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Contour Extraction of Unlawful Invasion Object Using Bi-phased
Genetic AlgorithmT

Wonchan SEO” and Katsunori INOUE™"

Abstract

This paper describes the contour extraction technique of the unlawful invasion object to construct a
machine vision monitoring system. An active contour model is applied to extract an accurate contour of the
object from the image that includes noisy and incomplete information. The minimization problem of the
energy function of the active contour model is solved by using the Bi-phased Genetic Algorithm which is a
new type of the genetic algorithm. The Bi-phased Genetic Algorithm dynamically uses the exploration and
the exploitation properties of the genetic search.

A system of Bi-phased Genetic Algorithm is constiucted to achieve the improvement of the contour
extraction ability. The system is composed of two genetic search phases to control the explovation and
exploitation properties of the genetic search simultaneously. The advantages of the Bi-phased Genetic
Algorithm are confirmed through the experiment using several images.

KEY WORDS: (Machine Vision Monitoring System) (Genetic Algorithm) (Active Contour Extraction)

(Bi-phased Genetic Algorithm) (Robust Processing)

1. Introduction

The construction of a machine vision monitoring
system requires accurate information on the object from
the image. The outline configuration of the object is the
most important information by which its property can
be specified. With the exception of high-quality images
from well-controlled environments, the simple edge
detectors produce spurious edges because of the
problems of noise, occlusions and poor contrast.

An active contour model called Snakes has been
proposed by Kass et al.”?), and is regarded as an
appropriate technique for contour extraction from noisy
and incomplete information. A flexible and deformable
spline curve is set as an active contour model, and the
The
minimization procedure of the energy function is a key

energy function is defined on this curve.
problem, and many methods have been proposed to
solve this minimization problem?!): 7 12). 15) However,
these techniques have some disadvantages such as
lengthy processing time or instability of the solution.

The most serious problem is that all these methods are
lacking in robustness to noise. The robustness to noise
is one indispensable ability acquired in the machine
vision monitoring system. The authors have applied the
genetic algorithm(GA) to the active contour model and
obtained some promising results®). ;

To improve the contour extraction ability, a new
type of the genetic algorithm, named Bi-phased Genetic
Algorithm(hereafter, BIGA) is proposed. The BIGA is
composed of two phases to control the exploration and
exploitation properties of the genetic search
dynamically. Consideration is given) to the parameters
of such genetic search phases, and Intermediate
Generation(IG) is created to improve GA's local search
ability. The processing results by the BIGA are
compared with those by other methods, and the
advantageé of the proposed algorithm is confirmed by
several experiments.

The contents of this paper are as follows: An active
contour model and related problems of previously used

methods for minimizing the energy function are
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explained in section 2. The GA application to an active
contouf model and the investigation of the parameters
of GA are described in section 3. In section 4, the
concept of the BIGA is introduced, and the BIGA
system is constructed. The experimental evaluation of
the proposed algorithm and comparisons with other
methods are given in section 5. The conclusion is given

in the final section.
2. Active Contour Model and Minimization Methods

2.1 Active Contour Model

An active contour model called Snakes was
proposed by Kass et al. to extract the outline of the
object from the image. Snakes has an advantage in that
the edge information is integrated along the entire
length of the curve, providing a large support without
including irrelevant information of the image. This
advantage allows Snakes to find exact contours which
the simple edge detectors could not find!®.

A flexible and deformable spline curve is set as an
active contour model, and the energy is defined on this
curve. The curve is gradually deformed so that the

energy may decrease and, finally, it converges to the

contour of the object at the minimum level of the energy.

The energy defined on the curve includes the internal
spline energy and the external spline energy. The
internal spline energy, which depends on the shape and
the size of the curve itself, serves to impose a piecewise
smoothness constraint. The external energy depending
on the image-potential of the object pushes Snakes
toward salient image features like lines and edges. The
weights of the smoothness and the image force terms in
the energy functional can be adjusted for the different
behavior. The contour extraction method is reduced to
an optimization problem of the energy function as
shown in Eq. 1:

Esnates(V(s)) = j:.{(Ef,,,(v(.s)) + YEe (v($))}ds

Em(v(s)) = (a|vs($)]" +B|vs(s)]*) /2
Eer(v(5)) = ={G,(v(s) * VI (v(s))}?
Go(v(s)) = exp(—|v(s) 2mc?)

