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Introduction

The main purpose of this paper is to give a formula to determine the semi-
group structure of G-equivalence classes of real and complex G-vector bundles
over special G-manifolds, [2], [3], [5]. K. Jédnich has obtained a classification
theorem for regular O(n)-manifolds with many orbit types, and given a formula
for Vecty,, of these manifolds [6]. Our formula is rather simple, but it may
apply just for special G-manifolds which satisfies a condition on normalizers
of isotropy subgroups, (C,) in § 2.

In § 1, we collect some known results for later use. § 2 contains a lemma
which is one of our main tools. In§ 3, we define an object associated with an
orbit space, which we shall call a datum, and proved the formula. As an
application of the formula, in § 4, we determine the complex Ks-group of
Brieskorn-Hirzebruch O(z)-manifold W?*7'(d), [2]. In §5, we shall prove the
existence of an O(n)-invariant 1-field on W?*7'(d) and the non-existence of
invariant 2-fields for n=>2.

I am grateful to S. Araki and F. Uchida for their kind advices.

1. G-manifolds with one orbit type

In this section, we recall a formula due to K. Janich and G. Segal [6], [9].

Let G be a compact Lie group and M be a compact smooth manifold.
A differentiable G-action on M is a smooth map u: G X M—M such that

w(&1 (g ¥)) = 1(gy° &2s %), and p(e, x) = x,

where e is the unit of G. A compact smooth manifold with a differentiable
G-action is called a G-manifold. We denote by G, the isotropy subgroup of x
€M, and by G(x) the orbit through x. We denote by (H) the conjugate class
of isotropy subgroups including H, and call it the orbit type. Let M be a G-
manifold with one orbit type (H), and P(H) be the set of fixed points under the
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action of H, i.e. P(H)={xeM; G,=H}, then =|P(H) : P(H)—n=(M) is the
principal N(H)/H = T'(H)-bundle, 2.4, [2], 1.7.35, [8], where we denote by =:
M—n(M) the orbit map, and by N(H) the normalizer of H in G. The G-
manifold M is G-equivariantly diffeomorphic to G/H X pc i, P(H), 2.4, [2], 1.7.35,
[8]. G and P(H) are N(H)-manifolds, and H acts trivially on P(H), then we
have a G-equivariant diffeomorphism G/H X rg,P(H)=G X ycmyP(H).
Throughout § 1, § 2 and §3 we denote by VéztG(M) the set of real or
complex G-vector bundles over M, and by Vects(M) the semi-group of G-
equivalence classes of them. Let z{°, (z$’) be the restriction and the G-extension,

AN A
g Ve“gSG X o P(H)) _)/\V“tMH)(P(H)) )
(7%)" : Vectyan(P(H)) — Vecto(G X yonP(H))
then we have the isomorphism
(1) 7P 2 Vecto(G X yenP(H))~Vectycn(P(H)) ,
/N
and 7§’ (z§) is the identity of Vectycy,(P(H)) .

Proof of (1).

Let E—~M be a G-vector bundle. By the G-equivalence M =G X y¢iP(H),
we have the restriction E,=E/P(H)—P(H), which is an N(H)-vector bundle.
Define a G-homomorphism of G-vector bundles « : GX yciE,—E by a(g, €,)
—g-e, and a homeomorphism 3 : G x E—~G X E by B(g, e,)=(g, g '¢;). Let B :
G X E—G X yciE be the composition of 8 with the natural projection, and p, :
G x E—E be the projection onto the second factor. For each e¢,& E, there exists

g€ G with g¢,cE,, and so B(g, e)=(g, £ '¢,)€GX ycE,. For any geG
with g’ ‘e, E,, we have

H = th(g—leo) = g_lG‘rt(eo)ga H = G»t(g’_leo) =g’_1G¢(ao)g, ’
and so gHg '=g’Hg’™*, then g’ g N(H) and (g, g7'¢,)=(g’, g’ '¢,) in GX
vanE,. If g7'e,€ E,, then (g,2) 'g.6,=g'¢,. Thus we have a G-homomorphism
N P: 4, B
B : E<— B (G X yEy) —> GX yeE, -
By the equalities

Ba(g, &) = B(ge,) = B(g: ge)) = (g, &)
aB(e,) = aB(g, &) = a(g, g7'e) = &,

a is a G-isomorphism. Thus (1) is proved.
Now we consider the case which satisfies the condition

(C) N(H)=T(H)xH.
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For any subgroup L of G, we have N(gLg™)=gN(L)g™", and so, if L satisfies
the condition (C,), then gLg™" also does and (C,) is satisfied for all L, (L).

