. In § 3 we see that G-CW complexes are paracompact and

perfectly normal, and consider metrizability.

G-ANR's and G-ANE's are defined in § 4. In § 5 we state an equivari-

ant version of Dugundji's extension theorem (Theorem 5.3), which implies

that every locally convex topological linear G-space is a G-ANE. In fact, the

Dugundji's argument [3] ([7]) can be applied if we replace a nerve by a G-

nerve. In § 6, using this, we show that the following three conditions are

mutually equivalent: 1) G-ANR, 2) metrizable G-ANE, and 3) G-neighbour-

hood retract of a convex G-subset of a Banach G-space. Also we look at the
elementary properties of G-ANR's and G-ANE's, e.g., the following G-spaces

being G-ANR's (resp. G-ANE's): open G-subspaces and G-neighbourhood
retracts of G-ANR's (resp. G-ANE's), finite products of G-ANR's (resp. G-
ANE's), G-ENR's, etc.; the consideration for G-contractibility, etc..

In §7, we see that local G-ANR's (resp. local G-ANE's) are G-ANR's
(resp. G-ANE's) and G-spaces having the weak topology with respect to closed

coverings by G-ANR (resp. G-ANE) subspaces are G-ANR's (resp. G-ANE's)

under a suitable restriction. In § 8, first we consider functors such as the
restriction functor, the /^-fixed-point functor and the functor Gx—, where

H

H is a closed subgroup of G, and we see the invariance of equivariant ANR

under operations of these functors, i.e., Res^X, XH

y or GxX for a G-ANR or
H

an #-ANR X is an ίf-ANR, an NH/H-ANR or a G-ANR respectively, etc..

Next we show that every (locally) smooth G-manifold is a G-ANR (Theorem

8.8). We also see that a certain kind of G-bundles are G-ANR's.

In § 9 we examine characterizations of G-ANR's by small G-homotopies
and G-homotopy extension properties in a parallel way to [5] and [7]. In

§ 10, we show that every G-ANR is G-deminated by the G-nerve of a certain

TN G-covering of it (Proposition 10.1). This result is used in §13.

In § 11 we see that the mapping space from a compact G-space to a G-
ANR (e.g., a path space, a loop space, etc.) is a G-ANR. In § 12, we treat

characterizations of G-ANR's by small G-deformations and G-dominations.
Also we see that the adjunction space of a G-ANR pair and a G-ANR is a G-

ANR under the metrizability, in particular, that every (locally) finite G-CW
complex is a G-ANR. (Every G-CW complex is a G-ANE.)

In § 13 we prove that every G-ANR has the G-homotopy type of a G-CW
complex (Theorem 13.3, c.f., [14]). And we see that the converse holds for a

countable G-CW complex in § 14.

The author is gratefull to Professor Shόrό Araki for kind advice and
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encouragement.

1. Paracompactness and ^-coverings

All (Gr-)spaces considered in this paper will be Hausdorίf (G-)spaces.
In this section we consider paracompactness of G-spaces.

Let V be a covering of a space X. The star Si(A, <U) of a subset A<^X with
respect to V denotes the subset

St(A, <U) = U {UζΞV

of X. If x<=X, then St( {x} , <U) is denoted by St(x, CU}. We call that a cover-
ing T7 of a space X is a star -refinement of another covering ^7 of X if the

covering {St(U, V)} u^c^ is a refinement of °^. Then {$£(#, ^U)}*^ is a

refinement of {S/([7, ^)}C7ecZ7 and q/7.

We use the following abbreviations:

(G-)nbd — (G-invariant) neighbourhood,
(G-)map— (G-equivariant) continuous map.

Lemma 1.1. If X is a G-space and A is a G-subset of Xy then every nbd
V of A contains a G-nbd U of A.

The proof is obtained by putting U=X— G(X— V).

Lemma 1.2. Let X be a G-space and cf7={ϊ7λ}λeΛ a locally finite cover-
ing of X. Then:

(1) Every point x<=X has a G-nbd V such that the set {λeΛ| t/λΠ FΦ0}
is finite.

(2) The covering {Gί7λ}λeΛ is locally finite.

Proof. (1) follows from compactness of orbits and Lemma 1.1.
(2): Consider the above G-nbd V for each x^X. Then

G t / λ n F Φ 0 i f f C 7 λ n F Φ 0 . Thus

Card {λ<ΞΛ|Gί/λΠFΦ0} = Card {λeΛ| C/λΠ FΦ0}<oo . q.e.d.

DEFINITION 1.3. Let X be a G-space.
(1) A covering CU= {U} of X is called to be (G-}ίnvarίant iff each

is G-invariant.
(2) A covering CU= {C/λ}λ€ΞΛ of X is called a G '-covering iff

i) gUχ^cU for every Uλ e 'U and every
ii) the index set Λ is a G-set satisfying

for each
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(3) Let CU= {t/λ}λe=Λ be a G-covering of X. We define a G-subspace Ua

for each #eΛ/G by

tf,= U E/Λ (=(?Γ7λ,λe=α).λεβf

The invariant covering *U= {£Λ,}α5eΛ/G is called the saturation of 'U.

REMARK. 1) When a covering ^U— {t/λ}λ€ΞΛ of a G-space Jί satisfies the
above (2). i), we may regard *U as a G-covering by endowing the index set
Λ with a G-action by the formula (I).

2) For any covering Q7 of a G-space we can form a G-covering ^V=
feFl^eG, Feq^} by adding all ^-transform gV, g<=G and F<Ξ<^, to ^V and
indexing as above.

3) An invariant covering V is also a G-covering and CU=CU. In particu-

lar, <U=<0.

Proposition 1.4. Z,£ί X be a paracompact G-space. Then the1 fallowings
hold:

(1) Every open G-covering ̂  of X has an open refinement V which is a

G-covering and of which the saturation °U is locally finite. In particular, every
open invariant covering of X has a locally finite open invariant refinement.

(2) Every open invariant covering CV = {VΛ}ΛfΞA of X has an invariant

partition of unity {p<»}«GA suc^ that

(̂(0,1]) CΓ.

for each a^A. (A partition of unity is assumed to be locally finite.}

(3) The orbit space X/G is paracompact.

Proof. (1): Since X is paracompact, there is a locally finite open re-

finement W of q;. Put V^W^igWlg^G, WeΞW}. Then <U is locally
finite by Lemma 1.2 and *U is the required G-covering. If ^V is invariant, then

V is a refinement of CV.
(2): By [2], Chap. 9, §4, Corollary, p. 91, there is a partition of unity

{p'«}»eA such that ίi"1^, l])cFrt for each a^A. By averaging p'Λ over G

we get an invariant partition of unity {pa}Λ<=A such that /^((O, l])cFα for each

(3): Let Q? be an open covering of X\G. Applying the above (1) to

;> we get a locally finite invariant open refinement °U of

7, where Πx: X-+X/G is the projection. Then {Πτ(t/)}C7ecl/

is a locally finite open refinement of CIΛ q.e.d.

Lemma 1.5. Every open covering <3J of a paracompact G-space X has an
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open refinement ΊJ which is a G-covering of X.

Proof. Since X is paracompact, ̂  is even by [8], Chap. 5,28. Hence

there is an open nbd W of the diagonal of XxX such that {WTX|}*e* is a
refinement of ̂  where W[x]={y^X\(x,y)^W}. By Lemma 1.1 there is
an open G-nbd U of the diagonal such that UdW, where XxX has the dia-

gonal G-action. Put <17= {U[x]}x<ΞX Then V is an open G-covering and
a refinement of ^IΛ q.e.d.

Proposition 1.6. Every open G -covering °^ of a paracompact G-space X

has an open star -refinement V which is a G-covering.

Proof. Since X is paracompact and hence fully normal, there exists an

open star-refinement cϋr of ^IΛ By Lemma 1.5 we have an open G-covering
V which is a refinement of cϋ' and hence a star- refinement of CV. q.e.d.

2. TN 6?-coverings and G-nerves

Let X be a G-space and O=GxdX a G-orbit (of type G/H). By a (G-)

tube about O we mean a pair T—(T, r) of an open G-nbd T of O and a G-
retraction r: T-*O (instead of a G-embedding φ: GxA->X onto Γ as in [1],

H

II, 4.2). Then the orbit O is called the central orbit of T.

When U is a (open) subset of O, the (open) subset S=r~\U) of -SΓ is called
the (open) tube segment of T generated by U. Then, for each g&G, gS is a
(open) tube segment of T generated by gU and gS Π O=gU.

Clearly any open G-nbd T' of O in T is also a tube about O with the G-
retraction r'=r\τ/. The open tube segments in a completely regular G-space

form a base for the topology by the existence of tubes (the Mostow theorem),

see [1], II, 5.4, [17], 1.7,19."
By a (open) tube-segmental G-covering we mean a (open) G-covering <5—

{5f

λ}λeΛ such that SΛ= \jSλ is a tube TΛ with a G-retraction rΛ: TΛ->OΛ for
λ€ΞΛ

each #EϊΛ/G and Sλ is a (open) tube segment of TΛ for each λeϊα. Then
the saturation S— {TΛ}ΛeΛ/G is an invariant covering by tubes.

Proposition 2.1. Every open G-covering ^ of a completely regular G-
space X has a refinement S which is an open tube-segmental G-covering of X.

