

Title	A note on relative T-nilpotency
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1976, 13(2), p. 431-438
Version Type	VoR
URL	https://doi.org/10.18910/12896
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

A NOTE ON RELATIVE T-NILPOTENCY

MANABU HARADA

(Received June 23, 1975)

This note gives some supplementary results of [6]. The first one shows an application of the idea in the proof of [6], Lemma 7 and gives a characterization of artinian rings. The second one gives a refinement of [6], Corollary 2 to Theorem A.2 and the final one is a special type of the exchange property.

Throughout we shall assume that R is a ring with identity and modules are unitary right R -modules. First, we shall recall definitions in [6].

Let $\{P_\alpha\}_I$ and $\{Q_\beta\}_J$ be two infinite sets of R -modules. We take a countable set $\{M_i\}_1^\infty$ such that $M_{2i-1}=P_{\alpha(2i-1)}\in\{P_\alpha\}_I$ and $M_{2j}=Q_{\beta(2j)}\in\{Q_\beta\}_J$. Further we take a set of non-isomorphisms $f_i: M_i\rightarrow M_{i+1}$. If for any element m in M_1 there exists n such that $f_n f_{n-1} \cdots f_1(m)=0$, we say $\{f_i\}_1^\infty$ is *locally T-nilpotent*. If for any countable sets $\{M_i\}_1^\infty$ above such that $\alpha(2i-1)\neq\alpha(2i'-1)$ ($\beta(2j)\neq\beta(2j')$) if $i\neq i'$ ($j\neq j'$) any sets $\{f_i\}$ of non-isomorphisms are always locally T-nilpotent, then we say $\{P_\alpha\}_I$ and $\{Q_\beta\}_J$ are *relatively and locally semi-T-nilpotent*. If we omit the assumptions $\alpha(2i-1)\neq\alpha(2i')$ ($\beta(2j)\neq\beta(2j')$) in the above, we say $\{P_\alpha\}_I$ and $\{Q_\beta\}_J$ are *relatively and locally T-nilpotent*. If $\{P_\alpha\}_I=\{Q_\beta\}_J$, we say $\{P_\alpha\}_I$ is *locally semi-T-nilpotent* or *T-nilpotent*, corresponding to the above cases. We shall assume that the definition of relatively semi-T-nilpotency contains a case of either I or J being finite. If $K=\sum_I \bigoplus P_\alpha=\sum_J \bigoplus Q_\beta$ and $\{P_\alpha\}_I$, $\{Q_\beta\}_J$ are locally and relatively T-nilpotent, then we say $\sum_I \bigoplus P_\alpha$ and $\sum_J \bigoplus Q_\beta$ are *relatively T-nilpotent decompositions* of K .

Finally, let $M=N\oplus P$ be R -modules and κ a cardinal number. If for any decomposition $M=\sum \bigoplus L_\alpha$ with κ -components there exist submodules L'_α of L_α such that $M=N\oplus\sum \bigoplus L'_\alpha$, then we say N has the κ -exchange property in M . In case κ is any cardinal, we say N has the exchange property in M .

1. T-nilpotent decompositions

First, we study a property of relative T-nilpotency. If the endomorphism ring of a module M is a local ring, then we call M *completely indecomposable*.

Lemma 1. *Let M be an R -module and f, g in $\text{End}_R(M)$. If fg is isomorphic, $M=\text{Im } g\oplus \text{Ker } f$.*

Lemma 2. *Let P be an R -module. If P is itself locally T -nilpotent, P is a completely indecomposable module.*

Proof. Put $S = \text{End}_R(P)$. If $e \in S$ and $e^2 = e$, then $e = 1$ or 0 by the assumption. Let x, y be elements in S with x non-unit. Then neither xy nor yx is unit in S from the above and Lemma 1. Furthermore, consider a sequence $\{x^n\}_1^\infty$ of non-units in S . For any element p in P , there exists $n = n(p)$ such that $x^{n(p)}(p) = 0$ from the assumption. Therefore, $X = 1 + \sum_1^\infty x^i$ is an element in S and $((1-x)X)(p) = (1-x)(1+x+\dots+x^{n(p)-1})(p) = (1-x^{n(p)})(p) = p$. Hence, $1-x$ is unit in S from Lemma 1. Let x, y be non-unit in S . We assume that $x+y$ is unit in S . Then we may assume $x+y=1$, which is a contradiction to the above. Therefore, S is a local ring.