Let E—~P(H) be an N(H)-vector bundle over P(H). By (C,) we have an
H-vector bundle E/T'(H)—P(H)/T(H)==(M). On the other hand, for a given
H-vector bundle E’—P(H)/T(H)=r(M), take the vector bundle induced by the
orbit map = |P(H) : P(H)—n»(P(H))=n(M), and denote it by P(H)X zpnk'—
P(H). We define an N(H)-action on P(H) X .p,E’ as follows : for any (v, h)e
N(H), and (», &)= P(H) X zcanE’, (v, k) (%, €)=(vx, he’). Then the bundle
P(H) X y3E’—P(H) has an N(H)-vector bundle structure. Let 7z, (z$)” be
the factorization by I'(H) and the induced bundle construction,

2P : Vectye(PH)) — Vectu(P(H)/T(H))
()" : Vectu(P(H)/T(H)) — Veet wem(P(H)),
then we have the isomorphism
(2) Vecteu(P(H)) > Vecty(P(H)T(H)),

andz@ - (z$)” is the identity of Vecty(P(H)/T(H)). Denote. n$’ -z by =y,
and (z{’)" - (z$)” by #%. By (1), (2) we have

Theorem 1. (K. Jinich, 1.4, [6], G. Segal, Proposition 2.1, [9])
Under the condition (C,), we have isomorphisms

7y 2 Vecto(M)=Vect y(n(M)), K o(M)=K p(n(M)),
and 1y -y 1s the identity of Vecty(P(H)/T(H)).
2. Special G-manifolds with restricted type

For a G-manifold M, we can choose a G-invariant Riemannian metric on
M. We denote by V, the fiber over x&M of the normal bundle of the
imbedding G(x)c M. A G-manifold M is called special, if for any x=M, and
for the slice representation G,—~GL(V,), V, is a direct sum of G,-invariant
subspaces, V,=W ,DF,, such that the representation of G, on the unit sphere
in W, is transitive, and on F is trivial.

In this paper we treat special G-manifolds which have the principal orbit
type (H) and the singular orbit type (K). Further we assume that the orbit
space (M x>) is connected, where M, denote the set {x&M; G, is conjugate
to K}. M, is a closed submanifold of M. Let N be an invariant tublar
neighborhood of M g, of the imbedding M x,C M, and M, be the complement
of the interior of N, ie. M,=M—Int N. Then we have a G-invariant
decomposition M=M ;UM x,=M,UN. Define p : 0N x[0,1]>NcM by

pl0N x (0)=the projection of the sphere bundle p : IN—M,,
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p(x, t) = Exp(tx) on 0N x (0, 1],

where we identify N with a normal disc bundle, then by the speciality of M, we
obtain a diffeomorphism f: 7(M ;)X [0, 1]>=(N) such that the following
diagram is commutative

aNx[0,1] —L>N
z-pXxid. T
/

(M) X [0, 1] — =(N), 3.0, [5], lemma p 16, [2].

Since the projection p is equivariant, it induces a smooth map p’ :#(0N)—
(M g,) with p’-z=n-p. p|N X (1)=the identity of 0N, then we have p'=
(f1(@N))™, and it is a diffeomorphism.

For a fixed principal isotropy subgroup H and for each y’en(Mx,), there
exists yex~'(y’) such that the slice S, admits x9S, with (G,),=G,=H, p(x)
=y. Let K be the isotropy subgroup G,. We denote by r* : Vectx(nw(M x>)
—Vecty(n(M k), the semigroup homomorphism induced by the inclusion
HcCK.

Now we cosider the case which satisfies the condition
(C,) N(H) = HxT'(H), N(K) = KXT(K), and T(K)cT(H)cG .

Lemma. The following diagram is commutative

E3
Vecto(dN) 2 Vecto(M )

T . * Ty

Vect y(=(0M)) <P— Vect y(n(M x>)) Z Vectg(n(M x>)) .

Proof of the lemma is divided into three parts.