Proof. For each orbit Gxd.X we select a point x^Gx and choose a tube

segment Sx of a tube TGx generated by an open nbd of x in Gx such that Sx is

contained in some V^CV. Put Sgx=gSx for each gx^Gx. Then <5~ {*Sf-JJcez

is the required one. q.e.d.

DEFINITION 2.2. An open tube-segmental G-covering <5={5λ}λeΛ of a

G-space X is called a 7W G-covering (tubular numerable G-covering) iff) there
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exists an invariant partition of unity {pΛ}Λe=Λ/G such that

for every αeΛ/G. ({paJ*e=Λ/G *s assumed to be locally finite.)

The saturation <S= {TΛ}ΛeAjG °f a TN G-covering c$— {SJλeΛ with

{pαJα>eΛ/G is also a TN G-covering with {/>Λ}ΛeΛ/G If an open tube-segmental

G-covering <S={*Sr

λ}λe:Λ has a partition of unity {pβ}β^B subordinate to S, then

(5 is a TN G-covering, since we can replace {pβ}β<=B with {pΛ}<*ζ=Λ/G as m tne

proof of [2], Chap. 9, § 4, Corollary.

Proposition 2.3. Every open G-covering ̂  of a paracompact G-space X

has a TN G-covering S= {5λ}λeΛ of X which is a star-refinement of CV.

The proof follows from Propositions 1.4. (2), 1.6, and 2.1.

Here we construct the G-nerve of a TN G-covering. Let <5={5λ}λeΛ be

a TN G-covering of a G-space JΓ, <S={TΛ}Λ€;AjG the saturation of cS, and rΛ\

TaΓ+Ou the G-retraction of the tube TΛ to the central orbit Oa for each αeΛ/G.

Let N=N($) denote the nerve of J and Nn = Nn(S) the set of ft-sim-

plexes of N. We assume that Λ/G is (partially) ordered such that the induced

order on the set of vertices of each simplex of N is linear, (e.g., Λ/G is well-

ordered.)

For each w-simplex σ= {α0< <αw} of N we define an open G-sub-

space Kσ=Kσ(S) of O^ X - - x O^ by

^σ= U{O λ ox χO λ M : λf €=α £ , i = 0, -,n, nQ5λ.Φ0},

where Oλ denotes the open set rΛ(Sλ) (==SλΓ\Ocύ) of OΛ for each λ e α and

αeΛ/G. (Note that ^σ(J)=:OΛoX — xOΛβ.)

We define a simplicial G-space -K"*— j?f^(<5) (without degeneracy) (called

the simplicial G-nerve of <5) as follows: The n-th space Kny n^Q, of ^^ is

given by

and the ith face operator 9, : Kn-^Kn^l is given by omitting the ith term, where

2 denotes disjoint union. (Note that K%(S) is an open sub-simplicial G-space

The geometric realization 1-8^(^)1 = Σ^^XΔ^/^ of the simplicial
»^0

G-space ΛΓ^.((5) is called the (geometric) G-nerve of <5 and denoted by K(S}.

is an open G-subspace of
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The image of Σ^(^)X A'' in K(S) is called the n-skeleton of K(S) and
denoted by K*(<S). i=°

Since K^(S) has no degeneracy, the inclusions Kn(S)^>Kn+\S) are
G-cofib rations and hence K(S) is a Hausdorff G-space. Let \x,t\ denote the
image of (#, t)^KnxΔn in K(S), and |Λ, f | is also denoted by |̂ 0, •••,#*„;

*o> °">tn\> where t{ denotes the ith barycentric coordinate of t e Δn and # =

Proposition 2.4. Le£ £={*Sλ}λeΛ be a TN G-covering of a G-space X

with an invariant partition of unity {/>«»} ΛeΛ/G Define P\ X-^K(S) by

p(χ) = k-o(*)> •••> r

 Λ(*)m> P*o(*)> •••»/>«.(*) I
/or a e-X, w/ter* {<*0, ••-, «,} = {α e Λ/G| />«(*) ΦO}. ΓA^w P ώ α G-map.

Proof. Let Λ?e^f, {α0, •-, αβ} = {αeΛ/G|/)Λ(,r)>0}, and σ={α0< -<

First we show that (rΛQ(x), •• ,rΛJ(x))eKσ. Since pΛi(x)>0, we
see that x^Ta. and there is λ, e αf with x^Sλi for z'=0, •••, w. Then

«

and hence (%(̂ ), •• 9rΛn(x))^Kσ by definition. Thus P is well-
«=o

defined.
To show the continuity of P, we consider the Segal's classifying space

BX$ for S and the map P1 ': X-+BX& [18]. The G-space BXg is regarded

as the geometric realization of the simplicial G-space Xg* whose nth space Xgn

is 2 Tσί Tσ— Π TΛ, and whose face operators are given by the inclu-

sions. (There is no degeneracy. Segal's BXg is the barycentric subdivision of

ours.) The map P': X-*BX$ is given by P'(x)= \x;pΛo(x), —,p«u(x) \ . Clearly
P' is a G-map. We define a simplicial G-map /*: Xg*-+K#(S) by

/« I τσ

 = r<&Q X * * * X ^<»w

for σ€ΞNn(S). Then, clearly, P=JPΌ|/# |. Since P' and |/#| are G-maps,

P is also a G-map. q.e.d.

Let I N(§) I be the geometric realization of the nerve N(S) with the tri-

vial G-action. Let τr = πκ^\: K(S) — > | N(S) \ be the projection induced by

sending OΛdK°(S) to the vertex a of |(<5)|. That is, for x— \XΛQ, β ,Λ? r t j ι;
t0y •••, ίn | eίΓ(cS),^r(Λ;) is the point with the αth barycentric coordinate π(x) (α),

i for a = cίi
π(X}(ά) 1 0 for αeΛ/G- K.

Clearly zr is a G-(invariant)maρ and TΓ'^Λ) = OΛ. The inverse image r"1

(the open star of α) is called the open star of O* in (̂<5) and denoted by
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0(0", K(S)). Then

0(0,, K(S)) = {x*ΞK(S)\π(x) (α)Φθ>

= {l**0> ••-, #*„; tOJ •••, *J |α, - α, *, ΦO for some α,} .

Let p*: O(OΛ, jfi:(£))-»OΛ be the G-retraction defined by

Pa( I #ΛO> * * " > #α>rt > A)> " " > tn I ) === ^Λ,

for cίi—a. For Oλ=/Sf

λnθαί, λeα, p*1^) is called the opera star of Oλ in
and denoted by O(Oλ, K(<S)). Then

0(0λ, K(S)) - {Λe^(vS) k(*) (α)Φθ, Pe

ίiΦO for some

Clearly open stars in K(S) are open subsets of K(S).
Every point x of K(S) is presented by the barycentric coordinates π(x) (a)

and "O^-coordinates" ρΛ(x) for ZΓ(Λ) (α) Φ 0. For σ= {α0, •••, αj ^Nn(S) and

|Λ^(cS) I , τrJ£(φ( I σ I ) is the join OΛo* *OΛΛ of the orbits.

3. G-CW complexes and metrizability

G-CW complexes are defined and studied in [10]. We will show that they
have the same topological properties as CW-complexes.

First we quote the following result from [4], 4.4.15.

Proposition 3.1. Let f: Y->X be a closed map from a metrίzable space
Y onto a space X. If f~\x) is compact for every x^Xy then X is metrizable.

Let X be a space and {-5Γλ} λ€ΞΛ

 a closed covering of X . Then X is called

to have the weak topology with respect to {^λ}λ<=Λ iff> f°r anY subset Ω of Λ,
1) U Xω is closed in X and 2) a subset A of U Xω is closed iff A Γ\ Xω is closed

ω<=Q ωeQ

in X for every ω^Ω. If {Xλ} is a locally finite closed covering of X then
X has the weak topology with respect to {X^ If -X" is a G-CW complex,
then X has the weak topology with respect to the closed covering by closed
(7-cells or by finite G-subcomplexes.

Theorem 3.2. Every G-CW complex is paracompact and perfectly normal.

Proof. By Proposition 3.1 and by induction on the number of G- cells
every finite G-CW complex is metrizable and hence paracompact and perfectly
normal. As every G-CW complex has the weak topology with respect to the
covering by finite G-subcomplexes, the theorem follows from [13], [15].

Lemma 3.3. Let X be a space having the weak topology with respect to
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a closed covering {Xλ}^^ and Λ well-ordered. Let Y be a space, f: Y-*X a
map, and Fλ a closed subspace of Y defined by

for each λ^Λ. If Y is metric able, then the closed covering {Fλ}λeΛ of Y is lo-
cally finite.

For the proof see [9], Lemma 1.

Proposition 3.4. A G-CW complex X is metrizable iff X is locally finite.

Proof. Let X be a locally finite G-CW complex, E(X) == 2 GIH» X Δ"

disjoint union of all G-cells of X, and q: E(X)->X the quotient map. Then
q is clearly a closed surjective map. Compactness of q~\x), x^X, follows from
local finiteness of X and compactness of G/HΛ and Δn. Since E(X) is disjoint
union of metrizable spaces G/HΛχΔ*, E(X) is also metrizable by [4], 4.2.1.
Thus X is metrizable by Proposition 3.1.