Theorem 1. *Let M be an R -module and $M = \sum_I \bigoplus P_\alpha = \sum_J \bigoplus Q_\beta$ two relatively T -nilpotent decompositions of M . Then all P_α and Q_β are completely indecomposable modules and hence, those decompositions are unique up to isomorphism and every direct summand of M has the exchange property in M .*

Proof. We put $I_1 = \{\alpha \in I \mid P_\alpha \approx Q_\beta \text{ for some } \beta \in J\}$ and $J_1 = \{\beta \in J \mid Q_\beta \approx P_\alpha \text{ for some } \alpha \in I\}$. We first show $I_1 \neq \emptyset$ and so $J_1 \neq \emptyset$. We assume the contrary. Let p_α, q_β be projections of M to P_α and Q_β , respectively. Let $x_1 \neq 0 \in P_{\alpha_1}$. Then there exists $\beta_2 \in J$ such that $q_{\beta_2}(x_1) = x_2 \neq 0$. Again there exists $\alpha_3 \in I$ such that $p_{\alpha_3}(x_2) = x_3 \neq 0$. Repeating those arguments, we obtain a contradiction to the T -nilpotency, since $I_1 = J_1 = \emptyset$ (cf. [6], Lemma 7). Hence, $I_1 \neq \emptyset$ and so $J_1 \neq \emptyset$. Furthermore, $\{P_\alpha\}_{I_1}$, $\{Q_\beta\}_{J_1}$ are sets of completely indecomposable modules and locally T -nilpotent by Lemma 2 and the assumption. We put $M = \sum_{I_1} \bigoplus P_\alpha \oplus \sum_{I_1'} \bigoplus P_{\alpha'} = \sum_{J_1} \bigoplus Q_\beta \oplus \sum_{J_1'} \bigoplus Q_{\beta'}$, where $I_1' = I - I_1$ and $J_1' = J - J_1$. Let $\{P_{\alpha_i}\}_1^n$ be any finite subset of $\{P_\alpha\}_{I_1}$. Since $\sum_1^n \bigoplus P_{\alpha_i}$ has the exchange property by [2], Lemma 3.11 and [9], Proposition 1,

$$M = \sum_1^n \bigoplus P_{\alpha_i} \oplus \sum_{J_1'} \bigoplus Q_{\beta'} \oplus \sum_{J_1'} \bigoplus Q_{\beta'}' \dots (*),$$

where $Q_\beta = Q_{\beta'} \oplus Q_{\beta''}$. Then $\sum_{J_1'} \bigoplus Q_{\beta''}$ is isomorphic to a direct summand of $\sum_1^n \bigoplus P_{\alpha_i}$. If $Q_{\beta''} \neq (0)$, $Q_{\beta''}$ contains a direct summand isomorphic to some P_α , by Krull-Remak-Schmidt's theorem, say $Q_{\beta''} = X \oplus Y$; $X \not\approx P_{\alpha_i}$. Since $\beta' \in J_1'$, $Y \neq (0)$. Let p be a projection of $Q_{\beta''}$ to X and i the inclusion of X to $Q_{\beta''}$, then p and i are not isomorphic. However, $\varphi p i \varphi^{-1} = 1_{P_{\alpha_i}}$ and neither φp nor $i \varphi^{-1}$ is isomorphic. Which contradicts the relative T -nilpotency. Accordingly, $Q_{\beta''} = (0)$ and $(\sum_1^n \bigoplus P_{\alpha_i}) \cap (\sum_{J_1'} \bigoplus Q_{\beta'}) = (0)$. Therefore, $(\sum_{I_1} \bigoplus P_\alpha) \cap$