(i) Commutativity on a fiber

The spaces P(K)={yeM,; G,=K} and 0P(H)={x=0N; G,=H} are
the total spaces of the principal bundles over z(M ;) and z(0N) with left
T'(K), T'(H)-actions respectively. For a given K-vector bundle (1) F'—=(Mx>),
(2) P(K) X xcpeppF'—P(K) is the induced bundle by the projection z|P(K):
P(K)—n(Mg,), then (z5xF’) is the G-vector bundle

(3) G X yeo(P(K) X gy F) = G X N P(K) = Mg, ,
and the induced bundle of (3) by p is the G-vector bundle
-(4‘) [G X N(H)ap(H)] X M(K)[G X N(K)(P(K) X ﬁ(M(K))F,)] - 8N .

The G-action in the total space of (4) is the diagonal G-action. Now we
restrict the bundle (4) on 0P(H) then we have an N(H)-vector bundle
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(5) OP(H) X a1 [G X ncar(P(K) X xcare )] — OP(H)

with the diagonal N(H)-action. We have choosed a pair (x,y) such that G,=H,
G,=K and p(x)=y. Let z(x)=b, then =(y)==(p(x))=p'n(x)=p'(b). Now we
restrict (5) on T'(H)x. For yeT'(H), p(vx)=vp(x)=vy, and so for geG, if
gy=vy then v“'geK, thus geT'(H)-K and y=g mod K. Hence the bundle
(5) over T\(H)x is

(6) TH){x X KX c(yX F’' yp)} — T(H)x.
On the other hand the G-vector bundle zxp'*r*F’ is
7 GX ne[OP(H) X aon>(p'*r*F’)] = G X yeu0P(H) .
The restriction of (7) on T'(H)x is
(8) T(H)x X p"*r*F’ ey — T(H)x .
(6) 1is H-equivariantly isomorphic to (8) by
W(D(H)x) : v(x X kX (X f)) = (v2x Kf),

where yeT'(H), keK, feF' 4, and its inverse is given by (vxXkf)—>y(xx
eX g(y X kf))=7(x X kX x(yXf)), e denotes the unit of G.

(i) Commutativity over a neighborhood of b

Let € be the radius of a fiber of the sphere bundle IN—M,, then we use
the tublar neighborhood N,—M ., with radius &/2 instead of NV if it is necessary.
The fiber N, over y is included in a slice and there exists x9N, such as G,=
H and p(x)=y. For any y,eS,NP(K), G, =G,=K. Take the slice S, at y,
with radius &, then S, DN, and for any x{e(xy,— {y.}), G.i=G,=H. Thus
{the half line through p(x{) and «x{} N 9N=wx, has the isotropy subgroup G, =
G,/=H, and G, ,=K. Hence we have local cross sections S, N P(K)Dsg'®”
(p'(U(b))) of the bundle P(K)—=(Mx>) and s§(U(b)) of dP(H)—n(dN) such
that the diagram

(U®) _P, s (p'(U(B)))
s ) s/
u) £, PAL0)

is commutative. We can suppose that the bundle F’ is trivial over p’(U(b)).
By using W(I'(H)x) in (i) and the product representation F’|p'(U(b))=F,/ X
p'(U(d)) as a K-vector bundle over p'(U(b)), we construct an isomorphism of
N(H)-vector bundles over I'(H)sg’(U(b)) of
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(9) TCH){H(UG) % K x x5 (UB) X Fyrop x p/(UB)}—T(H)(UB)
onto
(10)  TE){s(U®)xr*Fyrep, x U(B)} — T(H)siy (U(B)) ,
which is given by
W(T(H)s(U®))) : v{xxX kX g(yxfxp’ (bl))} — yx X kfXb,,
where xes$(U(b)), y=p(x), fEF )4y, kEK and b,e U().

(iii) Commutativity over 0N
Since #(M(g>) is compact connected, by the construction in (ii), we can

choose an open covering of #(ON)=n(M ), D U,==(0N) which admit local

cross sections s§’ : p'(U;)—=P(K), s : U,—~0P(H) with p-si¥=si-p’. Further
we can assume that F’|p/(U;) is product for each z. Now we construct
isomorphisms W(T'(H)s§’) of N(H)-vector bundles as in (ii). If bcU,NU,,
then there exists y(b)eT(K) such as s(p'(0))=(b)s&(p'(b)). On the other
hand s§’(b)=1'(b)ss¥(b) for some /(b)) T'(H), then 7'(b)'v(b) K and so v'(b)
=q(b)k for some ke K N T(H), or equivarently y(b)=7'(b)k™". Then W(T'(H)s’

coincides with W(T'(H)s§) over T'(H)s(U;N U ;)=T(H)sg(U,NU;) by the
definition of W(I'(H)sy) in (ii). Since T'(H)si( U ;) and T(K)sg'(p'(U;)) are
open in 0P(H) and P(K) respectively, we can paste the family W(T'(H)sy) i=1,

, [ to get an isomorphism of N(H)-vector bundles over 0P(H) of

(1) BP(H) X 1[G X i PK) X acasee )] — OP(H)
onto
(12) OP(H) X yco (P *r*F’) — 0P(H) .