Let X be a metrizable G-CW complex and {Ge^ΛEίA the closed covering
by all closed G-cells of X. Choose a well-ordering relation < on A such that
a<β whenever dim GeΛ<dim Geβ. Then

Applying Lemma 3.3 to f=Idx, we see that {Ge} is locally finite. Thus X
is locally finite. q.e.d.

4. £-ANR's and 6?-ANE's

By a (metrizable) G-pair we mean a pair (X, A) of a (metrizable) G-space
X and a closed G-subspace A of X. By a metric G-space we mean a G-space
with an (G-)invariant metric. We always assume that a metric of a metrizable
G-space is (G-)invariant, for we can choose an invariant metric by averaging
any metric over G.

Let (Y,B) be a G-pair and /: B-*X a G-map. A G-map /: U->X is
called a G-nbd extension of / iίf C7 is a G-nbd of 5 and f\B=f

A G-space X is called a G-ANE (=G-absolute nbd extensor) (resp. G-AE
(=G-absolute extensor)) iff, for every metrizable G-pair (F, B) and every G-map
f:B-*X, there exists a G-nbd extension/: U-*X(resp. a G-extension /: Y-+X)

off.

Let (y, X) be a G-pair. By a G-nbd retraction to X in Y we mean a G-
retraction r: U-+X from a G-nbd C7 of -3Γ in Y. A G-space J£ is called a (
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retract (resp. G-retracf) of Y iff X is a closed G-subspace of Y and there ex-

ists a G-nbd retraction r: U->X (resp. a G-retraction r: F-»-X).
A G-space X is called a G-ANR (=G -absolute nbd retract) (resp. G-^4#

(=G-absolute retract)) iff Jf is metrizable and, whenever X is a closed G-sub-

space of a metrizable G-space F, JΓ is a G-nbd retract (resp. a G-retract) of Y.

Proposition 4.1. // -Y ώ * G-̂ £* or a G-AR, then XG Φ 0.

Proof. Let j? be a G-AE (G-AR). Let f:B-*X be a G-map from a
metrizable G-space J3 (B=Xyf=Idx). Let F be the G-space JSU{*}, dis-
joint union of B and the one-point G-set {*} . Then F is metrizable and there
is a G-extension /: Y-+X of / (a G-retraction /). Since f(*)<E:XG, we see

* q.e.d.

REMARK. G-ANR's for normal G-spaces ([17], 1.6.1) are G-ANE's in

our sense, (for metrizable G-spaces are normal,) and they are G-ANR's in
our sense if they are metrizable by Theorem 6.4.

5. An equi variant version of Dugundji's extension theorem

A G-space L is called a topological linear G-space iff L is a topological linear
space (over K) on which G acts linearly.

By a normed linear G-space we mean a topological linear G-space L togeth-

er with an invariant norm || ||. L is a metric G-space with the invariant

metric d given by d(x,y) = \\x— y\\. If a topological linear G-space L is norma-
ble, then L has an invariant norm by averaging any norm over G.

If a normed linear G-space B is complete under the above norm topology,
then B is called a Banach G-space. When a topological linear G-space L is

a Banach space, we can make L a Banach G-space by replacing the norm with

the ' 'average" over G.
Banach G-spaces and normable linear G-spaces are locally convex.

EXAMPLE 5.1. Let X be a G-space. Let B(X) denote the Banach space
of all bounded continuous functions X—*R, where the noim || || is defined by

We define a G-action on B(X) by

(gf)(*)=f(g-1*)

for f^B(X), geG, and x^X. Clearly the norm is invariant. Then B(X) is

a Banach G-space.

We remark that the convex hull C of any G-subset A in a topological li-
near G-space L is a G-subsel of L.
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Lemma 5.2. Let (X, A) be a completely regular G-pair and C a G-space.
Let U(C) be the subspace {x <Ξ X \ CG* φ 0}. Then:

(1) U(C) is an open G-subspace of X.
(2) If there is a G-map f: A-+C, then U(C) is an open G-nbd of A. In

particular, U(A) is an open G-nbd of A.
(3) IfCG*0,thenU(C)=X.

Proof. Now U(C)= U U X(H)> where (H) denotes the conjugacy class
y<=c αocctfp

of H and X(H)= {x^X \(GX)=(H)}. Since U X(H) is an open G-subspace
CH^CC^)

of X for each y<=C by [17], 1.7.2, so is U(C). If there is a G-map /: A^C,
then GβcG/(β) and /(α)eCG«Φ0 for every a^A, hence Ac.U(C). The re-
mainder is clear. q.e.d.

REMARK. For G-spaces X and C, there is no G-map from any G-sub-
space of X— U(C) to C.

The main purpose of this section is to show the following equivariant
version of Dugundji's extension theorem, [3], 4.1, [7], (II, 14.1).

Theorem 5.3. Let C be a convex G-subset of a locally convex topolegical
linear G-space L, (X, A) a metrizable G-pair 3 and f: A-*C a G-map. Let U(C)
denote the open G-nbd {x^X\CGχ=£0} of A. Then there exists a G-extension
/: U(C)-*C o f f . Hence C is a G-ANE. If CGΦ0, then U(C)=X and C is
a G-AE.

REMARK. 1) Any G-map cannot be extended equrvariantry to any larger
G-subspace than U(C).

2) If G is a finite group, then every convex G-set C has a G-fixed point
(i.e., CGΦ0). In fact, l/\G\^gx, x^C, is a G-fixed point. Hence every

convex G-subset of a locally convex topological linear G-space is a G-AE for
a finite G.

3) When G is a compact Lie gioup, a convex G-subset of a Banach G-
space does not always have a G-fixed point. Indeed, when G=S1, there exists
an example of a convex G-subset in B(S1) which has no G-fixed point.

Corollary 5.4. Every convex G-subset C of a normable linear G-space
is a G-ANE. If CGΦ 0, then C is a G-AE.

Theorem 5.5. Let L be a locally convex topological linear G-space, (X, A)
a metrizable G-pair, andf: A—>L a G-map. Then:

(1) There exists a G-extension /: X-*L of f such that the image f(X) is
contained in the convex hull of f(A) U {0}.

(2) There exists a G-extension f: U(A)-*L off such that the image f(U(A))
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is contained in the convex hull of f(A)y where U(A) is the open G-nbd
of A.

The theorem is a corollary to Theorem 5.3.

Let (X, A) be a metrizable G-pair and d an invariant metric of X. For
— A let Vx denote the open nbd of x in X— A defined by

Consider an open G-covering {Vx}x<=x-A of X—A. By Proposition 2.3, there
is a TN G-covering <5— {5λ}λeΛ which is a star-refinement of {VX}X(=X-A. Then
we obtain the following equivariant version of [3], 2.1, [7], (II, 11.1) similar

to [7].

Lemma 5.6. Let (X, A) be a metrizable G-pair. Then there exists a
TN G-covering cS={5λ}λeΛ of X—A such that

1) for any nbd V of a^A in X, there exists a nbd W, a^WdV, such

that PF(ΊSλΦ0 implies SλcF for Sλ<=S,
2) any nbd of a^QA contains infinitely many elements of S.

A TN G-covering of X— A satisfying the above conditions 1) and 2) is
called a canonical TN G-covering of X — A. We state an equivariant version

of [3], 3.1, [7], (II, 12.1).

Proposition 5.7. Let (X, A) be a metrizable G-pair. Then there exists
a G-space Y and a G-map μ: X-^Y with the properties:

1) μ \A is a G-homeomorphism and μ(A) is a closed G-subspace of Y.
2) Y—μ(A) is the G-nerve of a canonical TN G-covering of X— A and

μ(X-A)dY-μ(A).

Proof. Let S={Sλ}λGA be a canonical TN G-covering of X—A with

{Pjβevo K=K(S) the G-nerve of <S, and O(Oλ, K) the open star of Oλ(=
rΛ(5λ)=OΛn«Sλ). Put Y=A\JK as G-sets. For a nbd V of a<=A in X we

define a subset F* of A U K by

F* = (^nF)U(U{0(Oλ,^): λEΞΛ, SλcF}).

Clearly αeF*, V*Γ}A=VΓίA, and F* Π K is open in ̂ .
Topologize A U J^ as follows :

i) A basis for nbds of a^A in A \JK is taken to be the totality of the sets F*
determined by nbds V of a in ^Γ.
ii) A basis for nbds of y^K in ^4 U K is taken to be the totality of nbds of y

inK.
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It is easy to verify that A(JK with this topology is a Hausdorff G-space,

and that both A and K, as subspaces, preserve their original topologies. Clear-

ly K is an open G-subspace and hence A is a closed G-subspace.

Using the G-map P: (X—A)-*K defined by {pJ rt<=Λ/G> we define
μ:X-*A(JK by

if

if

Then μ is clearly well-defined, equivariant, and both μ \ A and μ\x-A are con-
tinuous. To prove the continuity of μ, it suffices to show the continuity at

points of dA=A Π (X— A) in X. Let a^QA and F* a basic nbd of a (=μ(a))
in A \JK which is given by a nbd V of a in X. By Lemma 5.6 there is a nbd

W, a<=Wc:V, such that S λfWΦ0 implies SλcF. We assert μ(PF)cF*.

In fact, let or e PF. If # e JF— ̂ 4, then μ(ar) =P(#) eϋΓ. There is Sλ e cS such that

A»(#)ΦO, α=Gλ and #e,SA. Since ΛjeS λn PFΦ0, we see rβ

This shows

, then

This proves that /,6 is continuous. The properties 1) and 2) now follows at

once. q.e.d.