$(\sum_{J_1'} \oplus Q_\beta) = (0)$. Let $\bar{M} = M / (\sum_{J_1'} \oplus Q_\beta)$ and ψ the natural epimorphism of M to \bar{M} . Then $\bar{M} = \sum_{J_1} \oplus \psi(Q_\beta) \supseteq \sum_{J_1} \oplus \psi(P_\alpha)$ (note $\psi(Q_\beta) \approx Q_\beta$ and $\psi(P_\alpha) \approx P_\alpha$). On the other hand, $\sum_{J_1} \oplus \psi(P_\alpha)$ is locally direct summand of \bar{M} from (*) and $\{\psi(P_\alpha)\}_{J_1}$ is locally T-nilpotent. Hence, $\sum_{J_1} \oplus \psi(P_\alpha)$ is a direct summand of \bar{M} by [3], Theorem 9 and [7], Corollary 2 to Lemma 2 and Lemma 3, since $\{\psi(Q_\beta)\}_{J_1}$ is a set of completely indecomposable modules. Furthermore, $\sum_{J_1} \oplus \psi(P_\alpha)$ has the exchange property in \bar{M} by [4], Theorem 4 and so $\bar{M} = \sum_{J_1} \oplus \psi(P_\alpha) \oplus \sum_{J_1''} \oplus \psi(Q_\beta)$, where $J_1'' \subseteq J_1$. Therefore, $M = \sum_{J_1} \oplus P_\alpha \oplus \sum_{J_1''} \oplus Q_\beta \oplus \sum_{J_1'} \oplus Q_{\beta'} = \sum_{J_1} \oplus P_\alpha \oplus \sum_{J_1'} \oplus P_{\alpha'}$. Hence, $\sum_{J_1''} \oplus Q_\beta \oplus \sum_{J_1'} \oplus Q_{\beta'} \approx \sum_{J_1'} \oplus P_{\alpha'}$. However, $\{P_{\alpha'}\}_{J_1'}$ and $\{Q_{\beta'}\}_{J_1' \cup J_1''}$ are locally and relatively T-nilpotent and so some $P_{\alpha'}$ is isomorphic to some $Q_{\beta'}$ by the first part, provided $P_{\alpha'} \neq (0)$. Therefore, $J_1' = J_1'' = J_1 = \phi$. The remaining parts are clear from [1] and [4], Theorem 4.

REMARK. Theorem 1 does not remain valid if we replace the T-nilpotency by the semi-T-nilpotency in the assumption.

Corollary 1. *Let P be R -projective. Then P has two relatively T-nilpotent decompositions if and only if P is a perfect module.*

Proof. It is clear from Theorem 1 and [4], Theorem 6.

Corollary 2. *R is right artinian if and only if every projective modules and every injective modules have relatively T-nilpotent decompositions.*

Proof. It is clear from Corollary 1, [3], Corollary 1 to Proposition 1 and [8].

2. Exchange property

Let $\{M_\alpha\}_I$ be a set completely indecomposable modules and $M = \sum_I \oplus M_\alpha$.

We consider a relation between the concept of the exchange property in M and that of the 2-exchange property in M for a direct summand N of M . If N is also a direct sum of indecomposable modules, those concepts are equivalent by [6], Theorem A.2. We do not know whether this fact is true without any assumptions.

Lemma 3. *Let $A = B \oplus C \oplus D$ be R -modules. If $B \oplus C$ has the 2-exchange property in A , then C has the same property in $C \oplus D$.*

Proof. We assume $C \oplus D = K \oplus L$. Then $A = B \oplus C \oplus D = B \oplus K \oplus L$. Hence, $A = B \oplus C \oplus K' \oplus L'$ for some $K' \subseteq K$ and $L' \subseteq L$ from [6], Lemma A.4. Since $C \oplus D \supseteq C \oplus K' \oplus L'$, $C \oplus D = C \oplus K' \oplus L'$.