1)

where Fsnakes, Fimt and Fext are the total, the internal

and the external energy of the spline curve respectively.
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v(s) is the vector of the spline curve on the point
(x(s), y(s)), and § is the normalized parameter of
the curve by its length /. v_(s) and v () are the
Ist and the 2nd differentiation with § , and 7 (s) is the
intensity of the image at the point (x(s), y(s)). The
constants o, 3 and y are the coefficients of the

weights for each term, and & is the standard deviation
of the Gaussian function Go(Vv(s)). The symbol

denotes the convolution.

2.2 Minimization Methods and Related Problems

A solution for the Snakes is found using
variational calculus?. The energy terms can be adjusted,
and a local minimum solution can be obtained as the
iteration of calculation proceeds. Amini et al. pointed
out some of the problems in variational calculus,
including numerical instability and a tendency for
points to bunch up on strong edge portions!). They have
proposed dynamic programming (namely, open loop
DP) for minimizing the energy function and allowing
addition of hard constraints to obtain the more desirable
behavior of Snakes. However, their method is not
exactly formulated, and its start point and end point
move apart from each other during the iterations. A
greedy method was proposed by Williams et al.l3).
While the algorithm is siinple, it is not guaranteed to
give an acceptable solution. Ueda et al. have proposed
dynamic programming (namely, closed loop DP)!2),
and although their algorithm gives suitable solution, its
calculation cost is very expensive.

All of the methods mentioned above have the
problems, such as their processing time is too much, or
they easily lead to a miss-solution depending on the
parameters setting. The most serious problem is that
those methods are very sensitive to the noise on the
image. The GA is applied owing to its superior
exploration and exploitation properties to overcome
these problems.

3. Genetic Algorithm for Active Contour Model

The GA is an optimization technique that imitates
a living thing's evolution in nature system. That is, the
following generation is formed by a lot of existence of
individuals who have high fitness to the environment in
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Fig. 1 Active contour model expressed for Genetic Algorithm

current generation. Therefore, when the GA is applied
to an optimization problem, the target function of the
given problem is taken as the fitness, and the candidate
solution is made to correspond to each individual.

3.1 GA Application to Active Contour Model

The GA is used as the method to decide the
direction for each point on the active contour curve of a
digital image to advance to the next step. Every time a
new active contour curve is formed and the optimum
direction for each point is decided through calculation
of the GA. According to this decision, the deformation
is proceeded, and the next new curve is formed. The
contour, the border line of the object, is extracted by
repeating this operation until it converges to a certain
state.

In reality, if we set the direction of each point on
the curve to the 9-progressive directions (the 8-
neighbors and the present position; here, the square
pixel is assumed in the digital image), quite a lot of
combinations will generate for all points (» points: the
number of Snakes points). I(the number of individuals
in the GA) sets are taken from these combinations
arbitrarily at first. The example for »=20 is shown in
Fig. 1, where each set is expressed as the figure rows of
the 9-progressive directions.

3.2 Exploration and Exploitation Ability of Genetic
Algorithm

The GA is a powerful method for solving
multimodal problems. However, at the same time, it is a

weak method because of its lack of local search ability?).
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To overcome this weak point of the GA in the
application domain of the multimodal function
optimization, many researchers have tried to introduce
the merits of local search strategies into the GA
system3): 4 8)_ Although some of them are useful, most
of them are too expensive and sacrifice the advantages
of the GA . This trade-off problem is caused that their
attempts are concentrated on only the improvement of
the local search ability.

For the purpose to solve the problem, this paper
proposes the BIGA. The BIGA is constructed of two
phases, each has the different feature respectively, to
give the system both the abilities of local and global
search® simultaneously. This can be realized by setting
the parameters of the GA.

3.2.1 Setting for Exploration Ability of GA

To achieve a genetic search that keeps exploration
ability, it is necessary to maintain the genetic disruption
of the individuals in each generation?): %) 1. The
selection of the schemes for genetic search and the
setting of GA parameters are decided that the high
genetic disruption is maintained.

