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Introduction

It is well-known that ANR’s (absolute neighbourhood retracts) for metric
spaces have various good properties (c.f., [7]), and all paracompact topological
manifolds are ANR’s. From a homotopic point of view, they have the homo-
topy types of CW-complexes (c.f., [14]).

Throughout this paper, G will be assumed to be a compact Lie group.

In the present work we study G-equivariant ANR’s (abbreviated to G-ANR
hereafter) for metrizable G-spaces (defined in §4) and mainly discuss parallel
properties to ANR’s as in Hu [7] (§§4-7) and show that G-ANR’s have the
G-homotopy types of G-CW complexes (§§ 13-14).

For a finite G, the G-homotopy types of G-ANR’s were discussed in [16].

This paper is devided as follows:

Paracompactness and G-coverings

TN G-coverings and G-nerves

G-CW complexes and metrizability

G-ANR’s and G-ANE’s

An equivariant version of Dugundji’s extension theorem
Relation between G-ANR'’s and G-ANE’s

Union of G-ANR’s

Relation for subgroups and G-manifolds

Small G-homotopies and G-homotopy extension property
10. G-domination

11. Mapping spaces

12. Small G-deformation and adjunction spaces

13. G-homotopy types of G-ANR’s

14. G-homotopy types of countable G-CW complexes.

PN

0

First we discuss topological properties of G-spaces as preliminaries (§§1-3):
In §1 we consider paracompactness of G-spaces to prepare for the construc-
tion of TN G-coverings. In §2 we introduce the notion of TN G-coverings

*) Supported by JSPS.
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of G-spaces and their G-nerves which corresponds to numerable coverings
and their nerves and plays a basic role to develop our discussion on G-ANR’s.
The exsistence of TN G-coverings is based on paracompactness and the ex-
sistence of tubes. In §3 we see that G-CW complexes are paracompact and
perfectly normal, and consider metrizability.

G-ANR’s and G-ANE’s are defined in §4. In §5 we state an equivari-
ant version of Dugundji’s extension theorem (Theorem 5.3), which implies
that every locally convex topological linear G-space is a G-ANE. In fact, the
Dugundji’s argument [3] ([7]) can be applied if we replace a nerve by a G-
nerve. In §6, using this, we show that the following three conditions are
mutually equivalent: 1) G-ANR, 2) metrizable G-ANE, and 3) G-neighbour-
hood retract of a convex G-subset of a Banach G-space. Also we look at the
elementary properties of G-ANR’s and G-ANE’s, e.g., the following G-spaces
being G-ANR’s (resp. G-ANE’s): open G-subspaces and G-neighbourhood
retracts of G-ANR’s (resp. G-ANE’s), finite products of G-ANR’s (resp. G-
ANE’s), G-ENR’s, etc.; the consideration for G-contractibility, etc..

In §7, we see that local G-ANR’s (resp. local G-ANE’s) are G-ANR’s
(resp. G-ANE’s) and G-spaces having the weak topology with respect to closed
coverings by G-ANR (resp. G-ANE) subspaces are G-ANR’s (resp. G-ANE’s)
under a suitable restriction. In §8, first we consider functors such as the
restriction functor, the H-fixed-point functor and the functor G X where

H is a closed subgroup of G, and we see the invariance of equivariant ANR
under operations of these functors, i.e., ResfX, X#, or GX X for a G-ANR or
H

an H-ANR X is an H-ANR, an NH/H-ANR or a G-ANR respectively, etc..
Next we show that every (locally) smooth G-manifold is a G-ANR (Theorem
8.8). We also see that a certain kind of G-tundles are G-ANR’s.

In §9 we examine characterizations of G-ANR’s by small G-homotopies
and G-homotopy extension properties in a parallel way to [5] and [7]. In
§ 10, we show that every G-ANR is G-deminated by the G-nerve of a certain
TN G-covering of it (Proposition 10.1). This result is used in §13.

In §11 we see that the mapping space from a compact G-space to a G-
ANR (e.g., a path space, a loop space, etc.) is a G-ANR. In §12, we treat
characterizations of G-ANR’s by small G-deformations and G-dominations.
Also we see that the adjunction space of a G-ANR pair and a G-ANR is a G-
ANR under the metrizability, in particular, that every (locally) finite G-CW
complex is a G-ANR. (Every G-CW complex is a G-ANE.)

In § 13 we prove that every G-ANR has the G-homotopy type of a G-CW
complex (Theorem 13.3, c.f., [14]). And we see that the converse holds for a
countable G-CW complex in § 14.

The author is gratefull to Professor Shor6 Araki for kind advice and
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encouragement.

1. Paracompactness and G-coverings

All (G-)spaces considered in this paper will be Hausdorff (G-)spaces.
In this section we consider paracompactness of G-spaces.
Let U be a covering of a space X. The star S1(4, U) of a subset AC X with
respect to U denotes the subset

Si(A4, U) = u{UeU: Un A=+¢}

of X. If x&X, then St({x}, V) is denoted by St(x, U). We call that a cover-
ing U of a space X is a star-refinement of another covering €IV of X if the
covering {St(U, U)} yeq; is a refinement of <IV. Then {St(x, U)},ex is a
refinement of {S%U, VU)} y<q; and V.

We use the following abbreviations:

(G-)nbd = (G-invariant) neighbourhood,
(G-)map=(G-equivariant) continuous map.

Lemma 1.1. If X is a G-space and A is a G-subset of X, then every nbd
V of A contains a G-nbd U of A.

The proof is obtained by putting U=X—G(X—V).

Lemma 1.2. Let X be a G-space and U= {U,},en a locally finite cover-
ing of X. Then:

(1) Every point xX has a G-nbd V such that the set {\&A|U,NV 0}
is finite.

(2) The covering {GU,} ey is locally finite.

Proof. (1) follows from compactness of orbits and Lemma 1.1.
(2): Consider the above G-nbd V for each x€X. Then

Card A EeA|GUNV FQ} = Card DEA|UNV FP} <o . q.ed.
DrrinNiTION 1.3.  Let X be a G-space.
(1) A covering U= {U} of X is called to be (G-)invariant iff each U U
is G-invariant.
(2) A covering U= {U,} e of X is called a G-covering iff
i) gU,eU for every U, and every gEG,
ii) the index set A is a G-set satisfying
(1) gUy=Up,

for each A€ A and geG.
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(3) Let U= {U,},ea be a G-covering of X. We define a G-subspace U,
for each a= A/G by

ﬁw:kng)‘ (: GUM an).

The invariant covering U= {U.} sensc is called the saturation of U.

ReEMARK. 1) When a covering U= {U,},es of a G-space X satisfies the
above (2). i), we may regard U as a G-covering by endowing the index set
A with a G-action by the formula (I).

2) For any covering €V of a G-space we can form a G-covering C/'=
{8V geG, V eV} by adding all g-transform gV, g€G and V &Y/, to €V and
indexing as above.

3) An invariant covering U is also a G-covering and U=9. In particu-

lar, P=.

Proposition 1.4. Let X be a paracompact G-space. Then the followings
hold:

(1) Every open G-covering €V of X has an open refinement U which is a
G-covering and of which the saturation QU is locally finite. In particular, every
open invariant covering of X has a locally finite open invariant refinement.

(2) Ewvery open invariant covering €V = {Va}acs of X has an invariant
partition of unity {pa}aca such that

220, 1)V

for each acA. (A partition of unity is assumed to be locally finite.)
(3) The orbit space X|G is paracompact.

Proof. (1): Since X is paracompact, there is a locally finite open re-
tinement I of V. Put U=GP'={gW|geG, WeIW}. Then U is locally
finite by Lemma 1.2 and U is the required G-covering. If ¢}/ is invariant, then
QU is a refinement of CV/.

(2): By [2], Chap. 9, §4, Corollary, p. 91, there is a partition of unity

{pL}uea such that p,7((0, 1])CV, for each a€A. By averaging p, over G
we get an invariant partition of unity {p,},ec4 such that p;((0, 1])C V, for each
acs 4.

(3): Let €/ be an open covering of X/G. Applying the above (1) to
{IIz*(V)}yec» we get a locally finite invariant open refinement U of
{IIx'(V)} yeqp» where IIy: X—X/G is the projection. Then {IIy(U)}yeqs

is a locally finite open refinement of CJ/. q.e.d.

Lemma 1.5. Every open covering €UV of a paracompact G-space X has an



G-ANR’s aND THEIR G-HOMOTOPY TYPES 483

open refinement U whick is a G-covering of X.

Proof. Since X is paracompact, €I/ is even by [8], Chap. 5,28. Hence
there is an open nbd W of the diagonal of X xX such that {W[x]},cx is 2
refinement of €V, where Wx]={yeX|(x,y)€W}. By Lemma 1.1 there is
an open G-nbd U of the diagonal such that UC W, where X XX has the dia-
gonal G-action. Put U= {U[x]},cx. Then U is an open G-covering and
a refinement of C{/. q.e.d.

Proposition 1.6. Every open G-covering <V of a paracompact G-space X
has an open star-refinement U which is a G-covering.

Proof. Since X is paracompact and hence fully normal, there exists an
open star-refinement U’ of €I/. By Lemma 1.5 we have an open G-covering
U which is a refinement of )’ and hence a star-refinement of C{/. q.e.d.