Let M be as above and $M=S_1 \oplus S_2$. Let $\{M_\alpha\}_J$ be the isomorphic representative classes of $\{M_\alpha\}_I$ and we shall denote it by $[M]$. We put $J'=\{\alpha \in J \mid M_\alpha \text{ is isomorphic to a direct summand of both } S_1 \text{ and } S_2\}$ and $J''=\{\alpha \in J' \mid \text{directsums of any finite copies of } M_\alpha \text{ are isomorphic to direct summands of both } S_1 \text{ and } S_2\}$.

Theorem 2. *Let $M, S_i, \text{etc.}$ be as above. Then S_1 has the exchange property in M if and only if S_1 has the 2-exchange property in M , $\{M_\alpha\}_{J'}$ is locally semi-T-nilpotent and $\{M_\alpha\}_{J''}$ is locally T-nilpotent.*

Proof. Let N_i be a dense submodule of S_i and $N_i=\sum_{j \in I} \sum_{\beta \in I_{ij}} \oplus N_{ij\beta}$, where $i=1,2$ and $N_{ij\beta}$'s are isomorphic to some M_α in $\{M_\alpha\}_I$ and $N_{ij\beta} \approx N_{i'j\beta} \approx N_{ij\beta'} \approx N_{i'j\beta'}$ and $N_{ij\beta} \not\approx N_{ij'\beta}$ if $J \neq I'$ (see [4]). We put

$$\begin{aligned} J_1 &= \{j \in J \mid I_{1j} \text{ and } I_{2j} \text{ are infinite}\} \\ J_2 &= \{j \in J \mid I_{1j} \neq \phi \text{ and } I_{2j} \text{ is finite}\} \\ J_3 &= \{j \in J \mid I_{1j} \text{ is finite and } I_{2j} \text{ is infinite}\} \\ J_4 &= \{j \in J \mid I_{1j} = \phi\} \text{ and} \\ J_5 &= \{j \in J \mid I_{2j} = \phi\}. \end{aligned}$$

Then $J_1=J''$ and $J_1 \cup J_2 \cup J_3=J'$. Furthermore, we put $N_i(k)=\sum_{j \in J} \sum_{\beta \in I_{ij}} \oplus N_{ij\beta}$. Then $N_1=\sum_{k \neq 4} \oplus N_1(k)$ and $N_2=\sum_1^4 \oplus N_2(k)$. We shall show "if" part. $N_1(1)$, $N_1(3)$ and $N_2(2)$ are direct summands of M from the assumption and [4], Proposition 2. Since $N_1(1) \oplus N_1(3) \subseteq S_1$ and $N_2(2) \subseteq S_2$, $M=N_1(1) \oplus N_1(3) \oplus S_1' \oplus N_2(2) \oplus S_2'$, where $S_1' \subseteq S_1$. Furthermore, a dense submodule of S_1' (resp. S_2') is isomorphic to $N_1(2) \oplus N_1(5)$ (resp. $N_2(1) \oplus N_2(3) \oplus N_2(4)$). Since $S_1=N_1(1) \oplus N_1(3) \oplus S_1'$, $S_2=N_2(2) \oplus S_2'$ and S_1 has the 2-exchange property in M , S_1' has the same property in $S_1' \oplus N_2(2) \oplus S_2' (=C)$ from Lemma 3. We assume $S_1' \oplus S_2'=A \oplus B$. Then $C=A \oplus B \oplus N_2(2)$. Hence, $C=S_1' \oplus A' \oplus B' \oplus N_2(2)$ from [6], Lemma A.4, where $A' \subseteq A$, etc. Therefore, $S_1' \oplus A' \oplus B'=S_1' \oplus S_2'$, which means S_1' has the 2-exchange property in $S_1' \oplus S_2'$. Accordingly, S_1' has the exchange property in $S_1' \oplus S_2'$ by [6], Corollary 2 to Theorem A.2, since $N_1(1) \oplus N_1(3) \oplus N_2(2)$ has the exchange property in M by [5], Theorem 2 and so $S_1' \oplus S_2'$ is a directsum of completely indecomposable modules. Therefore, S_1' is also a directsum of completely indecomposable modules and hence, S_1 has the exchange property in M by [6], Theorem A.2. The converse is clear from [6], Theorem A.2.