We denote the isomorphism by W(0P(H)). By the first step of the proof of
Theorem 1 in § 1, we have the isomorphism 1 X ¢z, P (0P(H)) of

(13)  [GX wedOP(H)] X Moo G X e (P(K) X wcppe )] = ON
onto

(14) G X ncep[0P(H) X zonop’*r*F’] — 0N .
We denote the required isomorphism by ¥.

Notational conventions. Let M be a G-manifold with one orbit type (H)
and the property (C,), and ¢ : E—F be a G-isomorphism of G-vector bundles
over M, then @ induces the H-isomorphism ¢’ : 74 E—nE, we denote it by
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7+(®). On the other hand, for a given H-isomorphism ¢’ : E'—E’ of H-vector
bundles over z(M), the induced G-isomorphism zxE’—rn3xE’ is denoted by
nx(@’). Suppose f: N—M to be a G-map of G-manifolds, then the above
@ : E—F induces the G-isomorphism f*E—f*E, we denote it by f*(@). The
G-isomorphism due to G. Segal, E—»>z37z4E, is denoted by zymy, (§1 of this
paper, § 2, [9]).

3. A classification theorem

AN A

We consider a family D= {(F’, E{)& Vectx(rn(M>)) X Vect y(=(M))), ctn},
where we use notations in § 2 and ¢ is an isomorphism of H-vector bundles
p*r*F'—E{|0x(M,), say 0E{. We call each element of D a datum.

DerINITION 1. A datum (F', E{, ay) is equivalent to a datum (F’, E{, aly)
if and only if there exist isomorphisms py of K-vector bundles and @y of
H-vector bundles such that the diagram

P

L e 2B, BB ¢ By

l Pk lpH,K l Opy l PH
p/*r*

Y . a 14
E'— p*r*F" — 0E{ c E{
is commutative, where py . is the isomorphism pyx as an H-vector bundle
isomorphism.
The relation in the definition is an equivalence relation.

Proposition 1. For two data (F’, E{, ay), (F’, E{, @y) if oy is homotopic
to @y’ by a homotopy {h, ; 0=<t=<1} such that h, is an H-isomorphism for each t,
then the data are equivalent each other.

Proof. We choose a coloring 0r(M,)xICn(M,). Since h,-hs*=the
identity of 0E{, the homotopy A,_,-hs' : E{|0z(M,)x I—-E{|0z(M,)x I can be
extended to an H-automorphism @4 : E{—E{ such that the diagram

aH/'G_E{ c Ei
perE ay |arait | on
NOE{ c E{
is commutative.

Remark. The isomorphism ay of a datum (F’, E{, ay) determines a
canonical G-isomorphism between G-vector bundles p*z3F’ and =3z0E{. In
fact, by the lemma in § 2, we have the G-isomorphism W : p*n  F'—nyp'*r*F’.
Using ay, we have a G-isomorphism 15X yem(lopcan X won>@n) : wap *r* F/—
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77(0E?), ie. mx(ay). Let ®g(ay) be the composition zx(ay)-¥s, which
we call the canonical G-isomorphism.

Using the deformation along geodesics which are perpendicular to M.,
we have the equivariat deformation retract p : N—>M, with p|dN=p.
Precisely p is defined to be 5- p(x, t)=p(x) over p(dN x (0.1]) and p(x)=x for
x& Mg, where p has been used in § 2.

Proposition 2. If a datum (F', E{,a ) is equivalent to a datum (F', E{, @),
then Pp*myF'UoyapmsxEl is G-isomorphic to p*nyF’ U eyz, w1, where we
denote by U o, the clutching construction.