2. TN G-coverings and G-nerves

Let X be a G-space and O=GxC X a G-orbit (of type G/H). By a (G-)
tube about O we mean a pair T'= (T, r) of an open G-nbd T of O and a G-
retraction 7: T—O (instead of a G-embedding ¢: GXA—X onto T as in [1],

H

II, 4.2). Then the orbit O is called the central orbit of T.

When U is a (open) subset of O, the (open) subset S=r"Y(U) of X is called
the (open) tube segment of T generated by U. 'Then, for each gG, gS is a
(open) tube segment of T generated by gU and gSNO=gU.

Clearly any open G-nbd T' of O in T is also a tube about O with the G-
retraction 7'=r|,». 'The open tube segments in a completely regular G-space
form a base for the topology by the existence of tubes (the Mostow theorem),
see [1], II, 5.4, [17], 1.7,19.

By a (open) tube-segmental G-covering we mean a (open) G-covering S=
{S:} e such that S~,,,:ALEJwS>‘ is a tube T, with a G-retraction r,: T,—~O, for

each a€A/G and S, is a (open) tube segment of T, for each A€a. Then
the saturation S= {T,}acs/c is an invariant covering by tubes.

Proposition 2.1. Every open G-covering <V of a completely regular G-
space X has a refinement S which is an open tube-segmental G-covering of X.

Proof. For each orbit GxC X we select a point x&Gx and choose a tube
segment S, of a tube T, generated by an open nbd of x in Gx such that S, is
contained in some V. Put S,,=gS, for each greGx. Then S={S.}.,cx
is the required one. q.e.d.

DEerFINITION 2.2. An open tube-segmental G-covering S= {S)},cs of a
G-space X is called a TN G-covering (tubular numerable G-covering) iffi there
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exists an invariant partition of unity {p,}4ea/c such that

220, 1)CTa= U S,

for every a €A/G. ({pa}seasc is assumed to be locally finite.)

The saturation S= {T4}a.c e of a TN G-covering S={S\},ear with
{Pa} wensc is also a TN G-covering with {p,},enc- If an open tube-segmental
G-covering S= {S,} e has a partition of unity {pp}ges subordinate to S, then
S is a TN G-covering, since we can replace {pp}pcps With {pa}acasc as in the
proof of [2], Chap. 9, § 4, Corollary.

Proposition 2.3. Every open G-covering €V of a paracompact G-space X
has a TN G-covering S={S,\} ea of X which is a star-refinement of V).

The proof follows from Propositions 1.4. (2), 1.6, and 2.1.

Here we construct the G-nerve of a TN G-covering. Let S={S,},ca be
a TN G-covering of a G-space X, S= {T 4} acn/c the saturation of S, and 7,:
T4—>0, the G-retraction of the tube T, to the central orbit O, for each a = A/G.

Let N =N(§) denote the nerve of S and N,:N”(g) the set of #-sim-
plexes of N. We assume that A/G is (partially) ordered such that the induced
order on the set of vertices of each simplex of N is linear. (e.g., A/G is well-
ordered.)

For each m-simplex o= {a,<--<a,} of N we define an open G-sub-
space K,=K,(S) of Oy X +++ X O, by

K,= U{O\X X0, : MEat;, i=0, -, n, N Sy=0},
i=0

where O, denotes the open set 74(S,) (=S,N0,) of O, for each A € and
a€A/G. (Note that K (S)=0,, X ++x0,_.)

We define a simplicial G-space K=K 4(S) (without degeneracy) (called
the simplicial G-nerve of S) as follows: The n-th space K,, n=0, of K, is
given by

Kﬂ = Z KG’ )
&%,

and the 7th face operator 9;: K,—K,_, is given by omitting the 7th term, where
> denotes disjoint union. (Note that K (&) is an open sub-simplicial G-space

of K(S).)
The geometric realization |Ky(S)|= 2] K,(S)X A"/~ of the simplicial
n=0
G-space K4(S) is called the (geometric) G-nerve of S and denoted by K(<S).
(K(S) is an open G-subspace of K(S’))
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The image of éK,-('S)XA" in K(S) is called the n-skeleton of K(S) and
denoted by K*(S).

Since K(S) has no degeneracy, the inclusions K"(S)—K**(S) are
G-cofibrations and hence K(S) is a Hausdorff G-space. Let |x,#| denote the
image of (¥, )€K, x A" in K(S), and |x,¢| is also denoted by |x4;, ‘-, %a,;
ty, -+, t,|, where ¢#; denotes the 7th barycentric coordinate of ¢t € A" and x=
(%ags =5 %5, ) EK ;T Ogy X +++ X O,

Proposition 2.4. Let S={S,},er be a TN G-covering of a G-space X
with an invariant partition of unity {Pe}aecnsc- Define P: X—K(S) by

P(x) = |7ay(%), *+*, 74,(%); Pao(%), ***5 Pan(%) |
for x€X, where {ot, -+, a,} ={aEA|G|pa(x)+£0}. Then P is a G-map.

Proof. Let x€X, {a, ', a,} ={aEA|G|pa(x)>0}, and o= {a,<:+ <
a,} €EN(S). First we show that (re (%), o, 7 (X)) EK,. Since pg(x)>0, we
see that x € T,, and there is ;€ a; with x& S,, for i=0, ---;n. Then

xe ﬂ”SA,.=I=(Z) and hence (74,(x), -+, 7a,(%)) €K, by definition. Thus P is well-
i=0
defined.
To show the continuity of P, we consider the Segal’s classifying space
BX for S and the map P': X—BXg, [18]. The G-space BX3 is regarded
as the geometric realization of the simplicial G-space X 3« whose nth space Xz,

is > _ T, T,=nNT, and whose face operators are given by the inclu—
€ N, (S) b

sions. (There is no degeneracy. Segal’s BX is the barycentric subdivision of
ours.) The map P': X—>BXg is given by P'(x)= |x; pay(%), -+, pa,(*)|. Clearly
P' is a G-map. We define a simplicial G-map fy: X7:—>K(S) by

fano- — rwox oo ern
for o-EN,,(S’). Then, clearly, P=P’c|f,|. Since P’ and |f4| are G-maps,
P is also a G-map. q.e.d.

Let |N(S)| be the geometric realization of the nerve N(S) with the tri-

~

vial G-action. Let 7=rmg g K(S)—|N(S)| be the projection induced by

sending O, C K°%S) to the vertex o of I(S;)l That is, for x= x4, **, X4, ;
ty, *+*y t,| EK(S),m(x) is the point with the ath barycentric coordinate z(x) (),

t; for a=aq;

7[(.70) (a) = { 0 for aEA/G— {aoy ) an} .

Clearly = is a G-(invariant)map and z~Y(a)=0,. The inverse image =~*
(the open star of «a) is called the open star of O, in K(S) and denoted by
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0(0®, K(S)). Then

0(0a, K(S)) = {x€K(S)|=(x) (r) 0}
= {[%ap % ¥a,3 T % Lal l@t; = @, 8,50 for some o} .

Let ps: O(O,, K(S))—0,, be the G-retraction defined by

Pw(lxwos sty Xa, s Loy 0y t,]) = xa

for a;=a. For 0,=8S,N0, AEa, p,'(0,) is called the open star of O, in
K(S) and denoted by O(0,, K(S)). Then

0(0,, K(S)) = {x€K(S)|n(x) (@) %0, pu(x)=0,}
= {|%ap> "% Xay By 0, Ll | @i = @ty %4, €0, ;50 for some a;} .

Clearly open stars in K(S) are open subsets of K(<S).

Every point x of K(S) is presented by the barycentric coordinates z(x) (o)
and “O,-coordinates” p,(x) for z(x)(a)*0. For o= {a, -, a,} EN, (<§) and
TR(3): K(S)-»IN(S)I, 7x (& (lal) is the join Ogyi-+-*0,, of the orbits.

3. G-CW complexes and metrizability

G-CW complexes are defined and studied in [10]. We will show that they
have the same topological properties as CW-complexes.
First we quote the following result from [4], 4.4.15.

Proposition 3.1. Let f: Y—>X be a closed map from a metrizable space
Y onto a space X. If f~Yx) is compact for every x=X, then X is metrizable.

Let X be a space and {X,},cs a closed covering of X. Then X is called
to have the weak topology with respect to {X,},ea iff, for any subset Q of A,
1) U X, is closed in X and 2) a subset 4 of U X, is closed iff AN X, is closed

weQ

in X for every o€Q. If {X,} is a locally ﬁmte closed covering of X then
X has the weak topology with respect to {X,}. If X is a G-CW complex,
then X has the weak topology with respect to the closed covering by closed
G-cells or by finite G-subcomplexes.

Theorem 3.2. Every G-CW complex is paracompact and perfectly normal.

Proof. By Proposition 3.1 and by induction on the number of G-cells
every finite G-CW complex is metrizable and hence paracompact and perfectly
normal. As every G-CW complex has the weak topology with respect to the
covering by finite G-subcomplexes, the theorem follows from [13], [15].

Lemma 3.3. Let X be a space having the weak topology with respect to
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a closed covering {X,},en and A well-ordered. Let Y be a space, f: Y—>X a
map, and Y, a closed subspace of Y defined by

Yi=fT(X)— Y /(&)

for each xeA. If Y is metrizable, then the closed covering {Y,},ea of Y is lo-
cally finite.

For the proof see [9], Lemma 1.
Proposition 3.4. A G-CW complex X is metrizable iff X is locally finite.