Finally, we shall study some special properties concerning with the exchange property in M of a direct summand of M . We are interested in a relation between the exchange property in M and the relative semi-T-nilpotency. We assume $M=N_1 \oplus N_2$ and $N_i=\sum_k \oplus N_i(k)$ as in the proof of Theorem 2.

We know from the proof above that N_1 has the exchange property in M if and only if $N_1(2) \oplus N_1(5)$ has the same property in $N_1(2) \oplus N_1(5) \oplus N_2(3) \oplus N_2(4)$ and $\{N_{1ij}\}, \{N_{2ij}\}$ are locally and relatively semi-T-nilpotent (cf. [6], the proof of Corollary 1 to Theorem). Hence, we may restrict ourselves to a case of $[N_1] \cap [N_2] = \phi$.

In the following we shall use the category \underline{A} induced from a set of completely indecomposable modules and its factor category $\bar{\underline{A}} = \underline{A}/J'$ studied in [3]. We refer to [3] for the notations and results on \underline{A} .

Lemma 4. *Let M be in \underline{A} and A, B two locally direct summands of M . If $[A] \cap [B] = \phi$, $A \cap B = (0)$ and $A \oplus B$ is a locally direct summand of M .*

Proof. Let i_A, i_B be the inclusions of A and B into M , respectively. Since $[A] \cap [B] = \phi$, $\text{Im } i_A \cap \text{Im } i_B = (0)$ from [3], Theorem 7 and [7], Lemma 3. Let $A \oplus B$ be the external direct sum and $i = (i_A, i_B): A \oplus B \rightarrow M$. Then it is clear from the above that i is monomorphic in $\bar{\underline{A}}$. Hence, $\text{Im } i = A + B$ is a locally direct summand of M and $A \cap B = (0)$.

Lemma 5. *Let $M = S \oplus T$ and M in \underline{A} . For any element x in S there exists a finite set of indecomposable modules S_i such that $S = \sum_1^t \oplus S_i \oplus S'$, $x \in \sum_1^t \oplus S_i$ and S_i 's are isomorphic to some in $[M]$.*

Proof. See [4], the proof of Proposition 3.

Let $M = N_1 \oplus N_2 = \sum \oplus S_\gamma$ and $N_i \in \underline{A}$ with $[N_1] \cap [N_2] = \phi$. We put $S_\gamma(i) = \sum S_\alpha$, where S_α runs through all indecomposable direct summands of S_γ , which are isomorphic to some in $[N_i]$. By $[S_\gamma(i)]$ we denote the representative classes of such S_α 's. Then $S_\gamma(i)$ is also the union of all locally direct summands A of S_γ with $[A] \subseteq [N_i]$. It is clear, from Lemma 5, $S_\gamma = S_\gamma(1) + S_\gamma(2)$. If N_1 (or N_2) has the exchange property in M , $S_\gamma = S_{\gamma_1} \oplus S_{\gamma_2}$ where $S_{\gamma_i} \subseteq S_\gamma(i)$ and every indecomposable direct summand of S_{γ_i} is isomorphic to some in $[N_i]$. In the following, we shall study a case of $S_{\gamma_1} = S_\gamma(1)$.