We will construct a G-nbd retraction to A in A U K° in order to extend
a G-map of A to the 0-skeleton K° of 7£. As for the G-nbd, we choose

°) for the open G-nbd

Lemma 5.8. There exists a G-nbd retraction

φ: U(A)*n(AL>K°)-*A
inAUK0.

Proof. Now K° is disjoint union of the orbits OΛ and

Select a point XΛ e OΛ for each OΛ C U(A)* Π jfiΓ°, then ^4G^ Φ 0. Choose a point
aΛ^AGχΛ such that d(#Λ, aa)<2d(xΛ, AGχ«). Define a G-map φΛ: OΛ-*Gaac:A

by Φ*(gxΛ)=g<*Λ. Then

for ΛieO,, (^4G*Φ0) by the G-invariance of d. Define φ: U(A)* Π (-4 U K°)-*A
by
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if

Then φ is clearly equivariant and both φ\A and φ|0Λ=φΛ

 are continuous.
To prove the continuity, it suffices to show the continuity at points of dA in
U(A)*Γ\(AUK°). Let atΞQA and Vt= {x^A\d(x, d)<8}, the S-nbά of a in
A, for an arbitrary £>0. Let V= {x^ X \d(x, α)<£/5}. Choose an open tube
segment S in V generated by an open nbd of a in Ga with a G-retr action
r:GS-*Ga. Then SdU(A). We complete the continuity proof by showing

Since S*ΠA=SΓlA, we see φ(S*n^)=φ(Sn^)=5n-4cFn-4cFβ. Let
*<ΞS* n^°. Then there is SλeΞc5 such that 5λc5 and x<EίO(Oλ, K)Γ(K0=Oλ.
Hence ^eOλc5λc5. Now r(Λ?)e^G*n*S'Φ0. Put b=φ(x)<=AG* and let

Π 5. Since {Λ:, 4 cSc K, we see d(x, a)<6/5 and rf(c, α)<6/5. Thus

£d(a, x)+d(x, b)

<d(a, x)+2d(x, AG*)

£d(a, x)+2(d(x, a)+d(a, c))

=3d(a, x)+2d(ay c)

=6.

Hence φ(x)=b^Vs, which completes the proof. q.e.d.

Corollary 5.9. Let /': A(J(K°- C7(^)*)->C be a G-map. Then the
extension f':A\J K°-*C defined by

t/'(φ(*)) */
ώ α G-map.

Lemma 5.10. Let C be a convex G-subset of a locally convex topological
linear G-space L and f: A\JK°-+C a map. Define an extension f°°: AUK-+C
off by

ί *n

 J if y

if

Then/00 is continuous. Iff0 is a G-map, so isf°°.

Proof. Since C is convex, /°° is well-defined, and equivariant if/0 is so.
Clearly both /°° | A and /°° | κ are continuous. Thus the continuity of /°° need
only be checked at points of dA in A U K.
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Let a^dA. Since L is locally convex and so is C, any given nbd of
f°°(a)=f0(a) in C contains a convex nbd M of /°°(α) in C. As /° is continuous
at a, there is a basic nfo/ F* of a with

By Lemma 5.6 there is a nW W, a^WdV, in Jf such that SλΠ ίFΦ0 implies
5λC V. We will complete the proof by showing

Since W*nA=WnAdV*nA, we have /°°(^*n^)-/0(PF* Π^)cM. Let
^=1^ ••• XΛΛ\ ί0, — ,ίJeHr*n/C From yeΞW* there is SλGΞc$ such that
SλdW and jeO(Oλ, UΓ), i.e., αf =Gλ and #ΛίeOλ for some ί. Put λf=λ.

w

From y^K there are \j^aj9 j=Q, '",n, such that xΛJ^Oλj and Π *Sλyφ0.

Then 5λn5λycH^n5λyΦ 0 and hence ^e5λycF for y=0, — , n. This
implies Λ^e^Π^0 and f°(xΛj) e M fory=0, ••-, w. Since M is convex, we
have

Thus/°°(PF*)cM and the lemma is proved. q.e.d.

Proof of Theorem 5.3. Let (X, A} be a metrizable G-pair, C a convex
G-subset of a locally convex topological linear G-space, and /: A-+C a G-map.
Applying Proposition 5.7 to (U(C), A), we have a canonical TN G-covering
S={Sλ}^A of U(C)-A, a G-space ^U^-^U^(c5), and a G-map μ: U(C)
-+A U ./C We extend/ to A U ̂ ° as follows: Now K°— U(A)* is disjoint union
of orbits. We select a point #ΛeOΛfor each OΛC^°— Z7(-4)*, choose a point
*ΛeCG**, and define a G-map fa'ΌΛ->GzΛ by fa(gx<Λ)=gzΛ. We define a
G-map /°:^U^°-^C by

) if

\f«(x) if

where φ is the G-nbd retraction of Lemma 5.8. Then /° is a G-map. Ap-
plying Lemma 5.10 to /°, we have a G-extension /°°: ^4 \JK ^C of/0. Finally
we put f=f°°0μ, which is the required G-extension. q.e.d.

REMARK. The obtained G-extension /: Z7(C)-»C of / is explicitly ex-
hibited by

for x<=ΞU(C)-A (and /|^=/), where /Λ: OΛ->C is any G-map for
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and φ I OΛ: OΛ-*A is a G-map for TΛdU(A) such that

for every a&A and

Theorem 5.11. Let (X, A) be a metrizable G-pair. Then there exists an
isometric linear G-embeddίng -ψ*: B(A)-+B(X) such that ^r(f) is an extension
of f for every f <Ξ B(A).

Proof. Note that U(R)=X. With the notation of Theorem 5.3 we have
a canonical TN G-covering S= {Sλ}λ(ΞA of X— A with an invariant partition

of unity {/>Λ}ΛeΛ/c and ^-retractions rα: TΛ-*OΛ for jΓΛ e c5, and a G-map
φ : ̂ 4 U ( Σ OΛ)->^ with φ | x=/έ/^ once at all. Define, for each f

"

(x))) (+0) .

Then Λ/Γ is the required one. q.e.d.

6. Relation between a G-ANR and a G-ANE

In this section we study the relation between a G-ANR and a G-ANE,
and the elementary properties of them parallel to the non-equivariant case

as in [7],

Proposition 6.1.
(1) Every open G-subspace of a G-ANE is a G-ANE.
(2) Every G-retract of a G-AE is a G-AE and every G-nbd retract of a

G-ANE is a G-ANE.

The proof is obtained by routine translation of [7], (II, 5.1), (II, 5.2),
and (II, 6.1) into the terminology of the category TopG of (Hausdorff) G-spaces

and G-maps.

Here we state an equivariant version of Wojdyslawski's embedding theo-

rem.

Theorem 6.2. Let X be a metric G-space with a bounded invariant metric
d. Let B(X) denote the Banach G-space of all bounded continuous functions on X
(Example 5.1). Define i\ X-+B(X) by

i(x) (y) = d(x, y)

for x,y£ΞX. Then i is an isometric G-embeddίng and the image i(X) is a closed
G-subspace of the convex hull C of i(X] in B(X). If X is separable, so is C.

Proof. Since d is G-invariant, we see
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i(ςx) (y) = d(gx, y) = d(x, g~*y) = ί(x) (g~λy) = (gi(x)) (y)

for g^G and x,y^X. Thus i is equivariant. The remainder is the same
as [7], (III, 2.1) (the Wojdyslawski theorem). q.e.d.

For any given metric d' of X we can form a bounded metric d of X by
defining d(xyy) = d'(x,y)/(l+d'(x,y)), x,y^X. Thus, by Theorem 6.2, we
get the following

Corollary 6.3. Every metrizable G-space can be embedded as a closed G-
subspace in a convex G-subset of a Banach G-space.

Theorem 6.4. A metrizable G-space is a G-ANR (resp. G-AR) iff it is a
G-ANE (resp. G-AE).

Proof. Let X be a metrizable G-AE (G-ANE) embedded as a closed
G-subspace of a metrizable G-space Y. Consider the identity map Idx of X.
Since X is a G-AE (G-ANE), Idx has a G-(nbd) extension, which is a G-(nbd)

retraction.
Embedding X into a convex G-subset of a Banach G-space as a closed

G-subspace by Corollary 6.3, the converse follows from Corollary 5.4 and
Propositions 4.1, 6.1. q.e.d.

As corollaries to Theorem 6.4 the following Propositions 6.5-6.7 are ob-

vious by the above results.

Proposition 6.5. Every convex G-subset C of a locally convex metrizable
topological linear G-space is a G-ANR. If CGΦ0, then C is a G-AR.

Proposition 6.6. A G-space X is a G-ANR (resp. G-AR) iff X is G-
homeomorphίc to a G-nbd retract (resp. G-retract) of a convex G-subset C of a
Banach G-space. (resp. with CGΦ0).

Proposition 6.7.
(1) Every open G-subspace of a G-ANR is a G-ANR.
(2) Every G-nbd retract of a G-ANR is a G-ANR and every G-retract of

a G-AR is a G-AR.

Proposition 6.8. Every topological product of a finite collection of G-ANE's
(resp. G-ANR's) is a G-ANE (resp. G-ANR).

The proof is obvious.