Proof. Let X be a locally finite G-CW complex, E(X)= >)G/H,x A"
o«

disjoint union of all G-cells of X, and ¢: E(X)—>X the quotient map. Then
q is clearly a closed surjective map. Compactness of ¢7*(x), x& X, follows from
local finiteness of X and compactness of G/H, and A". Since E(X) is disjoint
union of metrizable spaces G/H,x A", E(X) is also metrizable by [4], 4.2.1.
Thus X is metrizable by Proposition 3.1.

Let X be a metrizable G-CW complex and {G¢,},c, the closed covering
by all closed G-cells of X. Choose a well-ordering relation << on 4 such that
a<f8 whenever dim Ge,<<dim Gég. Then

Ge,— U Ge, = Ge,.
<o
Applying Lemma 3.3 to f=Idy, we see that {Ge} is locally finite. Thus X
is locally finite. q.e.d.

4. G-ANR’s and G-ANE’s

By a (metrizable) G-pair we mean a pair (X, 4) of a (metrizable) G-space
X and a closed G-subspace 4 of X. By a metric G-space we mean a G-space
with an (G-)invariant metric. We always assume that a metric of a metrizable
G-space is (G-)invariant, for we can choose an invariant metric by averaging
any metric over G.

Let (Y, B) be a G-pair and f: B—>X a G-map. A G-map f: U—X is
called a G-nbd extension of f iff U is a G-nbd of B and f|z=f.

A G-space X is called a G-ANE (=G-absolute nbd extensor) (resp. G-AE
(=G-absolute extensor)) iff, for every metrizable G-pair (Y, B) and every G-map
f: B—>X, there exists a G-nbd extension f: U—X (resp. a G-extension f: Y—X)

of f.

Let (Y, X) be a G-pair. By a G-nbd retraction to X in Y we mean a G-
retraction 7: U—X from a G-nbd U of X in Y. A G-space X is called a G-nbd
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retract (resp. G-retract) of Y iff X is a closed G-subspace of Y and there ex-
ists a G-nbd retraction 7: U—X (resp. a G-retraction r: Y—X).

A G-space X is called a G-ANR (=G-absolute nbd retract) (resp. G-AR
(=G-absolute retract)) iff X is metrizable and, whenever X is a closed G-sub-
space of a metrizable G-space Y, X is a G-nbd retract (resp. a G-retract) of Y.

Proposition 4.1. If X is a G-AE or a G-AR, then X°=+.

Proof. Let X be a G-AE (G-AR). Let f: B—X be a G-map from a
metrizable G-space B (B=JX, f=Idy). Let Y be the G-space BU {x}, dis-
joint union of B and the one-point G-set {#}. Then Y is metrizable and there
is a G-extension f: Y—X of f (a G-retraction f). Since f(*)EX¢, we see
X60. q.e.d.

Remark. G-ANR’s for normal G-spaces ([17], 1.6.1) are G-ANE’s in
our sense, (for metrizable G-spaces are normal,) and they are G-ANR’s in
our sense if they are metrizable by Theorem 6.4.

5. An equivariant version of Dugundji’s extension theorem

A G-space L is called a topological linear G-space iff L is a topological linear
space (over R) on which G acts linearly.

By a normed linear G-space we mean a topological linear G-space L togeth-
er with an invariant norm ||||. L is a metric G-space with the invariant
metric d given by d(x, y)=||x—y|[. If a topological linear G-space L is norma-
ble, then L has an invariant norm by averaging any norm over G.

If a normed linear G-space B is ccmplete under the above norm topology,
then B is called a Banach G-space. When a topological linear G-space L is
a Banach space, we can make L a Banach G-space by replacing the norm with

the “‘average” over G.
Banach G-spaces and normatle linear G-spaces are locally convex.

ExampLE 5.1. Let X be a G-space. Let B(X) denote the Banach space
of all bounded continuous functions X—R, where the norm |[| || is defined by

If1l = sup | fx)! -
We define a G-action on B(X) by
(&f) (%) =f(g7%)

for feB(X), g&G, and x€X. Clearly the norm is invariant. Then B(X) is
a Banach G-space.

We remark that the convex hull C of any G-subset 4 in a topological li-
near G-space L is a G-subset of L.
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Lemma 5.2. Let (X, A) be a completely regular G-pair and C a G-space.
Let U(C) be the subspace {xX |C®=£¢}. Then:

(1) U(C) is an open G-subspace of X.

(2) If there is a G-map f: A—C, then U(C) is an open G-nbd of A. In
particular, U(A) is an open G-nbd of A.

(3) If C°=0, then U(C)=X.

Proof. Now U(C)=U U )X(H), where (H) denotes the conjugacy class

YEC (DC(Hy

of H and X=1{x=X|(G,)=(H)}. Since (H)lcjc(} X Is an open G-subspace
)

of X for each yeC Ly [17], 1.7.2, so is U(C). If there is a G-map f: A—C,
then G,C Gy, and f(a)ECC%=+( for every aE A, hence ACU(C). The re-
mainder is clear. q.e.d.

ReMARK. For G-spaces X and C, there is no G-map from any G-sub-
space of X—U(C) to C.

The main purpose of this section is to show the following equivariant
version of Dugundji’s extension theorem, [3], 4.1, [7], (II, 14.1).

Theorem 5.3. Let C be a convex G-subset of a locally convex topolegical
lirear G-space L, (X, A) a metrizable G-pair, and f: A—C a G-map. Let U(C)
denote the open G-nbd {x&X|C% =0} of A. Then there exists a G-extension
J: UC)—C of f. Hence C is a G-ANE. If C°%¢, then U(C)=X and C is
a G-AE.

ReEMARK. 1) Any G-map cannot be extended equivariantly to any larger
G-subspace than U(C).

2) If G is a finite group, then every convex G-set C has a G-fixed point
(.e., C°=%@). In fact, 1/IG|;‘J 8%, x€C, is a G-fixed point. Hence every

convex G-subset of a locally convex topological linear G-space is a G-AE for
a finite G.

3) When G is a compact Lie gioup, a convex G-subset of a Banach G-
space does not always have a G-fixed point. Indeed, when G=S", there exists
an example of a convex G-subset in B(S*) which has no G-fixed point.

Corollary 5.4. Every convex G-subset C of a normable linear G-space
isa G-ANE. If C°=%0, then Cis a G-AE.

Theorem 5.5. Let L be a locally convex topological linear G-space, (X, A)
a metrizable G-pair, and f: A—L a G-map. Then:

(1) There exists a G-extension f: X—L of f such that the image f(X) is
contained in the convex hull of f(A)U {0}.

(2) There exists a G-extension f: U(A)—L of f such that the image f(U(A))
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is contained in the convex hull of f(A), where U(A) is the open G-nbd
{xeX|4%+0} of A.

The theorem is a corollary to Theorem 5.3.

Let (X, A) be a metrizable G-pair and d an invariant metric of X. For
xeX—A let V, denote the open nbd of x in X—A defined by

V, = {ye X|ds, y)<—;—d(x, A} .

Consider an open G-covering {V,},cx-4 of X—A4. By Proposition 2.3, there
isa TN G-covering S= {S,} e Which is a star-refinement of {V,},cx-,. Then
we obtain the following equivariant version of [3], 2.1, [7], (II, 11.1) similar
to [7].

Lemma 5.6. Let (X, A) be a metrizable G-pair. Then there exists a
TN G-covering S={S\}ren of X—A such that

1) for any nbd V of a€A in X, there exists a nbd W, ac WCV, such
that W N\ S\==0 implies S\,CV for S,eS,

2) any nbd of a€0A contains infinitely many elements of S.

A TN G-covering of X—A satisfying the above conditions 1) and 2) is
called a canonical TN G-covering of X—A. We state an equivariant version

of [3], 3.1, [7], (I, 12.1).

Proposition 5.7. Let (X, A) be a metrizable G-pair. Then there exists
a G-space Y and a G-map p: X—Y with the properties:

1) pl4is a G-homeomorphism and u(4) is a closed G-subspace of Y.

2) Y—u(A) is the G-nerve of a canonical TN G-covering of X—4 and

pX—A)CY—p(4).

Proof. Let S={S,},cn be a canonical TN G-covering of X—A with
{P,} wenrscy K=K(S) the G-nerve of &, and O(O,, K) the open star of O,(=
7(Sn)=0,NS,). Put Y=AUK as G-sets. For a nbd V of a4 in X we
define a subset V* of A UK by

V* = (ANV)U(U {00, K): AEA, S,CV}).

Cleatly acV*, V*NA=V NA, and V*NK is open in K.
Topologize AU K as follows:
i) A basis for nbds of a4 in AUK is taken to be the totality of the sets I'*
determined by nbds V of a in X.
ii) A basis for nbds of yEK in AUK is taken to be the totality of nbds of y

in K.
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It is easy to verify that 4 UK with this topology is a Hausdorff G-space,
and that both 4 and K, as subspaces, preserve their original topologies. Clear-
ly K is an open G-subspace and hence 4 is a closed G-subspace.

Using the G-map P: (X—A)—K defined by {p,}senc we define
w: X—=AUK by

x if x4
M) = {P(x) if xeX—A.