The parameters of the (w, A)-linear ranking
selection?: 13) are set as p=64, A=128 and Mma=1.5,
and the uniform crossover”- 11) scheme is chosen. The
experiment result of the relation to the energy
with  the and mutation

convergence Crossover

occurrence probability is shown in Fig. 2. The low

The exploration and exploitation properties are generally used in the
GA as the abstract concept of the global and local search abilities

respectively”).
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Fig. 2 Relation to energy convergence with crossover and
mutation occurence probability

energy levels are shown darkly. Plotting of the curve in
this figure is done based on the averaged values of 5
runs in each experiment. The value of p.=0.5 and
P,=0.08 are set based on this result. Such examinations
are made for all other parameters.

3.2.2 Setting for Exploitation Ability of GA

To give the GA local search ability, Intermediate
Generation(IG) is developed. The IG is the virtual
generation inserted between two true generations. The
fitness of the individuals of current generation is
highly fit
crossovered and mutated to form the new individuals of

improved, individuals are selected,
potentially higher fitness by the IG, before using them
as parents to define next generation. The IG has the
similar features to the building block hypothesis. The
local search is promoted further by adding several
virtual generations in which the selection, the crossover
and the mutation are performed in the same manner as
the true generation. IG can improve the fitness of the
individuals of the current generation. Figure 3 shows
the relation between the iteration number of IG and the
An

extra

calculation time to the energy convergence.
effect
calculation on IG=4, as shown in Fig. 3.

In addition, the Elitist strategy>) is adopted. The
elitist strategy guaranties that the best individual

appropriate was achieved without

(elitist) of the current generation survives to the next
generation. The stability of solution can be improved
by the successive elitist.
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Fig. 3 Relation between iteration number of IG and
calculation time to energy convergence
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4. Bi-phased Genetic Algorithm

4.1 Two Phases for Bi-phased Genetic Algorithm

The BIGA 1is constructed of two phases, which
give the system both the abilities of local and global
search simultaneously. The two phases are named the
stable phase and the fluctuant phase. The former can
improve the fitness of the individuals of the current
generation by the IG. A characteristic of the stable
phase is the stability of the solution by the IG and the
successive elitist. The latter is named for the fluctuant
property of the solution. The fluctuant phase is designed
to emphasize the robust search ability of the GA. The
solution of the fluctuant phase is allowed to be instable
to some degree in order to extend the search space.

The purpose of the BIGA is to realize the better
optimization by combining the robustness of the
fluctuant phase with the exactness of the stable phase.
So, the BIGA includes two set of parameters to realize
the above conception. Table 1 shows the two sets of
parameters for the BIGA. The parameters of two phases

Table 1 Two sets of parameters for Bi-phased Genetic

Algorithm
Para. Elitist 1G
A W | Mmax | Pe pm | Strategy | Strategy
Phase adopted? |adopted?
Stable 128 | 64 | 1.5 | 0.5 |0.08 yes yes
Fluctuant | 128 | 64 | 1.6 | 0.5 {0.08 no no
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Fig. 4 Schematic diagram of the BIGA system for contour extraction

are different at the points where the elitist and the IG
strategies are adopted or not. It is important to make the
fluctuant phase keep the apposite search direction
toward a suitable solution and the stable phase process
without extra time. The decisions of the parameters are
made empirically by the preliminary experiments.

4.2 Construction of the BIGA System

The BIGA system for contour extraction is
originally constructed as follows:

Step 1. Initialize the system with the parameters of the
stable phase(Cl=maxvalue).
Step 2. Perform the process of the stable phase until the
energy function converges at a certain level.
Step 3. Decide the candidate points(C2) of the active
contour model based on the result of Step 2.
Step 4. Compare C1 with C2,
if C1 is larger than C2
then replace C1 with C2, and go to Step 5,
else go to Step 7.
Step S. Change the phase of the system from the stable
to the fluctuant.
Step 6. Go to Step 2 after several generations at the
fluctuant phase.
Step 7. Decide C1 as the final solution and finish the
procedure. ’

Figure 4 shows the schematic diagram of the above
algorithm. Once the curve of the total energy has settled
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at a certain level at the stable phase, the phase change
occurs and the fluctuant phase starts. Escaping a miss-
solution and progressing to a new solution are done at
the fluctuant phase. The final solution is confirmed at
the last stable phase.

5. Experiments

Experimental evaluation of the proposed algorithm
was carried out on three points. The first was the
calculational cost and the stability of the BIGA (stable
phase, only) compared to the other algorithms. The
second was the initial contour setﬁng, and the last was
the searching ability for the better solution in a noisy
image.