Applying Propositions 6.1 and 6.7 to tubes, we obtain

Proposition 6.9. Every tube in a G-ANR (resp. G-ANE) is a G-ANR
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(resp. G-ANE).

A G-nbd retract of a Euclidian G-space (—finite dimensional orthogonal
G-representation space) is called a G-ENR (G-Euclidian nbd retract). By
Propositions 6.5 and 6.7 we see the followings (, though it is a circular argument.)

Proposition 6.10. Every Euclidian G-space is a G-AR and every G-ENR
is a G-ANR. In particular, every G-orbit is a G-ANR.

REMARK. This proposition also follows from the Tietze-Gleason theorem
and Proposition 6.7, or [17], 1.6.2 and 1.6.4.

A G-space X is G-contractible iff the identity map of X is G-homotopic

to a constant map (into XG3=0).
A G-space X is said to be locally G^-contractible at a point x^X iff every

Gj-nbd U contains a G^-nbd V which is Gx-contractible in U.

A G-space X is called to be locally equivariantly contractible iff X is locally
GΛ-contractible at every point oc^X. For example, a convex G-subset of a
Banach G-space is locally equivariantly contractible and G-contractible.

Proposition 6.11. Every G-AR is G-contractible and every G-ANR is
locally equivariantly ccntractible.

Proof. Let X be a G-ANR and embedded as a G-nbd retract of a convex
G-subset C of a Banach G-space with a G-nbd retraction r: U-*X, XdUdC.
Let x^X and V be a given Gx-nbd of x in X. There is an £-nbd W of x in
C such that W^.r~\V)c:U. Put W=W'F(X. Define a G-homotopy ht:

W-+V, t<=Ξl, by

ht(y) = r((l-t)y+tx)

for y e W. This shows that X is locally equivariantly contractible.
If X is a G-AR, there is a G-retraction r: C-+X and JfGΦ0. Choose

a point x^XG. Define a G-contraction ht: X-+X by ht(y) = r((\—t)y-\-tx)
for y^X. This shows the G-contractibility of X. q.e.d.

Lemma 6.12 (G-Urysohn). If A and B are disjoint closed G-subsets of a
normal G-space X, then there is an invariant continuous function f: X-+I such that

f(A)=0 and f(B)=l.

The proof is obtained by averaging a function given by Urysohn's lemma
over G.

Proposition 6.13. Every G-contractible G-ANR (resp. G-ANE) is a
G-AR (resp. G-AE).

The proof is obtained by routine translation of [7], (II, 7.1) and (III, 7.2)
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into the terminology of TopG.

7. Union of G-ANR's

DEFINITION 7.1.
(1) A G-space X is called a local G-ANE iff every point of X has a

G-nbd which is a G-ANE.

(2) A G-space X is called a local G-ANR iff X is metrizable and every
point of X has a G-nbd which is a G-ANR.

REMARK. A metrizable G-space X which is a local G-ANE is a local
G-ANR by Theorem 6.4.

The purpose of this section is to show the following equivariant versions
of [6], Theorem 19.2 and [9], theorem, or [7], (II, 17.1).

Theorem 7.2.
(1) Every local G-ANE is a G-ANE.
(2) Every local G-ANR is a G-ANR.

Theorem 7.3. Let X be a G-space having the weak topology with respect

to a closed invariant covering {X}} λ<=Λ Assume that, for each finite subcollection

{X^ •••, Xλn} of -pf JλeΛ wtih non-void intersection, n X*{ is a G-ANE. Thei-
ί =0

X is a G-ANE. If X is metrizable, then X is a G-ANR.

Corollary 7.4. Let X be a G-space (resp. metrizable G-space). Suppose
one of the following two conditions:

(1) X is the union of open G-ANE subspaces.
(2) X is the union of two closed G-subspaces X1 and X2 such that both Xly

X29 and X^X2 are G-ANE's.
Then X is a G-ANE (resp. G-ANR).

Lemma 7.5. Let (Y, B) be a metrizable G-pair and l£= {5λ}λeΛ a locally
finite closed invariant covering of B. Then there exist a G-nbd F of B in Y and
a locally finite closed invariant covering 3= {Fλ}λ€ΞΛ of F such that

(1) FλΓ\B=Bλfor each λeΛ and
(2) the nerve N(^ί) of £F is ίsomorphic to the nerve N(3$) of S$.

This is an equivariant version of [9], Lemma 2 and proved by applying
[9] to (Y/G, jB/G) and $/G={Bλ/G}, and pulling up the obtained ones to
FbyΠ r : Y-+Y/G.

Lemma 7.6. Let (Y, B) be a G-pair and ΈE= {Fλ}λeΛ a locally finite closed
invariant covering of a closed G-nbd F of B. Suppose that, for each XEΞΛ, there

is a G-nbd Cλ cfFλΓ\B in Fλ. Then
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c= u cλλ<=Λ

is a closed G-nbd of B in Y.

Clearly C is a G-subspace. The rest of the proof is similar to [6], Lemma
20.2.

Lemma 7.7. Let X be a G-space and {X0, ~,Xn} a closed invariant

covering of X such that Π-Xfy is a G-ANE for each {XiQ, •••, Xip} C {X0, — 9XΛ}

with Π -3Γ, ,Φ0. Let (Y, B) be a metrizable G-pair} f:B->X a G-map, and
j = 0 '

{YO, •••, Yn} a closed invariant covering of Y stick that

for i= 0, •••, n. Then there exist a closed G-nbd S of B in Y and a G-extension

f: S-+X such that f(S Π Y^dXJor ί=0, — , n.

The proof is obtained by formal translation of [9], Lemma 4 into the ter-

minology of TopG.

Lemma 7.8. Let X be a G-space and {^λ}λeΛ an invariant covering such

that n X*j is a G-ANE for each finite subcollection {XλQ, ••-, Xλn} C

with Π -Xλy=t=0 Let (F> B) be a metrizable G-paίr,f: B-+X a G-map, and 3< =

Λ a locally finite closed invariant covering of F such that the nerve
of £F is isomorphίc to the nerve N(*B) of Si and f(Bλ)dXλ for each λeΛ, where
Bλ=FλΓ\B for λeΛ and £B= {5λ}λeΛ. Then there exist a closed G-nbd M of
B in F and a G-extensίon f: M-*X of f such that f(MΓ(Fλ)c:Xχfor each

The lemma is proved in a parallel way to [9], §3 by using Lemmas 7.6
and 7.7.

Proof of Theorems 7.2 and 7.3.

We prove the G-ANE parts. The G-ANR parts follow from Theorem 6.4.
Let (F, B) be a metrizable G-pair and /: B->X a G-map. In order to

prove the theorems, we will construct a locally finite invariant closed coverings

$= {J5λ}λeΛ of B and 3= {ί\}λ€ΞΛ of a closed G-nbd F of B in F, and an in-

variant covering {^LA}A<=A of -X" for Theorem 7.2, satisfying the assumption of
Lemma 7.8. Then we obtain a G-nbd extension by Lemma 7.8, which shows
that X is a G-ANE.

To prove Theorem 7.2, first we construct £θ={Bλ}λf=A and {^Γλ}λeΛ: Since
X is a local G-ANE, there is a covering V of X by open G-ANE subspaces.
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As B and BjG are paracompact, there is a locally finite closed invariant refine-
ment ^={βλ}λeΛ of if~l(U)} τj<=w For each λeΛ we choose 17 e^ with
f(Bλ)dU and call it Xλ. (Then f(Bλ)c.Xλ.) Since every Xλ is an open G-

n

ANE subspace, each ΓΊ -XΓλ.(φ0), {λ0, •••, λw} CΛ, is an open (G-ANE subspace
ί = 0

by Proposition 6.1. Then .S— (βλ}λ€ΞΛ and {^λ}λeΔ satisfy the assumption of
lemma 7.8. (Replace X by U X* if necessary.)

λe=Λ

To prove Theorem 7.3, we construct -S={5A}AeA for a given {^ίλ}λeΛ by

well-ordering the index set Λ and by Lemma 3.3 (B>=f-\XS— U/"1^)).
μ<λ

Finally, constructing ί1 and ΞF={Fλ}^A from the obtained 3$ by Lemma
7.5, we complete the proof. q.e.d.

Proposition 7.9. If X1 and X2 are two closed G-subspaces of a G-ANE
(resp. G-ANR) X such that X^X2=X and X1ΠX2 is a G-ANE (resp. G-
ANR\ then both X, and X2 are G-ANE's (resp. G-ANR's).

The proof is similar to [7], (II, 9.1).

8. Relation for subgroups and ^-manifolds

Let a: G'— >G be a continuous homomorphism of compact Lie groups.
Let H be a closed subgroup of G, NH=NGH, the normalizer of H in G, and
WH=NH/H. Let X*= {x£ΞX\Gx^H} (the tf-fixed point set), Xtt =
{x€ΞX\Gx=H}, XW=GXH, and X(H)=GXH.

We consider functors such as the restriction functor Resc', : ToρG-^TopG/

(Res^), the ίί-fixed point functor: TopG-^Toρ^, and the functor Gx —

Proposition 8.1. Let X be a G-ANR. Then:
(1) Res%fX is a G'-ANR for any homomorphism a: G'->G from any com-

pact Lie group G'.
(2) XH is a WH-ANR and XH is an open WH-ANR subspace of XH.