The following lemma is a slight generalization of [6], Lemma 7.

Lemma 6. *Let $M = N_1 \oplus N_2 = \sum_K \oplus S_\gamma$ and $N_i = \sum_{\alpha \in I_i} \oplus N_{i\alpha}$; $N_{i\alpha}$'s are completely indecomposable modules. We assume $\{N_{1\alpha}\}_{I_1}$ and $\{N_{2\alpha}\}_{I_2}$ are locally and relatively semi-T-nilpotent and $[N_1] \cap [N_2] = \phi$. Then $M = \sum_K \oplus S_\gamma(1) + N_2 = N_1 + \sum_K \oplus S_\gamma(2)$.*

Proof. We shall give a sketch of the proof (cf. [6], Lemma 7). We assume I_1 and I_2 are infinite. Put $M^* = \sum_K \oplus S_\gamma(1) + N_2$. We assume $M \neq M^*$. Then there exists $N_{1\alpha}$ not contained in M^* . Let $x_1 \in N_{1\alpha} - M^*$ and $x_{1\alpha} = \sum x_{\gamma_i}$; $x_{\gamma_i} \in S_{\gamma_i}$.

We may assume $x_{\gamma_1} \notin M^*$. Then from Lemma 5 we have $x_{\gamma_1} = \sum_{\beta} y_{i\beta}$; $y_{i\beta} \in A_{\beta} \setminus \bigoplus S_{\gamma_1}$ and A_{β} 's are indecomposable. Since $x_{\gamma_1} \notin M^*$, there exists $y_{2\beta} \in A_{\beta} - M^*$ and so $[A_{\beta}] \in [N_2]$. Now, we can find $S_{\gamma_1'}$ which contains a direct summand $S_{\gamma_1'\alpha'}$ isomorphic to $N_{1\alpha}$. Since $S_{\gamma_1'\alpha'}$ has the exchange property by [9], Proposition 1,

$$M = S_{\gamma_1'\alpha'} \oplus N_1' \oplus N_2; N_1' \subseteq N_1,$$

since $[N_1] \cap [N_2] = \emptyset$. Let $y_{2\beta} = a + b + c$; $a \in S_{\gamma_1'\alpha'}$, $b \in N_1'$ and $c \in N_2$. Then $b \in N_1' - M^*$. Hence, we can find an indecomposable direct summand $N_{1\delta}$ of N_1' such that $b = x_{1\delta} + \dots$, $x_{1\delta} \in N_{1\delta} - M^*$. On the other hand, since $[A_{\beta}] \in [N_2]$, there exists $N_{2\epsilon}$ isomorphic to A_{β} and

$$M = N_{2\epsilon} \oplus \sum_{\gamma} \bigoplus S_{\gamma}'; S_{\gamma}' \subseteq S_{\gamma}.$$

Let $x_{1\delta} = d + \sum f_{\gamma}$; $d \in N_{2\epsilon}$, $f_{\gamma} \in S_{\gamma}'$. Again there exists $f_{\gamma_2} \in S_{\gamma_2}' - M^*$. Similarly to the above, we can find a direct summand A_{γ} of S_{γ_2}' such that $[A_{\gamma}] \in [N_2]$, $f_{\gamma_2} = \sum y_{i\gamma}$ and $y_{2\gamma} \in A_{\gamma} - M^*$. Furthermore, since $N_{1\delta}$ is a direct summand of N_1' , there exists $S_{\gamma_2'}$ which contains a direct summand $S_{\gamma_2'\delta'}$ isomorphic to $N_{1\delta}$ such that

$$M = S_{\gamma_1''\alpha''} \oplus S_{\gamma_2'\delta'} \oplus N_1'' \oplus N_2; N_1'' \subseteq N_1'$$

and $S_{\gamma_1''\alpha''} \approx S_{\gamma_1'\alpha'}$. Repeating those arguments we obtain a sequence $\{x_{1\alpha}, y_{2\beta}, x_{1\delta}, y_{2\gamma}, \dots\}$, which contradicts the assumption of relative semi-T-nilpotency.