The number of Snakes points on the curve, n was
set to be 20, and o, f and y, the weight coefficients in
Eq. 1, were all set to 1.0. All other conditions were also
the same.

5.1 Calculational Cost and Stability

The present method was compared to the other
methods mentioned in subsection 2.2, with emphasis
on the calculational cost and the stability of the solution
for Snakes. The object image for the comparison of the
methods is shown in Fig. 5(a), where the initial contour
curve for Snakes is set. The result images of
convergence are shown in Fig. 5(b)-(f). The decrease of

the total energy of Snakes with time is shown in Fig. 6.
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Fig. 5 Convergence results of active contours in stability test:
(a) initial contour, (b) variational calculus, (¢) open
loop DP, (d) greedy method, (e) closed loop DP and
(f) BIGA
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Fig. 6 Energy convergence of active contours in stability test

The processing speed becomes faster in the order,
the variational principle, the greedy method, the open
loop DP and others, as seen in these results. The curve
of the greedy method converged to one point finally
under this experimental condition because of its
substantial property. The calculation costs of the closed
loop DP and the BIGA are rather expensive, but their
solutions are more stable than the other methods'.

5.2 Initial Contour Setting

The object image for the experiment is shown in Fig.
7(a), where the initial contour curve is set at the
midpoint between two objects, the bottle and the cup, in
the image. The results of convergence are shown in
Fig. 7(b)-(f). The decrease of the energy of the spline
curve with time is shown in Fig. 8.

The following facts are seen from these figures:
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Fig. 7 Convergence results of active contours in initial
contour setting test: (a) initial contour, (b) variational
calculus, (c) open loop DP, (d) greedy method, (e)
closed loop DP and (f) BIGA
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Fig. 8 Energy convergence of active contours in initial

contour setting test

The processing speed of the greedy method is fastest.
Some points of the contour curves had been drawn
toward the neighboring object, the image of the bottle,
the convergence finished at this state in the variational
method, and the dynamic programming methods of the
open loop model and closed loop model. This means
that they fell into an undesirable local minimum and
could not escape it. The convergence by the BIGA is
proper although it takes rather time for the processing.

5.3 Searching Ability in Noisy Image

The performance of the system by noise was
investigated by adding some amounts of noise to the
image, and the convergence results are compared. A
noisy image altered by adding salt-and-pepper noise of
20 percent noisy area ratio is shown in Fig. 9(a). The



Fig. 9 Convergence results of active contours in robustness
test: (a) initial contour, (b) external energy of (a), (c)
variational calculus, (d) open loop DP, (e) greedy
method, (f) closed loop DP and (g) BIGA

image in Fig. 9(b) shows the external energy of Fig. 9(a).
The processed results of the previous methods and the

BIGA on the noisy image are shown in Fig. 9(c)-(g).

The decrease of the total energy of Snakes with time is
shown in Fig. 10.
All of the results except by the BIGA were

converged into false contours. Only the result of the

BIGA was less influenced by the noise. As shown in Fig.

10, once the solution of the BIGA fell into the "holes"
of the noise, it could escape them by the robust feature
of the fluctuant phase. Such an effect was repeated
several times, and finally, the BIGA succeeded in
finding the true contour.

6. Conclusion

An active contour model was applied for extracting
unlawful invasion object to construct a machine vision
monitoring system. A minimization method for the
active contour model using the genetic algorithm was
proposed. The parameters of the GA were examined for
the proper convergence of the energy function of the
active contour model, and the suitable set of the GA
parameters was obtained. To overcome the problems of
the classic GA, the Bi-phased Genetic Algorithm was
proposed to control the exploration and exploitation
properties dynamically. The BIGA is constructed of two
phases, each one having different features, and so it is
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Fig. 10 Energy convergence of active contours in robustness
test

possible to give the system both the abilities of local and
global search simultaneously.

The processing results by the Bi-phased Genetic
Algorithm were compared with those by the previous
proposed methods, and the advantages of the proposed
algorithm were proven by several experiments. It was
confirmed by experiments that the BIGA has three key
advantages for contour extraction:

(1) inexpensive calculation cost

(2) less governed by the initial contour setting

(3) robust to noise
The BIGA system can extract the contour of the object
exactly and robustly.
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