Then p is clearly well-defined, equivariant, and both x|, and p| -, are con-
tinuous. To prove the continuity of w, it suffices to show the continuity at

points of 4=AN(X—A4) in X. Let a€94 and V* a basic nbd of a (=pu(a))
in AUK which is given by a nbd V of a in X. By Lemma 5.6 there is a nbd
W, acWcCV, such that S,NW=¢ implies S,CV. We assert u(W)cCV*,
In fact, letxeW. If x&W—A4, then p(x)=P(x)€K. Thereis S,&S such that
Pu(%)£0, a=Gx and xS,. Since xS, N W@, we see r,(x)=0,CS,CV.
This shows
u(x) = P(x)€0(0,, K)CV*.

If xeWN A, then

px)=xcsWnAcCVnNA=V*nAcV*.

This proves that g is continuous. The properties 1) and 2) now follows at
once. q.e.d.

We will construct a G-nbd retraction to 4 in AUK?" in order to extend
a G-map of A to the O-skeleton K° of K. As for the G-nbd, we choose
U(4)* N (A UK) for the open G-nbd U(A)= {x=X | A% =0}.

Lemma 5.8. There exists a G-nbd retraction
o: UA*NAUK" — 4
in AUK".
Proof. Now K" is disjoint union of the orbits O, and

KNUA¥*= X 0,.

TNCU(A)
Select a point x,&0,, for each O,C U(4)* N K", then A%a=@. Choose a point
a,E A%a such that d(x,, a,)<2d(x,, A%*s). Define a G-map ¢,: 0,—~Ga,C A
by ¢u(g%s)=ga,. Then
d(x, pa(x))<2d(x, A%)
for x€0, (A°=() by the G-invariance of d. Define ¢: UA)*N(AUK)—A4
by
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x if x4
P(x) = . * 0
du(x) if x=0,cUA*NK°.
Then ¢ is clearly equivariant and both ¢ |, and ¢|,,=¢, are continuous.
To prove the continuity, it suffices to show the continuity at points of 94 in
UA*NAUK"). Let acdd and V,= {x&A4|d(x, a)<&}, the &nbd of a in
A, for an arbitrary €>0. Let V= {x&X|d(x, a)<<€/5}. Choose an open tube

segment S in V generated by an open nbd of a in Ga with a G-retraction
r: GS—Ga. Then ScU(4). We complete the continuity proof by showing

H(S*NUAUKY))CV,.

Since S*NA=SN4, we see p(S*NA)=¢p(SNA)=SNAcVNAcCV, Let
x€S8*NK . Then there is S, S such that S,C S and x=0(0,, K)NK’=0,.
Hence x=0,cS,cS. Now r(x)A4%NS=*0. Put b=¢(x)=A% and let
ceA%NS. Since {x, c} CSCV, we see d(x, a)<&/5 and d(c, a)<&/5. Thus
d(a, d(x)) = d(a, b)=d(a, x)+-d(x, b)

<d(a, x)4-2d(x, A%)

<d(a, 5)+2d(x, @)+d(a, )

=3d(a, x)+2d(a, ¢)

<3g/54-2¢/5=¢€.

Hence ¢(x)=be&V,, which completes the proof. q.e.d.

Corollary 5.9. Let f': AU(K'— U(A)*)—C be a G-map. Then the

extension f': AU K°—C defined by
7(%) {f'(x) i x€AUK—UA¥)
X)) =
(@) o x=KNUA*

is a G-map.

Lemma 5.10. Let C be a convex G-subset of a locally convex topological
linear G-space L and f°: AUK’—~C a map. Define an extension f~: AUK—C
of f by

o) = {

n

gtifo(xw) if y=|%y, -, Xy oy t,| ek
) if yed.
Then f= is continuous. If f° is a G-map, so is f~.

Proof. Since C is convex, f* is well-defined, and equivariant if f° is so.
Clearly both f=|, and f*|y are continuous. Thus the continuity of /= need
only be checked at points of 4 in 4 UK.
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Let ac0A4. Since L is locally convex and so is C, any given nbd of
f=(@)=f"%a) in C contains a convex nbd M of f=(a) in C. As f°is continuous
at a, there is a basic nbd V* of a with

FV*NAUK))CM .

By Lemma 5.6 there is a nbd W, ac WCV, in X such that S,N W= implies
S, V. We will complete the proof by showing

fAWHCM.

Since W*NA=WNACV*NA, we bave f>(W*NA)=f(W*NA)CM. Let
V=% 0 Xy 3ty o, LI EWFNK. From yeWH* there is S,&€S such that
S,CW and ye0(0,, K), i.e.,, ;=G\ and x,,€0, for some 7. Put A\;=]\.

From y€K there are N\ ;Ea;, j=0, -, n, such that x,,€0,, and ﬁoSM=I=(2).
j=
Then S,NS,;CWNS,;+@ and hence x,,€S,,CV for j=0,-,n This

implies x,,€V*NK° and f(x,;,) €M for j=0, ---,n. Since M is convex, we
have

fw(y) = gtifo(xaj)EM‘
Thus f<(W*)C M and the lemma is proved. q.e.d.

Proof of Theorem 5.3. Let (X, A) be a metrizable G-pair, C a convex
G-subset of a locally convex topological linear G-space, and f: A—C a G-map.
Applying Proposition 5.7 to (U(C), A), we have a canonical TN G-covering
S=1{S\}sen of U(C)—A4, a G-space AUK=A UK(S), and a G-map u: U(C)
—AUK. We extend f to 4UK?" as follows: Now K°—U(A4)* is disjoint union
of orbits. We select a point x,&0,, for each O,CK°—U(A)*, choose a point
2,ECC%a, and define a G-map f,: 0,—Gz, by f,(gx,)=gz,. We define a
G-map f°: AUK°—C by

Fo) = {f(qb(x)) if x€UA)*N(AUK)
) if x€0,cK°'—U4)*,
where ¢ is the G-nbd retraction of Lemma 5.8. Then f° is a G-map. Ap-

plying Lemma 5.10 to f°, we have a G-extension f~: AUK—C of f°. Finally
we put f=fou, which is the required G-extension. q.e.d.

ReMARK. The obtained G-extension f: U(C)—C of f is explicitly ex-
hibited by
7o) =, B, PLNSCLN T, T, plelfo (o)

for x€ U(C)—A (and f|,=f), where f,: 0,—~C is any G-map for T, U(4),
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and ¢|o,: O,—~A4 is a G-map for T, U(A) such that
d(a, ¢(x))=3d(a, x)+2d(a, A%)
for every a4 and x=0,,

Theorem 5.11. Let (X, A) be a metrizable G-pair. Then there exists an
tsometric linear G-embedding +r: B(A)—B(X) such that +y(f) is an extension

of f for every f € B(4).

Proof. Note that U(R)=X. With the notation of Theorem 5.3 we have
a canonical TN G-covering S={S,},es of X—A4 with an invariant partition
of unity {p,}asesic and G-retractions r,: T,—O, for T, S, and a G-map
¢ AU( E(A)Oa,)—x/l with ¢|,=1Id, once at all. Define, for each f € B(4),

W@ =, Bl 0a®)  (+0).
Then + is the required one. g.e.d.

6. Relation between a G-ANR and a G-ANE

In this section we study the relation between a G-ANR and a G-ANE,
and the elementary properties of them parallel to the non-equivariant case
as in [7].

Proposition 6.1.

(1) Every open G-subspace of a G-ANE is a G-ANE.

(2) Every G-retract of a G-AE is a G-AE and every G-nbd retract of a
G-ANE is a G-ANE.

The proof is obtained by routine tianslation of [7], (II, 5.1), (II, 5.2),
and (II, 6.1) into the terminology of the category Top® of (Hausdorff) G-spaces
and G-maps.

Here we state an equivariant version of Wojdyslawski’s embedding theo-
rem.

Theorem 6.2. Let X be a metric G-space with a bounded invariant metric
d. Let B(X) denote the Banach G-space of all bounded continuous functions on X
(Example 5.1). Define i: X—B(X) by
i(x) () = d(x, y)
Jor x,yEX. Then i is an isometric G-embedding and the image i(X) is a closed
G-subspace of the convex hull C of i(X) in B(X). If X is separable, so is C.

Proof. Since d is G-invariant, we see
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i(gx) (v) = dgx, y) = d(x, g7'y) = i(%) (¢7y) = (¢i(»)) ()

for geG and x,y=X. Thus 7 is equivariant. The remainder is the same
as [7], (IT1, 2.1) (the Wojdyslawski theorem). q.e.d.

For any given metric d’ of X we can form a bounded metric d of X by
defining d(x, y) =d'(x, y)/(14d'(x, y)), »,y=X. Thus, by Theorem 6.2, we
get the following

Corollary 6.3. Every metrizable G-space can be embedded as a closed G-
subspace in a convex G-subset of a Banach G-space.

Theorem 6.4. A metrizable G-space is a G-ANR (resp. G-AR) iff it is a
G-ANE (resp. G-AE).

Proof. Let X be a metrizable G-AE (G-ANE) embedded as a closed
G-subspace of a metrizable G-space Y. Consider the identity map Idy of X.
Since X is a G-AE (G-ANE), Id, has a G-(nbd) extension, which is a G-(nbd)
retraction.

Embedding X into a convex G-subset of a Banach G-space as a closed
G-subspace by Corollary 6.3, the converse follows from Corollary 5.4 and
Propositions 4.1, 6.1. q.e.d.

As corollaries to Theorem 6.4 the following Propositions 6.5-6.7 are ob-
vious by the above results.

Proposition 6.5. Every convex G-subset C of a locally convex metrizable
topological linear G-space is a G-ANR. If C°=%(, then C is a G-AR.