Proof. By Proposition 6.6 X is regarded as a G-nbd retract of a convex
G-subset C of a Banach G-space B with a G-nbd retraction r: U->X. Then,
clearly, Res^r: ResG^C/-^ResG^ is a G'-nbd retraction in the convex G'-subset
Resg/C of the Banach G'-space Resg/fi, and rH: UH->XH is a WH-nbd retraction
in the convex ίFΐf-subset CH of the Banach WH-space BH . XH is an open
WP7/-subspace of XH. The proof follows from Propositions 6.6 and 6.7. q.e.d.

Corollary 8.2.
(1) Every ANR is α G-ANR with the trivial G-action.
(2) Every G-ANR is an ANR.
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Proposition 8.3. // X is a G-ANE, then ResG

HX is an H-ANE for any
closed subgroup H.

Proof. Let (Y, B) be a metrizable Jϊ-pair and /: ΰ-»Res^^f an /f-map.
Consider the G-map fr = φ°Gxf: GxB->X, where φ: GxResZX-^X is

H H B

defined by φ(g, x)=gx. Since X is a G-ANE, there is a G-nbd extension
f:U->Xoff',GxB(=.Uc:GxY. Put V=UΠ Y (Y=Hx FcGx Y). Then

H ΈL S 3

f\ v is an /f-extension of/. q.e.d.

Proposition 8.4. // X is a G-ANE (resp. G-ANR), then XH is an NH-
ANE (resp. NH-ANR) and XH is an open NH-ANE (resp. NH-ANR) sub-

space.

Proof. Let (Y, B) be a metrizable JVH-pair and /: B->XH an NH-map.
Consider the G-map f=φoGxf: GxB-*X, where φ: GxXH->X, φ(g, x)=gx.

NH KΈL NH

Since X is a G-ANE, there is a G-nbd extension /: U-+X of/', GxBdUc:
N&

GxY. Then/*: UH-*XH is an NH-nbd extension of /. Thus XH is an NH-
jarff

ANE. If X is a G-ANR, then XH is metrizable and hence an NH-ANR. q.e.d.

Proposition 8.5. Let X be an H-space. Then GxX is a G-ANR (resp.
G-ANE) iff X is an H-ANR (resp. H-ANE). *

Proof. GxX is metrizable iίf X is so by Proposition 3.1. We prove
H

for a G-ANE. The proof for a G-ANR follows from Theorem 6.4.

Sufficiency: Let p: GXX-+G/H be the projection. Let (Y, B) be a
H

metrizable G-pair and/: B->GxX a G-map. Since G/H is a G-ANR, there
B

is a G-nbd extension q: U-^GJH of pof. Put V=q'\[H]) and BQ=
V is an /f-space, Gx V=U, and .B0 is a closed #-subspace of F. If X is an

J5Γ

H-ANE, there is an ί/-nbd extension /: W-*X of /|Λ O, B0cWc.V. Then
the G-map Gf:GW-+GxX defined by Gf(gy}=(g, f(y)), g(=G, y^W, is a

/ί

G-nbd extension of/, which shows the sufficiency.
Necessity: As H is an ίf-ANR, fl" is an ί/-nbd retract of G with an H-

nbd retraction r: C/->/ί, HdUdG. Then rx/J^: C/X^-^/ίx^-^ is an
H H H

jfϊ-nbd retraction in GxX. The necessity follows from Proposition 6.1 and

8.3. B q.e.d.

By Propositions 6.9 and 8.5, we obtain the following

Proposition 8.6. Let X be a G-space.



G-ANR's AND THEIR G-HOMOTOPY TYPES 501

(1) Let Sx be a slice at x<=X and T=GSX the tube about Gx. Then Sx is a

GX-ANR (resp. GX-ANE) iff T is a G-ANR (resp. G-ANE).
(2) // X is a G-ANR (resp. G-ANE), then every slice at x^X is a GX-ANR

(resp. GX-ANE).

Proposition 8.7. Let X be a G-ANR (resp. completely regular G-ANE).

Then:
(1) X(H) is a G-ANR (resp. G-ANE).
(2) XW is a G-ANR (resp. G-ANE).

Proof. Since every slice Sx at x^XH in XH is a G,-ANE and GSX is a
tube about Gx in X(H\ Xm is a local G-ANE and hence a G-ANE by Theo-
rem 7.2. This shows (2). As X(H) is an open G-subspace of X(H\ (1) follows
from Proposition 6.1. The proof for a G-ANR follows from Theorem 6.4.

q.e.d.

By a G-manίfold we mean a G-space which is a paracompact topological

manifold.

A G-manifold M is called to be locally smooth iff, for each a?eM, there
exists a slice at x which is GΛ-homeomorphic to a Euclidian G^-space.

By the smooth slice theorem every smooth G-manifold is locally smooth.

Every paracompact manifold is metrizable. By Theorem 7.2, Proposi-
tions 6.10 and 8.6, we obtain the following

Theorem 8.8. Every locally smooth G-manίfold is a GΆNR. In particu-

lar, every smooth G-manίfold is a G-ANR.

REMARK. It is known that separable smooth G-manifolds having finite

number of orbit types are G-ANR's for normal G-spaces and hence G-ANR's
in our sense. C.f., [17], 1.6.6.

Theorem 8.9. Let X be a metrizable (resp. completely regular) G-space.

Then X is a G-ANR (resp. G-ANE) iff every point x of X has a Gx-nbd which
is a GX-ANR (resp. GX-ANE).

Proof. Let x^X and V be a G,-nbd of x which is a G,-ANR (Gy-ANE).

There are a slice Sx at x and an open G^-nbd U of Gx in G such that Gx is a
GΛ-retract of U and USxdV. Then USX is an open GΛ-subspace of V and

Sx is a GΛ-retract of USX. By Proposition 6.7 (6.1) Sx is a G,-ANR (G,-ANE).
So GSX is a G-ANR (G-ANE) by Proposition 8.6. Thus X is a local G-ANR

(local G-ANE) and hence a G-ANR (G-ANE) by Theorem 7.2.

The converse follows from Propositions 6.7 (6.1) and 8.1 (8.3). q.e.d.

Let p: E-+X be a locally trivial bundle with fibre F. Then p is called
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a G-bundle iff E and X are G-spaces and p is a G-map. A G-bundle p: E-+X
with fibre F is called to be G-locally trivial iff there is a covering {GFΛ} of X
by tubes such that^>| : p~1(GVΛ)->GVa is G-equivalent to

where FΛ is a slice at xa^X, H<Λ=Gxay and FΛ=p~\xΛ) (FΛ has an //^-action).
Then {(VΛ, Ha)} is called a G-atlas of p.

Theorem 8.10. Let p: E->X be a G-locally trivial G -bundle with a G-
atlas {(VΛ, HΛ}}. If X is a G-ANR and each FΛ is an HΛ-ANR, then E is a
G-ANR.

The proof follows from Propositions 6.8, 8.6 and Theorem 7.2.

9. Small 6r-homotopies and G-homotopy extension property

Let <U be a given covering of a G-space X, and Y a G-space. Two G-
maps/, /': Y-*X are said to be ^-near iff, for each y e Y, there is a set ί/eV

such that f(y) e C7 and /'( j>) e ί/.
A G-homotopy ht: Y-+X, t&I, is called a V-G-homotopy iff, for each
, there is a set U ̂ V such that ht(y}^U for every

Proposition 9.1. If X is a G-ANR and °L7 α ^/ϋβw open (G-)coverίng of
X, then there exists an open G-covering C[7, which is a refinement of £U, such that,
for any metrizable G-paίr (F, 5), any ^V-near G-maps /, /': Y-^X, and any

cy -G-homotopy ht: B-+X, t^I, with hQ=f\B and AI =/'!*> there exists a ^U-G-
homotopy Ht: Y-+X> ΐ<=I, with HQ=f, H^f, and Ht\B=ht for every ίe/.

This is proved in a parallel way to [5], Theorem 4.1, [7], (IV, 1.2) by using

Proposition 6.6, Lemmas 1.5 and 6.12.

Theorem 9.2. A metrizable G-space X is a G-ANR iff there exists an
open G-covering ^ of X such that, for any metrizable G-pair ( Yy 5), any two
ij-near G-maps /, /': Y->X, and any ^J -G-homotopy ht: B-+X, t<=I, with
h0=f\B and Aι=/'U, there exists a G-homotopy Ht: Y-*X with H0=f, H1=
/', and Ht\B=ht for every t^I.

Proof. The necessity follows from Proposition 9.1.
To prove the sufficiency, let x^X and choose U GΞ'U with χξΞ~U. There

is an open tube segment S generated by a nbd of x in Gx with a G-retraction

r : GS ->G# such that S c U. Define two G-maps /, /' : GS -+X and a G-homo-

topy ht : Gx-*X by

r(y) fOIy<=GS
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y fory<=GS

ht(y) = y for y^Gx and

Obviously / and /' are ^U-near, and ht is a 1̂7- G-homotopy. So we have a
G-extension Ht: GS-+X of ht. By the compactness of / and Gx, and by

Lemma 1.1 there is a G-nbd V of Gx such that H(VxI)dGS and Ht\v: V-+X
is a ^-G-homotopy (FcGS).

We prove that V is a G-ANR: Let (Y, B) be a metrizable G-pair and
k: B-+V a G-map. Then there is a G-nbd extension k: W-*Gx of r °ky Bd
WdY. Define F0, Fl : W-+X and hi : B-*X by

f

I

Clearly .F0 and Fj are ^-near, and Aί is a ^U-G-homotopy. Hence there is
a G-extension 7/ί: W-+X of A f .