Theorem 3. *Let M be a direct sum of completely indecomposable modules and $M = N_1 \oplus N_2 = \sum_{\gamma} \bigoplus S_{\gamma}$. We assume N_i is a direct sum of indecomposable modules $\{N_{i\alpha}\}_{I_i}$ such that $N_{1\alpha} \not\approx N_{2\beta}$ for any $\alpha \in I_1$, $\beta \in I_2$ and $\{N_{1\alpha}\}_{I_1}$, $\{N_{2\beta}\}_{I_2}$ are locally and relatively semi-T-nilpotent. Then the following conditions are equivalent.*

- 1) $M = \sum_{\gamma} \bigoplus S_{\gamma}(1) \oplus N_2$
- 2) $\text{Hom}_R([S_{\gamma}(1)], [S_{\gamma}(2)]) = (0)$ for every γ
- 3) $S_{\gamma}(1)$ is a direct summand of S_{γ} and $[A] \in [N_1]$ for every indecomposable direct summands A of $S_{\gamma}(1)$, where $\text{Hom}_R([S_{\gamma}(1)], [S_{\gamma}(2)]) = (0)$ means $\text{Hom}_R(B, C) = (0)$ for all $B \in [S_{\gamma}(1)]$ and all $C \in [S_{\gamma}(2)]$.

Proof. 1) \rightarrow 2) and 3). 1) implies $S_{\gamma} = S_{\gamma}(1) \oplus S_{\gamma}'$ and $\sum_{\gamma} \bigoplus S_{\gamma}(1) \approx N_1$, $\sum_{\gamma} \bigoplus S_{\gamma}' \approx N_2$. Hence, we obtain 3). Furthermore, every C in $[S_{\gamma}(2)]$ is isomorphic to a direct summand C' of S_{γ}' . Let B be in $[S_{\gamma}(1)]$ and $f' \in \text{Hom}_R(B, C) \not\approx \text{Hom}_R(B, C')$. Then $f = \phi(f')$ is not isomorphic from the assumption. Put $B' = \{x + f(x) \mid x \in B\}$. Then $B' \approx B$ and B' is a direct summand of S_{γ} from [7],

Lemma 3. Hence, $B' \subseteq S_\gamma(1)$. Therefore, $\text{Im } f \subseteq (B + B') \cap S_\gamma' \subseteq S_\gamma(1) \cap S_\gamma' = (0)$.

2) \rightarrow 1). Let x be in $S_\gamma(1)$ and $x = \sum x_i; x_i \in A_i \subset \bigoplus S_\gamma$ with $[A_i] \in [N_i]$. On the other hand, there exists, from Lemma 5, a direct summand $B = \sum_{j=1}^t \bigoplus B_j$ of S_γ such that $x \in B$ and $[B_j] \in [M]$. Let p_j be the projection of S_γ onto B_j . If $0 \neq p_j(x) = \sum p_j(x_i), [B_j] \in [N_1]$ from 2). Hence, $x \in \sum \bigoplus B_{j,s}$ with $[B_{j,s}] \in [N_1]$. Now, let y be in $(\sum \bigoplus S_\gamma(1)) \cap N_2$ and $y = \sum y_i; y_i \in S_{\gamma_i}(1)$. Then there exists a direct summand $\sum_{\gamma_i} \bigoplus B_{j,s}$ containing y as above. Hence, $y \in (\sum \bigoplus B_{j,s}) \cap N_2 = (0)$ by Lemma 4. Therefore, $M = \sum \bigoplus S_\gamma(1) \oplus N_2$ from Lemma 6.