Proposition 6.6. A G-space X is a G-ANR (resp. G-AR) iff X is G-
homeomorphic to a G-nbd retract (resp. G-retract) of a convex G-subset C of a
Banach G-space. (resp. with C°== ().

Proposition 6.7.

(1) Ewvery open G-subspace of a G-ANR is a G-ANR.

(2) Every G-nbd retract of a G-ANR is a G-ANR and every G-retract of
a G-AR is a G-AR.

Proposition 6.8. Every topological product of a finite collection of G-ANE’s
(resp. G-ANR’s) is a G-ANE (resp. G-ANR).

The proof is obvious.

Applying Propositions 6.1 and 6.7 to tubes, we obtain
Proposition 6.9. Every tube in a G-ANR (resp. G-ANE) is a G-ANR
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(resp. G-ANE).

A G-nbd retract of a Euclidian G-space (=finite dimensional orthogonal
G-representation space) is called a G-ENR (G-Euclidian nbd retract). By
Propositions 6.5 and 6.7 we see the followings (, though it is a circular argument.)

Proposition 6.10. Every Euclidian G-space is a G-AR and every G-ENR
is a G-ANR. In particular, every G-orbit is a G-ANR.

RemaARk. This proposition also follows from the Tietze-Gleason theorem
and Proposition 6.7, or [17]; 1.6.2 and 1.6.4.

A G-space X is G-contractible iff the identity map of X is G-homotopic
to a constant map (into X ¢==().

A G-space X is said to be locally G,-contractible at a point x& X iff every
G,-nbd U contains a G,-nbd V which is G,-contractible in U.

A G-space X is called to be locally equivariantly contractible iff X is locally
G ,-contractible at every point x&X. For example, a convex G-subset of a
Banach G-space is locally equivariantly contractible and G-contractible.

Proposition 6.11. Every G-AR is G-contractible and every G-ANR is
locally equivariantly ccntractible.

Proof. Let X be a G-ANR and embedded as a G-nbd retract of a convex
G-subset C of a Banach G-space with a G-nbd retraction »: U-X, XCcUcCC.
Let x€X and V be a given G,-nbd of x in X. There is an &nbd W’ of x in
C such that W'cr(V)cU. Put W=W'NX. Define a G-homotopy &,:
W—V, tel, by

h(y) = r(1—2)y+1x)
for yeW. This shows that X is locally equivariantly contractible.

If X is a G-AR, there is a G-retraction r: C—X and X¢=%=@. Choose
a point x€X° Define a G-contraction k,: X—X by h(y)=r((1—1t)y+1x)
for yeX. This shows the G-contractibility of X. q.e.d.

Lemma 6.12 (G-Urysohn). If A and B are disjoint closed G-subsets of a
normal G-space X, then there is an invariant continuous function f: X —I such that

f(A)=0 and f(B)=1.

The proof is obtained by averaging a function given by Urysohn’s lemma
over G.

Proposition 6.13. Every G-contractible G-ANR (resp. G-ANE) is a
G-AR (resp. G-AE).

The proof is obtained by routine translation of [7], (II, 7.1) and (III, 7.2)
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into the terminology of Top®.

7. TUnion of G-ANR’s

DEFINITION 7.1.

(1) A G-space X is called a local G-ANE iff every point of X has a
G-nbd which is a G-ANE.

(2) A G-space X is called a local G-ANR iff X is metrizable and every
point of X has a G-nbd which is a G-ANR.

REMARK. A metrizable G-space X which is a local G-ANE is a local
G-ANR by Theorem 6.4.

The purpose of this section is to show the following equivariant versions
of [6], Theorem 19.2 and [9], theorem, or [7], (II, 17.1).

Theorem 7.2.
(1) Ewvery local G-ANE is a G-ANE.
(2) Every local G-ANR is a G-ANR.

Theorem 7.3. Let X be a G-space having the weak topology with respect
to a closed invariant covering {X,}\en. Assume that, for each finite subcollection

{Xop 5 Xa} of {Xo}aen with non-void intersection, r:"] X, is a G-ANE. Ther
X is a G-ANE. If X is metrizable, then X is a G-ANR.

Corollary 7.4. Let X be a G-space (resp. metrizable G-space). Suppose
one of the following two conditions:
(1) X is the union of open G-ANE subspaces.
(2) X is the union of two closed G-subspaces X, and X, such that both X,
X,, and X,NX, are G-ANE’s.
Then X is a G-ANE (resp. G-ANR).

Lemma 7.5. Let (Y, B) be a metrizable G-pair and B= {B,} e a locally
finite closed invariant covering of B. Then there exist a G-nbd F of B in Y and
a locally finite closed invariant covering F= {F\},ca of F such that

(1) FyNB=B, for each \EA and

(2) the nerve N(F) of & is isomorphic to the nerve N(B) of B.

This is an equivariant version of [9], Lemma 2 and proved by applying
[9] to (Y/G, B|G) and B/G= {B,/G}, and pullmg up the obtained ones to
Y by IIy: Y—-Y/G.

Lemma 7.6. Let (Y, B) be a G-pair and F = {F,} e a locally finite closed
invariant covering of a closed G-nbd F of B. Suppose that, for each NEA, there
is a G-nbd Cy of FxNB in Fy. Then
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C == U CA
AeA
is a closed G-nbd of B in Y.

Clearly C is a G-subspace. The rest of the proof is similar to [6], Lemma
20.2.

Lemma 7.7. Let X be a G-space and {X,, -, X,} a closed invariant
covering of X such that F}Xii is a G-ANE for each {X;, -+, X;} C{X,, -+, X,}
j=0
with ﬁ X,-,=|=¢. Let (Y, B) be a metrizable G-pair, f: B— X a G-map, and
j=0

{Ye, -, Y,} a closed invariant covering of Y such that
AY:NB)CX;

for i=0, -, n. Then there exist a closed G-nbd S of B in Y and a G-extension
J: S—>X such that (SN Y;)C X, for i=0, -, n.

The proof is obtained by formal translation of [9], Lemma 4 into the ter-
minology of Top®€.

Lemma 7.8. Let X be a G-space and {X,},cp an invariant covering such
that (\ X,, is a G-ANE for each finite subcollection {X,, -, X,} C{X;}ren
j=0
with ﬁ X,;#+0. Let (F, B) be a metrizable G-pair, f: B—X a G-map, and F=
j=0

{F\}ren a locally finite closed invariant covering of F such that the nerve N(F)
of & is isomorphic to the nerve N(B) of B and f(B,)C X, for each NEA, where
B,=F,NB for xEA and B={B,},cr. Then there exist a closed G-nbd M of
B in F and a G-extension f: M—X of f such that f(M N F,)C X, for each A€ A.

The lemma is proved in a parallel way to [9], §3 by using Lemmas 7.6
and 7.7.

Proof of Theorems 7.2 and 7.3.

We prove the G-ANE parts. The G-ANR parts follow from Theorem 6.4.

Let (Y, B) be a metrizable G-pair and f: B—-X a G-map. In order to
prove the theorems, we will construct a locally finite invariant closed coverings
B={By}rep of B and F= {F,},ca of a closed G-nbd F of B in Y, and an in-
variant covering {X,} e of X for Theorem 7.2, satisfying the assumption of
Lemma 7.8. Then we obtain a G-nbd extension by Lemma 7.8, which shows
that X is a G-ANE.

To prove Theorem 7.2, first we construct B= {B,},ea and {X,},ca: Since
X is a local G-ANE, there is a covering U of X by open G-ANE subspaces.
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As B and B|G are paracompact, there is a locally finite closed invariant refine-
ment B={B,},en of {f(U)}ycq For each A€A we choose U€U with
f(B)CU and call it X,. (Then f(B,)CX,.) Since every X, is an open G-
ANE subspace, each F] X, (£0), {Ae -+, A} CA, is an open |G-ANE subspace
i=0
by Proposition 6.1. Then B= {B,},ca and {X,},ca satisfy the assumption of
lemma 7.8. (Replace X by AU X, if necessary.)
EA

To prove Theorem 7.3, we construct B={B,},c, for a given {X,},c by
well-ordering the index set A and by Lemma 3.3 (B,=f"'(X,)— U)‘f HXy))-
p<

Finally, constructing F and = {F,},cx from the obtained B by Lemma
7.5, we complete the proof. q.e.d.

Proposition 7.9. If X, and X, are two closed G-subspaces of a G-ANE
(resp. G-ANR) X such that X,UX,=X and X,NX, is a G-ANE (resp. G-
ANR), then both X, and X, are G-ANE’s (resp. G-ANR’s).

The proof is similar to [7], (II, 9.1).

8. Relation for subgroups and G-manifolds

Let a: G'—G be a continuous homomorphism of compact Lie groups.
Let H be a closed subgroup of G, NH=NH, the normalizer of H in G, and
WH=NH[H. Let X?={xeX|G,DH} (the H-fixed point set), Xy=
{*xeX|G,=H}, X=GX¥, and X 5=GX.

We consider functors such as the restriction functor Res%/, : Top—Top¢’
(Res%), the H-fixed point functor: Top®—Top#, and the functor GX —: Top#
—TopC. "

Proposition 8.1. Let X be a G-ANR. Then:

(1) Res¢.X is a G'-ANR for any homomorphism a: G'—G from any com-
pact Lie group G'.