Set IF'-J^ t}(V) and define F: PF'-^F by

Then F is a G-nbd extension of k, which shows that V is a G-ANR. Thus
X is a local G-ANR, and hence a G-ANR by Theorem 7.2. q.e.d.

Proposition 9.3. If X is a G-ANR, then every metrizable G-pair ( F, B)
has the G-homotopy extension property with respect to X, i.e., every G-map
h: Yx {0} Uβχ/->^Γ has a G-extension H: YχI-*X.

The proof is similar to [7], (IV, 2.2).

Proposition 9.4. Let X be a G-space and every metrizable G-pair has
the G-homotopy extension property with respect to X. Then every metrizable
H-pair (Y, B) has the H-homoΐopy extension property with respect to X, where
H is a closed subgroup of G.

Proof. Let Z=Fχ {0} U5x/ and h: Z->X be an jff-map. Consider
φoGxh: GxZ-*GχX->X, where φ(g, x)=gx. Since GxZ=(Gx Y)χ {0} U

H H H R R

(G X B) X / C (G x Y) x /, φoG X h has a G-extension h : (G X Y) X I-*X. Then
H H H R

h I YXI YxI-*X is the required //-extension of h.

Parallelly to [5], Theorem 5.1, [7], (IV, 2.3), by Propositions 6.11, 9.3,
9.4, and Theorem 8.9, we obtain the following

Theorem 9.5. For a given metrizable G-space X the following four state-
ments are equivalent:
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(1) X is a G-ANR.
(2) X is locally equivarίantly contractible, arid every metrizable G-paίr has the
G-homotopy extension property with respect to X.

(3) Every point x^X has a Gx-nbd V such that, for any metrizable Gx-pair
(F, β), any Gx-mapf\ B->V has a Gx-extension f: Y->X.

(4) Every point x^X has a Gx-nbd which is a GX-ANR.

Let (X, A) be a G-pair.

A G-homotopy ht: X^>X, t^I, is called a G-nbd deformation retraction

to A in X iff ht(x)=x for (x, t)<=Xx {0} U^4x/ and there exists a G-nbd U
of A such that h^U^A.

A G-pair (X, A) is called a G-NDR pair iff there exist an invariant func-

tion /: X-+I such that A=Γ\Q), and a G-nbd deformation retraction ht to
AinX such that /^( [̂O, l))=A. Then the inclusion A-^X is a G-cofibration.
If a metrizable G-pair (X, A) has a G-nbd deformation retraction ht to A in

X, then (̂ Γ, ^4) is a G-NDR pair.

A G-pair (X, A) is called a G-ANR pair iff both ^ and A are G-ANR's.

Proposition 9.6. If (Xy A) is a G-ANR pair, then for any open G-cover-

ing V of X there exists a G-nbd deformation retraction to A in X which is a cϋ-

G-homotopy. In particular, (X, A) is a G-NDR pair.

The proof is parallel to [7], (IV, 3.4).

Corollary 9.7. If X is a G-ANR, then for each orbit Gx in X, any G-

nbd V of Gx, and any open G-covering V of V there exist a tube (Γ, r) about Gx
in V and a cϋ]-G-homotopy ht: T-+V, t^I, joining r with the inclusion T^-*V.

10. G-domination

A G-space X is called tc be G-domίnated by a G-space Y iff there exist two

G-maps /: X-+Y and /': Y -*X such that /Ό/: X-*X is G-homotopic to Idx

(f'of~Idx). Then X is called to be CV-G-domίnated by F for a (G-)covering

q7 of X iff/Ό/is q7-G-homotopic to Idx.

Proposition 10.1. Let X be a G-ANR. Then, for any open (G-)covering

&J of Xy there exists a TN G-covering S of X such that X is (ty-G-dominated
by the G-nerve K(S] of S.

Proof. By Proposition 6.6 X is regarded as a G-nbd retract of a convex

G-subset C of a Banach G-space B with a G-nbd retraction r: U-+X. By

Lemma 1.5 we may regaid ^V as a G-covering. Since C is locally convex and

U is a G-nbd of X in C, there is a G-covering °IV= {Wβ} °f -X" by convex open

sets in U which is a refinement of the G-covering {r~\V)}V(=c[;
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Uβ=WβΓ\X and ^-{C/β}. Then <U is an open G-covering of X. By

Proposition 2.3 there is a TN G-covering S={Sλ}λ€ΞA with {/>Λ}eΔ/G which is a
star-refinement of <U.

Let K=K(S), the G-nerve of J, and P: X-*K be the G-map given by

Proposition 2.4. Define q': K-+U (cC) by letting j>= |̂ 0, •-•, jcan; ί0, — , *J

Clearly q' is a G-map to C. We show that q'(K)c:U: By definition there

is {Sλo, •••, S J cS such that λ, e α, , ̂ ,.eOλ. cSλ., ι=0, -, Λ, and Γ) 5λ. Φ0.
n » * °

Choose #e n*5λ.. Then Λie U5λί c:St(x, S). Since <5 is a star-refinement of
»=0 »=0

^U, there is a Uβ^V such that

For PFβ is convex, we see

Hence q '(K) d U and q' is well-defined. Put

Define a ^-G-homotopy A,: q°P~Idx, Ze/, by

for tfe-X" and ί e/. Let jce^Γ and {aQy •••, αj = {a^A/G\p<Λ(x)>0}. There

is {5λo, •• ,5λn}CςS such that λ, eα, , z=0, •• ,w, and x^Γ\Sλi. There is a

such that

is convex, we see

tx+(l-t)qΌP(x) =

Since

Thus A; is well-defined. As there is a Fe^ such that Wβdr~\V), we see

that ht(x)^r(Wβ)c:V for every ίe/, which complete the proof. q.e.d.

In the preceding proof, if X is separable, we may choose S such that

<5 is countable. Hence we have

Corollary 10.2. // X is a separable G-ANR, then there exists a TN G-



506 M. MURAYAMA

covering S of X such that X is G-dominated by K(S) and that the nerve N(S) is
countable.

11. Mapping spaces

For G-spaces X and Y the mapping space Map(^Γ, Y) in the compact-
open topology is a G-space with the following G-action

for/eMap(Jf, Y), gc=G, and

Theorem 11.1. Let Y be a compact G-space and X a G-ANR. Then
the mapping space Map(Y, X) is a G-ANR.

Proof. By Proposition 6.6, X is a G-nbd retract of a convex G-subset
C of a Banach G-space B with a G-nbd retraction r: U->X. Let || || be the
norm of B. Then Maρ(Y, B) is a Banach G-space with the norm || ||* de-
fined by ||/||*=sup 11/001 1 . Thus Map(Y, X) is a G-nbd retract of the con-

y«ΞF

vex G-subset Map(Y, C) of the Banach G-space Map(Y, B) with the G-nbd
retraction r*: Map(Y, ί/)->Map(Y, X), r*(f)(y) = r(f(y)). Again by Pro-
position 6.6 we complete the proof. q.e.d.

Theorem 11.2. Let (X9 A) be a G-ANR pair and (Y, B) a compact met-
rίzable G-pair. Then the relative mapping space Map(Y, B; X, A) is a closed
G-ANR subspace of a G-ANR Map(Y, X). If X is separable, then so are both
Map( Y, X) and Map( Y, B X, A).

The proof is parallel to [7], (VI, 3.1), (VI, 2.2)

A pointed G-space X has a base point * in XG. For a Euclidian G-space
V the one-point compactification V U {°°} is denoted by V°. For a pointed
G-space X, M*p(Ve, {00} X, {*}) is denoted by ΩVX and called the V-th
loop space of X. The path space Map(7, {0} X, {*}) is denoted by PX. The
one-point set is clearly a G-ANR.

Corollary 11.3. Let X be a pointed G-ANR and V a Euclidian G-space.
Then both the path space PX and the V-th loop space ΩVX of X are G-ANR's.
If X is separable, then so are PX and ΩVX.

12. Small 6r-deformation and adjunction spaces

By a G-deformation of a G-space X, we mean a G-homotopy ht: X-^>X,
t^Iy such that h0=Idx. Then ht is said a V -G-deformation whenever ht is
a ^-G-homotopy for a (G-)covering V of X.
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When X is a metric G-space, a G-deformation ht: X-+X is called an £-

deformation iff, for each x^X, the set {ht(x)\t^I} is of diameter less than 6.

A sequence of G- deformations

{h»i:X-*XytϊΞl, 11=1,2,-},

of a G-space X is called to converge to the identity map Idx iίf, for each x^X
and any G-nbd V of x in -SΓ, there exist a G-nbd PF of x in ^Γ and an integer

k such that

for every #^& and every

Theorem 12.1. For any metrίzable G-space X embedded as a closed G-

subspace of a convex G-subset C in a Banach G-space, the following four state-

ments are equivalent:

(1) XisaG-ANR.
(2) For each open (G-) covering ^ of X, there exists a V -G-deformation

ht: X-+X, O^ί^l, of X such that hλ has a G-extension h^. U->X to a G-nbd

UofXinC.
(3) For some metric d of X, there exists for each 6 >0 an B-deformation

ht: X-+X, O^f^l, such that hΛ has a G-extension hλ\ U-^X to a G-nbd U of
X in C.