3) \rightarrow 1). Let $S_\gamma = S_\gamma(1) \oplus S_\gamma'$ and C an indecomposable direct summand of S_γ' . Then $C \in [N_2]$ otherwise $C \subseteq S_\gamma(1)$. Hence, for dense submodules $B_{\gamma_1}, B_{\gamma_2}$ in $S_\gamma(1)$ and S_γ' , respectively, we have $[B_{\gamma_i}] \subseteq [N_i]$. Since $\sum \bigoplus B_{\gamma_1}$ and $\sum \bigoplus B_{\gamma_2}$ are dense submodules of $\sum \bigoplus S_\gamma(1)$ and $\sum \bigoplus S_\gamma'$, respectively by [4], Theorem 1, $M = \sum \bigoplus S_\gamma(1) \oplus N_2$ by [6], Lemma 7.

Corollary 1. *Let M be as above and $M = N_1 \oplus N_2$. If either $\text{Hom}_R(N_1, N_2) = 0$ or $\text{Hom}_R(N_1, N_2) = (0)$, then N_1 and N_2 have the exchange property in M , (cf. [6], Corollary 5 to Theorem).*

Proof. N_i is in \underline{A} by [6], Corollary 5 to Theorem. The condition 2) in the theorem is satisfied for any decompositions $M = \sum \bigoplus S_\gamma$. Hence, N_1 and N_2 have the exchange property in M from Theorem 3 and [6], Theorem A.2.

Corollary 2. *Let M, N_i and S_γ be as in Theorem 3. Then the following conditions are equivalent.*

- 1) $M = (\sum \bigoplus S_\gamma(1)) \oplus N_2 = N_1 \oplus (\sum \bigoplus S_\gamma(2))$
- 2) $\text{Hom}_R([S_\gamma(1)], [S_\gamma(2)]) = (0) = \text{Hom}_R([S_\gamma(2)], [S_\gamma(1)])$
- 3) $S_\gamma = S_\gamma(1) \oplus S_\gamma(2)$.

Proof. 1) \rightarrow 3). 1) implies $S_\gamma = S_\gamma(1) \oplus S_\gamma' = S_\gamma(2) \oplus S_\gamma''$. Hence, $S_\gamma(2) = S_\gamma' \oplus S_\gamma(1) \cap S_\gamma(2)$, since $S_\gamma' \subseteq S_\gamma(2)$. If $S_\gamma(1) \cap S_\gamma(2) = T \neq (0)$, T contains an indecomposable direct summand A of S_γ from Lemma 5. Then $[A] \in [N_1] \cap [N_2]$ from the first decompositions and 1). Therefore, $S_\gamma(1) \cap S_\gamma(2) = (0)$ and $S_\gamma = S_\gamma(1) \oplus S_\gamma(2)$. Other implications are clear from Theorem 3.

References

- [1] G. Azumaya: *Correction and supplementaries to my paper concerning Krull-Remak-Schmidt's theorem*, Nagoya Math. J. **1** (1950), 117–124.
- [2] P. Crawley and B. Jónnsson: *Refinements for infinite direct decomposition of algebraic systems*, Pacific J. Math. **14** (1964), 797–855.
- [3] M. Harada and Y. Sai: *On categories of indecomposable modules I*, Osaka J. Math. **7** (1970), 323–344.
- [4] M. Harada: *On categories of indecomposable modules II*, ibid. **8** (1971), 309–321.
- [5] _____: *Supplementary remarks on categories of indecomposable modules*, ibid. **9** (1972), 49–55.
- [6] _____: *On the exchange property in a directsum of indecomposable modules*, Osaka J. Math. **12** (1975), 719–736.
- [7] T. Ishii: *On locally direct summands of modules*, Osaka J. Math. (1975), 473–482.
- [8] Z. Papp: *On algebraically closed modules*, Publ. Math. Debrecen **6** (1959), 311–323.
- [9] R.B. Warfield Jr.: *A Krull-Schmidt theorem for infinite sums of modules*, Proc. Amer. Math. Soc. **22** (1969), 460–465.