(2) X#isa WH-ANR and X is an open WH-ANR subspace of X*.

Proof. By Proposition 6.6 X is regarded as a G-nbd retract of a convex
G-subset C of a Banach G-space B with a G-nbd retraction r: U—X. Then,
clearly, Resg7: Resé,U—>Resg.X is a G'-nbd retraction in the convex G'-subset
Resé.C of the Banach G’-space Resé B, and r#: U¥—X# is a WH-nbd retraction
in the convex WH-subset C# of the Banach WH-space B#. X is an open
WH-subspace of X#. The proof follows from Propositions 6.6 and 6.7. q.e.d.

Corollary 8.2.
(1) Every ANR is a G-ANR with the trivial G-action.
(2) Every G-ANR is an ANR.
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Proposition 8.3. If X is a G-ANE, then Res3X is an H-ANE for any
closed subgroup H.

Proof. Let (Y, B) be a metrizable H-pair and f: B—>Res% X an H-map.
Consider the G-map f'=¢oGXf: GXB—X, where ¢: GXResfX—X is
H H H

defined by ¢(g, ¥)=gx. Since X is a G-ANE, there is a G-nbd extension
F:U-Xof f', GXKBCUCGXY. PutV=UNY (Y=HXYCGXY). Then
H H H H

flv is an H-extension of f. q.e.d.

Proposition 8.4. If X is a G-ANE (resp. G-ANR), then X¥ is an NH-
ANE (resp. NH-ANR) and Xy is an open NH-ANE (resp. NH-ANR) sub-

space.

Proof. Let (Y, B) be a metrizable NH-pair and f: B—~X# an NH-map.
Consider the G-map f'=¢oG X f: G X B—X, where ¢: G’>;XH—>X, P(g, x)=gx.
NH NH N.

Since X is a G-ANE, there is a G-nbd extension f: U—X of f/, G>§IBC Uc
N
GxY. Then f#: Uf—X# is an NH-nbd extension of f. Thus X# is an NH-
NH
ANE. If Xisa G-ANR, then X# is metrizable and hence an NH-ANR. q.e.d.

Proposition 8.5. Let X be an H-space. Then GXX is a G-ANR (resp.
G-ANE) iff X is an H-ANR (resp. H-ANE). g
Proof. GxX is metrizable iff X is so by Proposition 3.1. We prove
H
for a G-ANE. The proof for a G-ANR follows from Theorem 6.4.

Sufficiency: Let p: GXX—G/H be the projection. Let (Y, B) be a
H
metrizable G-pair and f: B>G XX a G-map. Since G/H is a G-ANR, there
H

is a G-nbd extension ¢: U—-G/H of pof. Put V=g Y([H]) and B)=VNB.
V is an H-space, GX V=U, and B, is a closed H-subspace of V. If X is an
H

H-ANE, there is an H-nbd extension f: W—X of f |y BoCWCV. Then
the G-map Gf: GW—>Gx X defined by Gf(gy)=(g, (), gEG, yEW, is a
H

G-nbd extension of f, which shows the sufficiency.
Necessity: As H is an H-ANR, H is an H-nbd retract of G with an H-
nbd retraction r: U—H, HCUCG. Then rxldy: UXxX—-HXX=X is an
H H H

H-nbd retraction in GXX. The necessity follows from Proposition 6.1 and
8.3. " q-e.d.

By Propositions 6.9 and 8.5, we obtain the following

Proposition 8.6. Let X be a G-space.
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(1) Let S, be a slice at x&€X and T=GS, the tube about Gx. Then S, is a
G.-ANR (resp. G,-ANE) iff T is a G-ANR (resp. G-ANE).

(2) If X is a G-ANR (resp. G-ANE), then every slice at x€X is a G-ANR
(resp. G,-ANE).

Proposition 8.7. Let X be a G-ANR (resp. completely regular G-ANE).
Then:
(1) X is a G-ANR (resp. G-ANE).
(2) X" isa G-ANR (resp. G-ANE).

Proof. Since every slice S, at x€X# in X# is a G,-ANE and GS, is a
tube about Gx in X, X js a local G-ANE and hence a G-ANE by Theo-
rem 7.2. This shows (2). As X() is an open G-subspace of X, (1) follows
from Proposition 6.1. The proof for a G-ANR follows from Theorem 6.4.

q.e.d.

By a G-manifold we mean a G-space which is a paracompact topological
manifold.

A G-manifold M is called to be locally smooth iff, for each x&M, there
exists a slice at ¥ which is G,-homeomorphic to a Euclidian G,-space.

By the smooth slice theorem every smooth G-manifold is locally smooth.

Every paracompact manifold is metrizable. By Theorem 7.2, Proposi-
tions 6.10 and 8.6, we obtain the following

Theorem 8.8. Ewvery locally smooth G-manifold is a G-ANR. In particu-
lar, every smooth G-manifold is a G-ANR.

ReMARrk. It is known that separable smooth G-manifolds having finite
number of orbit types are G-ANR’s for normal G-spaces and hence G-ANR’s
in our sense. C.f., [17], 1.6.6.

Theorem 8.9. Let X be a metrizable (resp. completely regular) G-space.
Then X is a G-ANR (resp. G-ANE) iff every point x of X has a G ,-nbd which
is a G,-ANR (resp. G,-ANE).

Proof. Let x&X and V be a G,-nbd of x which is a G,-ANR (G,-ANE).
There are a slice S, at x and an open G,-nbd U of G, in G such that G, is a
G,-retract of U and US,CV. Then US, is an open G,-subspace of ¥ and
S, is a G -retract of US,. By Proposition 6.7 (6.1) S, is a G,-ANR (G,-ANE).
So GS, is a G-ANR (G-ANE) by Proposition 8.6. Thus X is a local G-ANR
(local G-ANE) and hence a G-ANR (G-ANE) by Theorem 7.2.

The converse follows from Propositions 6.7 (6.1) and 8.1 (8.3). q.e.d.

Let p: E—X be a locally trivial bundle with fibre F. Then p is called
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a G-bundle iff E and X are G-spaces and p is a G-map. A G-bundle p: E—»X
with fibre F is called to be G-locally trivial iff there is a covering {GV,} of X
by tubes such that p|: p~Y(GV,)—=GV, is G-equivalent to

GxX(VoxFa) > GXxV, (=GV,),

where V, is a slice at x,€ X, H,=G,,, and F,=p~Y(x,) (F, has an H,-action).
Then {(V,, H,)} is called a G-atlas of p.

Theorem 8.10. Let p: E—X be a G-locally trivial G-bundle with a G-
atlas {(Vy H,)}. If X is a G-ANR and each F, is an H,-ANR, then E is a
G-ANR.

The proof follows from Propositions 6.8, 8.6 and Theorem 7.2.

9. Small G-homotopies and G-homotopy extension property

Let U be a given covering of a G-space X, and Y a G-space. Two G-
maps f, f': Y—X are said to be U-near iff, for each y€Y, thereis aset U U
such that f(y)€U and f'(y)eU.

A G-homotopy h,: Y—X, tel, is called a U-G-homotopy iff, for each
y€Y, there is a set UcU such that i,(y)€U for every t&1.

Proposition 9.1. If X is a G-ANR and U a given open (G-)covering of
X, then there exists an open G-covering CV/, which is a refinement of U, such that,
for any metrizatle G-pair (Y, B), any CV-near G-maps f, f': Y—X, and any
CY-G-homotopy h,: B—X, tel, with hy=f |5 and hy=f"| g, there exists a U-G-
homotopy H,: Y—X, tel, with Hy=f, Hi=f', and H,|g=h, for every t1.

This is proved in a parallel way to [5], Theorem 4.1, [7], (IV, 1.2) by using
Proposition 6.6, Lemmas 1.5 and 6.12.

Theorem 9.2. A metrizable G-space X is a G-ANR iff there exists an
open G-covering U of X such that, for any metrizable G-pair (Y, B), any two
U-near G-maps f, f': Y—X, and any U-G-homotopy h,: B— X, tEl, with
hy=f |5 and hy=f"|p, there exists a G-homotopy H,: Y —X with H,=f, H /=
f’, and H,| p=h; for every t& 1.

Proof. The necessity follows from Proposition 9.1.

To prove the sufficiency, let x&X and choose U U with x&U. There
is an open tube segment S generated by a nbd of x in Gx with a G-retraction
r: GS—Gx such that S CU. Define two G-maps f, f': GS —X and a G-homo-
topy A;: Gx—X by

f)=ry) foryeGS
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fo)y =y foryeGS
h(y)=y for yeGx and te1 .

Obviously f and f’ are U-near, and k%, is a U-G-homotopy. So we have a
G-extension H;: GS—X of k, By the compactness of I and Gx, and by
Lemma 1.1 there is a G-nbd V of Gx such that H(V' xXI)cGS and H,|,: V—-X
is a YU-G-homotopy (V CGS).

We prove that 7 is a G-ANR: Let (Y, B) be a metrizable G-pair and
k: B—V a G-map. Then there is a G-nbd extension k: W—>Gx of rok, BC
WcY. Define Fy, F;: W—X and k/: B—X by

Fy(y) = Fy(y) = k() foryew,

h’( ) = ( HZ?(k(y)) fOl‘yEB, 0
= I H,_»(k(y)) foryeB, %

=t
=

=
1=

— o
.