(4) There exists a sequence of G-deformations

of X converging to the identity map Idx such that each hi has a G-extension

Kί: Un-+X to a G-nbd Un of X in C.

The proof is a routine translation of [5], Theorem 7.1, [7], (IV, 5.3) into

the terminology of TopG.

Similarly to [5], Theorem 8.2, [7], (VI, 5.3) we obtain

Theorem 12.2. Let (X, A) be a G-ANRpair, Y a G-ANR, and f: A^Y

a G-map. If the adjunction space Y U X is metrizable, then Y U X is a G-ANR.

Combining Theorem 12.2 with Proposition 3.1, we have

Corollary 12.3. Let A be a compact G-ANR subspace of a G-ANR X,

Y a G-ANR, and f: A-+Y a G-map. Then the adjunction space Y\JX is a

G-ANR. f

By induction on the number of G-cells of a finite G-CW complex we get

Corollary 12.4. Every finite G-CW complex is a G-ANR.
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By Theorem 7.3 and Proposition 3.4 we obtain

Theorem 12.5.
(1) Every G-CW complex is a G-ANE.
(2) Every locally finite G-CW complex is a G-ANR.

Lemma 12.6. Every join of a finite collection of G-orbits is a G-ANR.

The proof is obtained by Corollary 12.3 and by induction.

Let S be a TN G-covering of a G-space.

Then clearly the G-nerve K(<S) of the saturation S of S has the weak topol-

ogy with respect to the closed covering {π~\\σ\)}σ^Nf§\, π~πK(<SY • (̂̂ >)~>

|7V(cS)|, and each π~\\σ\) is the join of G-orbits. Thus, by Proposition 6.1,
Theorem 7.3, and Lemma 12.6 we have the following

Proposition 12.7. If S is a TN G-covering of a G-space, then K(S) is

a G-ANE and K(S] is an open G-ANE subspace of K(S).

Corresponding to [5], Theorem 7.2, [7], (IV, 6.3), by Proposition 10.1
and Theorem 12.1 we obtain the following

Theorem 12.8. For any metrίzable G-space X, the following three state-
ments are equivalent:
(1) X is a G-ANR.
(2) For each open (G-)covering ^ of X, there exists a G-ANE Y such that X
is V-G-domίnated by Y.
(3) There exists a sequence of G-ANE's {Yn} such that X is G-domίnated by
each Yn with G-maps fn: X^>Yn, f ' n \ Yn->X, and the corresponding sequence
of G-homotopies {hn

t: Idx — f'nofn} is a sequence of G-deformatίon converging to Idx.
G *

13. £r-homotoρy types of G-ANR's

In this section we shall show that G-ANR's have the G-homotopy types
of G-CW complexes.

Proposition 13.1. // a G-space X is G-domίnated by a G-CW complex
(resp. countable G-CW complex), then X has the G-homotopy type of a G-CW
complex (resp. countable G-CW complex).

Proof. Let X be G-dominated by a G-CW complex Y. Then there are
two G-maps /: X^Y and /': Y-+X such that f'°f—Idx. By [11] there are

G

a functor K from TopG to the category of G-CW complexes (which is regarded
as a subcategory of TopG) and a natural transformation p: K-*IdΎop& such
that ρx: Kx-^X is a weak G-homotopy equivalence for every G-space X, where
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IdτQp

θ denotes the identity functor. Thus we have the following commuta-
tive diagram:

fPx\
X -+γ JL-+ x.

Note that Kf'<>Kf^IdKz. Since Y and Kγ are G-CW complexes and pγ is a

weak G-homotopy equivalence, pγ is a G-homotopy equivalence by [10]. Let

j be a G-homotopy inverse to ργ. Then Kf'°jof: X-^>KX is a G-homotopy

inverse to px.

The proof for the countable case is the same as [16], § 4. q.e.d.

Proposition 13.2. Let K* be a simplicial G-space without degeneracy such
that each n-th space Kn has the G-homotopy type of a G-CW complex (resp. count-
able G-CW complex) for n=Q, 1, •••. Then the geometric realization \K*\ has

the G-homotopy type of a G-CW complex (resp. countable G-CW complex).

Proof. (C.f., [19], Proposition 7.2)
Let Kn denote the w-skeleton of \K* \ . Since K% has no degeneracy and 1 X ιn

is a G-cofibration, the diagram

Kn-l

is pushout and the inclusion ίn^ is a G-cofibration. By an equivariant version

of Milnor's theorem (see [19], Theorem 1.2) it suffices to construct a G-homo-

topy commutative diagram:

Λ Λ

in which each Ln is a G-CW complex, each jn is a G-cellular inclusion, and

each kn is a G-homotopy equivalence. Then \K*\ is G-homotopy equivalent

to the G-CW complex L^colim ZΛ

By assumption, for each Kn, there exists a G-CW complex Mn and a G-

homotopy equivalence/,: Mn-+Kn. Inductively, let L°=M0, let k0: K°=K0->L°

be a G-homotopy inverse of /0, and suppose that I/"1, kn-l9 andyn_2 have been
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defined with the required properties. Consider the diagram which is com-
mutative except the lower triangle:

A
- \fn X 1

MwxΔ"

t
— \fn X 1

_t
I

* M. X 8Δ" — > L"-1 =Φ B
IXί. \^)

\J
t r /=Ί/y

Here, α^^.joθ, b=a°(fnχ 1), c is a G-cellular approximation of i, ^4 (resp. β)
is the pushout of a and 1 X ιn (resp. δ and 1X ιn). By an equivariant glueing
theorem ([19], Theorem 1.1), the induced maps d and e are G-homotopy equiva-
lences. Let Ln be the double mapping cylinder of c and 1 χιn, andyn_ : be the
inclusion. Then Ln has the structure of a G-CW complex and there is a G-
homotopy equivalence / which makes the diagram commutative. Define kn

by the composite of d and G-homotopy inverses of e and /. Then knoin_^=^

jn-ι°kn-ι> Therefore these L", kn, and jn.l are the required ones.
Moreover, when every Mn is countable, inductively each Ln becomes count-

able, and so is L=colim Ln. q.e.d.

Theorem 13.3. Every G-ANR has the G-homotopy type of a G-CW
complex and every separable G-ANR has the G-homotopy type of a countable
G-CW complex.

Proof. We use [17], 1.8.1 Metatheorem, and assume that the theorem
holds for actions of all proper closed subgroup of G. By Proposition 10.1
there is a TN G-covering <5 such that X is G-dominated by the G-nerve K=

K(S). Moreover, if X is separable, we may choose <5 such that N—N(S)
is countable by Corollary 10.2. Now Kn=Kn(S)=^ Kσ. Since Kσ is an

open G-subspace of the product OΛ oX xOΛrt of orbits, Kσ is an open G-
submanifold of OΛQ X X OΛn and hence separable. We will show that Kσ

has the G-homotopy type of a countable G-CW complex for every σ — {α0, •••,

an} &N(S). If all OΛ|.'s aie of type G/G, then K^ is a point and hence a
G-CW complex. We assume that there is an orbit Oαίof type G/H such that
H is a proper closed subgroup of G. Let πσ be the composite:

proj.



G-ANR's AND THEIR G-HOMOTOPY TYPES 511

Let Lσ=(πσ\κ )~\[H]). Since Kσ^GxLσ and Lσ is an open /ί-submanifold
G H

of OΛo X X OΛ, X OΛ. X X OΛ>|, Lσ has the ί/-homotoρy type of a countable

H-CW complex Mσ by the assumption of the metatheorem. Thus Kσ has the
G-homotopy type of the countable G-CW complex GxMσ. Therefore each

JS

Kn= 2 KV nas the G-homotopy type of a G-CW complex Mn, n^O. Moreover,
σejvΛ

if X is separable, then Nn is countable, and so is Mn, #^0. By Propositions
13.1 and 13.2 we complete the proof. q.e.d.

Corollary 13.4. If a G-space X has the G-homotopy type of a G-ANR,
then X has the G-homotopy type of a G-CW complex.

By [10], Theorem 5.3 (an equivariant J.H.C. Whitehead theorem) we
have

Corollary 13.5. If f: X-+Y is a weak G-homotopy equivalence between
G-ANR's X and Y, then f is a G-homotopy equivalence between X and Y.

This is a generalization of [22], Theorem (1.1).

14. tr-homotopy types of countable G-CW complexes

Proposition 14.1. Every countable G-CW complex has the G-homotopy
type of a locally finite countable G-CW complex.

The proof is similar to [20], Theorem 13.

Theorem 14.2. The following restrictions on a G-space X are equivalent:
(1) X has the G-homotopy type of a countable G-CW complex.
(2) X has the G-homotopy type of a separable G-ANR.

Proof. The implication (1)=^(2) follows from Theorem 12.5, (2) and
Proposition 14.1.

The converse is the result of Theorem 13.3. q.e.d.

By the above theorem, Corollary 11.3, and Proposition 9.6 we have the
following

Corollary 14.3. Let V be a Euclidian G-space. If a G-space X has the
G-homotopy type of a pointed countable G-CW complex, then so is the V-th loop
space ΩVX of X.

Added in Proof. The same result as Theorem 13.3 is announced in
"S. Kwasik: On the equivariant homotopy type of G-ANR's, Proc. Amer. Math.
Soc. 83 (1981), 193-194".
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