Clearly F, and F, are U-near, and A is a U-G-homotopy. Hence there is
a G-extension H}: W—X of hj.
Set W'=H {7;(V) and define F: W'—V by

F(y)=Hip(y) foryeW’.
Then F is a G-nbd extension of k, which shows that 7 is a G-ANR. Thus
X is a local G-ANR, and hence a G-ANR by Theorem 7.2. q.e.d.

Proposition 9.3. If X is a G-ANR, then every metrizable G-pair (Y, B)
has the G-homotopy extension property with respect to X, i.e., every G-map
h: Yx {0} UBXI—X has a G-extension H: Y xXI—X.

The proof is similar to [7], (IV, 2.2).

Proposition 9.4. Let X be a G-space and every metrizable G-pair has
the G-homotopy extension property with respect to X. Then every metrizable
H-pair (Y, B) has the H-homotopy extension property with respect to X, where
H is a closed subgroup of G.

Proof. Let Z=YXx {0} UBXI and h: Z—X be an H-map. Consider
¢.°G§<h: G;<Z—>G}>1<X—>X, where ¢(g, ¥)=gx. Since G><Z=(G§ Y)x {0} U
H

(GXB)XIc(GxY)xI, $oGxh has a G-extension h: (GX Y)xI—X. Then
H H H H
Rlyx;: YXI—X is the required H-extension of .

Parallelly to [5], Theorem 5.1, [7], (IV, 2.3), by Propositions 6.11, 9.3,
9.4, and Theorem 8.9, we obtain the following

Theorem 9.5. For a given metrizable G-space X the following four state-
ments are equivalent:



504 M. MuURAYAMA

(1) X isa G-ANR.

(2) X is locally equivariantly comtractible, and every metrizable G-pair has the
G-homotopy extension property with respect to X.

(3) Every point xX has a G,-nbd V such that, for any metrizable G -pair
(Y, B), any G,-map f: B—V has a G,-extension f: Y —X.

(4) Every point x&X has a G ~-nbd which is a G,-ANR.

Let (X, A4) be a G-pair.

A G-homotopy k;: X—X, tel, is called a G-nbd deformation retraction
to A in X iff h(x)=x for (x, )X X {0} UAXI and there exists a G-nbd U
of A such that A,(U)=A4.

A G-pair (X, A) is called a G-NDR pair iff there exist an invariant func-
tion /I: X—I such that 4=[/"Y0), and a G-nbd deformation retraction &, to
A in X such that %,(:7[0, 1))=A4. Then the inclusion 4—X is a G-cofibration.
If a metrizable G-pair (X, A) has a G-nbd deformation retraction %, to 4 in
X, then (X, A) is a G-NDR pait.

A G-pair (X, A) is called a G-ANR pair iff both X and 4 are G-ANR’s.

Proposition 9.6. If (X, A) is a G-ANR pair, then for any open G-cover-
ing U of X there exists a G-nbd deformation retraction to A in X which is a U-
G-homotopy. In particular, (X, A) is a G-NDR pair.

The proof is parallel to [7], (IV, 3.4).

Corollary 9.7. If X is a G-ANR, then for each orbit Gx in X, any G-
nbd V of Gx, and any open G-covering U of V there exist a tube (T, r) about Gx
in V and a U-G-homotopy h,: T —V, tE1, joining r with the inclusion T V.

10. G-domination

A G-space X is called tc be G-dominated by a G-space Y iff there exist two
G-maps f: X—Y and f: Y —X such that f'of: X—X is G-homotopic to Idy
(f'of=Idx). Then X is called to be C{/-G-dominated by Y for a (G-)covering

G

CY of X iff f'of is CI/-G-homotopic to Idy.

Proposition 10.1. Let X be a G-ANR. Then, for any open (G-)covering
SV of X, there exists a TN G-covering S of X such that X is V-G-dominated
by the G-nerve K(S) of S.

Proof. By Proposition 6.6 X is regarded as a G-nbd retract of a convex
G-subset C of a Banach G-space B with a G-nbd retraction r: U—X. By
Lemma 1.5 we may regatd ¢/ as a G-covering. Since C is locally convex and
U is a G-nbd of X in C, there is a G-covering 9= {W,} of X by convex open
sets in U which is a refinement of the G-covering {r%(V)} <. Put
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Ug=WgNX and U={Ug}. Then U is an open G-covering of X. By
Proposition 2.3 there is a TN G-covering S= {S,},ea With {p,} ca/c Which is a
star-refinement of .

Let K=K(S), the G-nerve of &, and P: X—K be the G-map given by
Proposition 2.4. Define ¢': K—U (CC) by letting y=x,, =+, &, ; to, ***, 1,
€K to

7(y) = 23 t%; -
Clearly ¢’ is a G-map to C. We show that ¢'(K)CU: By definition there
is {S,, -, S),} €8 such that \; € a;, x,,€0,,CS,;, =0, ---, n,and 6 Sy 0.
Choose x= {”“ISM. Then x& ”US,\,. cSt(x, S). Since S is a star-refinement of
i=0 i=0
U, there is a Uge U such that
{Xag =+ %4} CSt(x, S)CUgC Wy .
Fer W is convex, we see
q’(y) = ﬁtixwiEWE?CU‘
Hence ¢'(K)c U and ¢’ is well-defined. Put
g=ro¢: K—-X.
Define a ¢{/-G-homotopy #;: qOPfIdX, tel, by
hy(x) = r(ta+(1—2)q o P(x))
for x€X and t€l. LetxeX and {a, -, a,} = {@EA/G| ps(x)>0}. There
is {Sy, -, Si,} €& such that N €q;, i=0, -+, n, and xE -608“' There is a
Uge U such that ”
{2, 7ai(3), -+ T (W)} © _QOS,,. CSt(x, S)C Uy CW.
Since Wy is convex, we see
t+(1—2)q oP(x) = tx+(1—1) X p(#)ras(®) EWHC U .

Thus &, is well-defined. As thereis a Ve such that WyCr V), we see
that h,(x) er(Wg) CV for every t& 1, which complete the proof. q.e.d.

In the preceding proof, if X is separable, we may choose & such that
S is countable. Hence we have

Corollary 10.2. If X is a separable G-ANR, then there exists a TN G-
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covering S of X such that X is G-dominated by K(S) and that the nerve N(S) is
countable.

11. Mapping spaces

For G-spaces X and Y the mapping space Map(X, Y) in the compact-
open topology is a G-space with the following G-action

(&)%) = gf(g7'x)
for feMap(X, Y), g€G, and xX.

Theorem 11.1. Let Y be a compact G-space and X a G-ANR. Then
the mapping space Map(Y, X) is a G-ANR.

Proof. By Proposition 6.6, X is a G-nbd retract of a convex G-subset
C of a Banach G-space B with a G-nbd retraction r: U—X. Let || || be the
norm of B. Then Map(Y, B) is a Banach G-space with the norm || ||* de-
fined by ”f”*zfg},’ If(»)Il. Thus Map(Y, X) is a G-nbd retract of the con-

vex G-subset Map(Y, C) of the Banach G-space Map(Y, B) with the G-nbd
retraction ry: Map(Y, U)—Map(Y, X), r«(f)(y)=r(f(»)). Again by Pro-
position 6.6 we complete the proof. q.e.d.

Theorem 11.2. Let (X, A) be a G-ANR pair and (Y, B) a compact met-
rizable G-pair. Then the relative mapping space Map(Y, B; X, A) is a closed
G-ANR subspace of a G-ANR Map(Y, X). If X is separable, then so are both
Map(Y, X) and Map(Y, B; X, A).

The proof is parallel to [7], (VI, 3.1), (VI, 2.2)

A pointed G-space X has a base point * in X¢. For a Euclidian G-space
V the one-point compactification V' U {eo} is denoted by V°. For a pointed
G-space X, Map(V*, {oo}; X, {#}) is denoted by Q"X and called the V-th
loop space of X. The path space Map(Z, {0}; X, {}) is denoted by PX. The
one-point set is clearly a G-ANR.

Corollary 11.3. Let X be a pointed G-ANR and V a Euclidian G-space.
Then both the path space PX and the V-th loop space Q"X of X are G-ANR’s.
If X is separable, then so are PX and Q' X.

12. Small G-deformation and adjunction spaces

By a G-deformation of a G-space X, we mean a G-homotopy 4,: X - X,
tel, such that Ay=1Idy. Then h, is said a U-G-deformation whenever h, is
a U-G-homotopy for a (G-)covering U of X.
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When X is a metric G-space, a G-deformation #,: X — X is called an &-
deformation iff, for each ¥ X, the set {h,(x)|t=I} is of diameter less than €.
A sequence of G-deformations

{: X - X, tel, n=1,2, -},

of a G-space X is called to converge to the identity map Idy iff, for each xEX
and any G-nbd V of x in X, there exist a G-nbd W of x in X and an integer
k such that

R(W)CV

for every n=k and every t1.

Theorem 12.1. For any metrizable G-space X embedded as a closed G-
subspace of a convex G-subset C in a Banach G-space, the following four state-
ments are equivalent:

(1) Xisa G-ANR.

(2) For each open (G-) covering U of X, there exists a U-G-deformation
hy: X=X, 0=t=1, of X such that h, has a G-extension hy: U—X to a G-nbd
UoXinC.

(3) For some metric d of X, there exists for each £>0 an &-deformation
hy: X—X, 0=t=1, such that h, has a G-extension h,: U—X to a G-nbd U of
X inC.

(4) There exists a sequence of G-deformations

(X —> X, 0=t<1, n=1,2, -}

of X converging to the identity map Idy such that each h} has a G-extension
B U,—~X toa G-nbd U, of X in C.

The proof is a routine translation of [5], Theorem 7.1, [7], (IV, 5.3) into
the terminology of Top®.

Similarly to [5], Theorem 8.2, [7], (VI, 5.3) we obtain

Theorem 12.2. Let (X, A) be a G-ANR pair, Y a G-ANR, and f: A—>Y
a G-map. If the adjunction space Y U X is metrizable, then Y QX is a G-ANR.
f

Combining Theorem 12.2 with Proposition 3.1, we have

Corollary 12.3. Let A be a compact G-ANR subspace of a G-ANR X,
Y a G-ANR, and f: A—Y a G-map. Then the adjunction space Y UX is a
G-ANR. ’

By induction on the number of G-cells of a finite G-CW complex we get

Corollary 12.4. Every finite G-CW complex is a G-ANR.
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By Theorem 7.3 and Proposition 3.4 we obtain

Theorem 12.5.
(1) Every G-CW complex is a G-ANE.
(2) Every locally finite G-CW complex is a G-ANR.

Lemma 12.6. Every join of a finite collection of G-orbits is a G-ANR.

The proof is obtained by Corollary 12.3 and by induction.

Let S be a TN G-covering of a G-space.
Then clearly the G-nerve K(S) of the saturation S of S has the weak topol-
ogy with respect to the closed covering {z™(|o|)}sen (55 7=7k (3" K(S)—
lN(S’}I, and each z7Y(|o|) is the join of G-orbits. Thus, by Proposition 6.1,
Theorem 7.3, and Lemma 12.6 we have the following

Proposition 12.7. If S is a TN G-covering of a G-space, then K(S) is
a G-ANE and K(S) is an open G-ANE subspace of K(S).

Corresponding to [5], Theorem 7.2, [7], (IV, 6.3), by Proposition 10.1
and Theorem 12.1 we obtain the following

Theorem 12.8. For any metrizable G-space X, the following three state-
ments are equivalent:
(1) Xisa G-ANR.
(2) For each open (G-)covering U of X, there exists a G-ANE Y such that X
is U-G-dominated by Y.
(3) There exists a sequence of G-ANE’s {Y,} such that X is G-dominated by
each 'Y, with G-maps f,: X—Y,, fir. Y,—»X, and the corresponding sequence
of G-homotopies {h%: Idy ff wof.} is a sequence of G-deformation converging to Idy.

13. G-homotopy types of G-ANR’s

In this section we shall show that G-ANR’s have the G-homotopy types
of G-CW complexes.

Proposition 13.1. If a G-space X is G-dominated by a G-CW complex
(resp. countable G-CW complex), then X has the G-homotopy type of a G-CW
complex (resp. countable G-CW complex).

Proof. Let X be G-dominated by a G-CW complex Y. Then there are
two G-maps f: X—Y and f': Y—X such that f’Of’fIdX. By [11] there are

a functor K from Top€ to the category of G-CW complexes (which is regarded
as a subcategory of Top€) and a natural transformation p: K—Idr,¢ such
that py: Ky—X is a weak G-homotopy equivalence for every G-space X, where



G-ANR’s anp THEIR G-HOMOTOPY TYPES 509

Idr.,¢ denotes the identity functor. Thus we have the following commuta-
tive diagram:

K, K
Ky—> Ky — K,

S Wi )

Note that KoK f;:Ide. Since Y and Ky are G-CW complexes and py is a

weak G-homotopy equivalence, py, is a G-homotopy equivalence by [10]. Let
J be a G-homotopy inverse to py. Then K ojof: X—K, is a G-homotopy
inverse to py.

The proof for the countable case is the same as [16], § 4. q.e.d.

Proposition 13.2. Let K, be a simplicial G-space without degeneracy such
that each n-th space K, has the G-homotopy type of a G-CW complex (resp. count-
able G-CW complex) for n=0, 1, ---. Then the geometric realization |K| has
the G-homotopy type of a G-CW complex (resp. countable G-CW complex).

Proof. (C.f., [19], Proposition 7.2) :
Let K" denote the n-skeleton of |Ky|. Since Ky has no degeneracy and 1x¢,
is a G-cofibration, the diagram

1xe,
K, x3A" ——> K, x A"

in—l
Kn—l 3 K”
is pushout and the inclusion 7,_, is a G-cofibration. By an equivariant version

of Milnor’s theorem (see [19], Theorem 1.2) it suffices to construct a G-homo-
topy commutative diagram:

i iy
Ko, gi_t,..

lko 7

e
Jo 21

in which each L" is a G-CW complex, each j, is a G-cellular inclusion, and
each &, is a G-homotopy equivalence. Then |K,| is G-homctopy equivalent
to the G-CW complex L=colim L".

By assumption, for each K,, there exists a G-CW complex M, and a G-
homotopy equivalence f,: M,—K,. Inductively, let L°'=M,, let ky: K°=K;—L°
be a G-homotopy inverse of f,, and suppose that L*°%, k,_;, and j,_, have been
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defined with the required properties. Consider the diagram which is com-
mutative except the lower triangle:

5 K1 La-1 K* .
k ~fd
. IX a n-1 —‘¢ \\
K,xA <————K,,><6A —> L"'==4

=l a0 ]

M,Xx A" «—— M, ><8A" L"'—sB [
_t
I
L

1xe, \ “

Ln l_____)

Jn-1

Here, a=k,_,°8, b=ao(f,x 1), ¢ is a G-cellular approximation of b, 4 (resp. B)
is the pushout of a and 1X¢, (resp. b and 1x¢,). By an equivariant glueing
theorem ([19], Theorem 1.1), the induced maps d and e are G-homotopy equiva-
lences. ILet L" be the double mapping cylinder of ¢ and 1xz¢,, and j,-; be the
inclusion. Then L”" has the structure of a G-CW complex and there is a G-
homotopy equivalence f which makes the diagram commutative. Define &,
by the composite of d and G-homotopy inverses of ¢ and f. Then k,o7,_ -
Ju-1°R,—1.  Therefore these L*, k,, and j,., are the required ones.

Moreover, when every M, is countable, inductively each L” becomes count-
able, and so is L=colim L". q.e.d.

Theorem 13.3. Every G-ANR has the G-homotopy type of a G-CW
complex and every separable G-ANR has the G-homotopy type of a countable
G-CW complex.

Proof. We use [17], 1.8.1 Metatheorem, and assume that the theorem
holds for actions of all proper closed subgroup of G. By Proposition 10.1
there is a TN G-covering S such that X is G-dominated by the G-nerve K=
K(S). Moreover, if X is separable, we may choose S such that N=N(S)
is countable by Corollary 10.2. Now K,,=K,,(8):§K¢. Since K, is an

open G-subspace of the product O, x:-XO, of orbits, K, is an open G-
submanifold of O, x--XO0, and hence separable. We will show that K,
has the G-homotopy type of a countable G-CW complex for every o= {ot, =+,
a,} EN(S). If all 0,,’s aie of type GJG, then K, is a point and hence a
G-CW complex. We assume that there is an orbit O,of type G/H such that
H is a proper closed subgroup of G. Let #, be the composite:

proj.
Oy X+ X0y, —> O,,,,.,’:«'G/H.
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Let L,=(z,|x,) ([H]). Since Kl,::GxL, and L, is an open H-submanifold
H

of Oy, X ++ X Oa,‘,_1 X O“,H1 X +++ X Oy, L, has the H-homotopy type of a countable

H-CW complex M, by the assumption of the metatheorem. Thus K, has the

G-homotopy type of the countakle G-CW complex GXx M,. Therefore each
H

K,= > K, has the G-homotopy type of a G-CW complex M,, n=0. Moreover,

CENn
if X is separable, then N, is countable, and so is M,, n=0. By Propositions
13.1 and 13.2 we complete the proof. q.e.d.

Corollary 13.4. If a G-space X has the G-homotopy type of a G-ANR,
then X has the G-homotopy type of a G-CW complex.

By [10], Theorem 5.3 (an equivariant J.H.C. Whitehead theorem) we
have

Corollary 13.5. If f: X—Y is a weak G-homotopy equivalence between
G-ANR’s X and Y, then f is a G-homotopy equivalence between X and Y.

This is a generalization of [22], Theorem (1.1).

14. G-homotopy types of countable G-CW complexes

Proposition 14.1. Every countable G-CW complex has the G-homotopy
type of a locally finite countable G-CW complex.

The proof is similar to [20], Theorem 13.

Theorem 14.2. The following restrictions on a G-space X are equivalent:
(1) X has the G-homotopy type of a countable G-CW complex.
(2) X has the G-homotopy type of a separable G-ANR.

Proof. The implication (1)=(2) follows from Theorem 12.5, (2) and
Proposition 14.1.
The converse is the result of Theorem 13.3. q.e.d.

By the above theorem, Corollary 11.3, and Proposition 9.6 we have the
following

Corollary 14.3. Let V be a Euclidian G-space. If a G-space X has the
G-homotopy type of a pointed countable G-CW complex, then so is the V-th loop
space Q' X of X.

Added in Proof. The same result as Theorem 13.3 is announced in
“S. Kwasik: On the equivariant homotopy type of G-ANR’s, Proc. Amer. Math.
Soc. 83 (1981), 193-194".
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