Proof. From the equivalence

F— prep 2B, oEr  Ey

i Pk lPH,K ‘a¢’H l%ﬁr
v a, ¥ y
F —s p*r¥*F — QE{ c E{,

we have the commutative diagram

o v o (04
D¥nxF’ DO  prayF’ -5 mx(p'*r*F’ M mx0E{ C =zE{

lﬂ;(awa) ln;(%z)

llzv X 7x(Px) J/IBN X 7x(Px) l”i(PH,K)
nx0E{ < =xE{,

Pl o pragP S () )

for the second square from the left, its commutativity is obtained from the
commutative diagram

sk e(yxfxpp) — CLESEUCY o rs,
|
Lpcen X w3(pk) Lapcr X 75(Phx)
ek (yx o) x /(b)) LY 5 ey,

c.f. (ii), the proof of the lemma, § 2. For other squares, the commutativities are
resulted by the definition of zi. Since each arrow is a G-isomorphism, we have
the proposition.

For each G-vector bundle E over M, we use the notations, E|M,=E,,
zyE,=E{, E|ON=0E,, E|M x,=F, n,F=F’.

Since N is a compact differentiable manifold, using p and the covering
homotopy theorem, we have a G-equivalence p§ : p*F—E|N, and we get a
G-isomorphism pEU 1g, : [)*FUMéEleE. Let p%:p*F—E|N be another

G-isomorphism. By the commutative diagram
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P*F U, E, e 23

(B8)7pE U g,

) U1,
p*FUazakEl —' K,

D*F Uy E, is G-isomorphic to p*F U434 E,.

G-isomorphisms 0p¥, ¥ and 77y induce H-isomorphisms 0p¥=r,
(0p¥) : mx(p*F)—0E], Vyu=nw(V¢) : mx(p*nxF)—>p *r*F’ and q=n(p*
([z57%]7") : mx(p*nF)—>r4(p*F) respectively. To the bundle p*F U
2s%E:, we make to correspond a datum (F”, E, 0p%-q-V7'). By the next

proposition the correspondence is independent of the choice of p¥.

Proposition 3. If a G-vector bundle E is G-isomorphic to a G-vector bundle
E, then the resulting data are equivalent.

Proof. Let ¢ : E—E be a G-isomorphism. Choose representations p*F U
25k E—E, ﬁ*FUaZéEIﬁE. Let @ be (P&) (@pc|N)(pE) : p*F—p*F. Since
g is resulted from P | M, : F—F, we have commutative diagrams

K[ (= -1 *

5 (p*r*F) }I_G— an;F’p [Cz-4) l p":F o < aEl cC E,

ln;(P’*r*ﬂ*(%laN) lP*n;ﬂ*(%I@N) l%laN l¢cI6N lfpalMl
E,

- R4 *[(rgms) ™ apE v
ﬂ;(P’*r*F’) (__G P*ﬂ';F,P [(”*7’*) ]—rP*F pG’ aEl c

and

opk. '\P_I
Fooo— g PEETH ap o gy

I
lPKzﬂ*(¢GlaN)) lpn,x J{n*(%ISN) ln*(%lM.)
, , Opfq-YE Y A
F _ PEreF "> 09E{ < Ei.

The equivalence classes of elements of D has a semi group structure by
the Whitney sum, we denote it by Dy x(M). By Proposition 3 we get a
homomorphism S : Vecto(M)—D y (M) which is defined to be S(E)=(F’, E{,
0p%-q-¥a') for a representation P*F U,,%E, up to G-isomorphisms. We
define 1': D—>Vecto(M) by T(F', B, am)=*75F' U oycapmiEis then by
Proposition 2, it induces a homomorphism T : Dy x(M)—Vecto(M). Now we
are in a position to prove our main theorem.

Theorem 2. The homomorphism S : Vecto(M)—D y (M) is an isomorphism
of semi groups and T is its inverse.
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AN
Proof. For E< Vects(M) we choose a representation p*F U, 4E,=E and
take the datum (F', E{, 9p%-q-Wg'). We consider the following diagram,

o _
rrma(pr) LT, e (prP) TRy (o)

TR % 7x(¥ ) ' ”;(GP,";)

~(0pE-q- Wt

praaF S () POPEEYR) Lo

KTk TP*(”I”*) TR
opé
p*F — 0E, .

In order to get the commutativity of the lower square, we use commutativities
of other parts, and we have

73(0pFr 4 V) Yo pX(mwims) = n5(0p%) - wx(q) - w3 (V") Yo p*(mxms)
= nx(0p%) wx(q) - wxm s~ p* ()
= mmx(0pE) mxm (¥ [(mims) 7]) wxma(p* (mxms)) - i

= wxrx(0pE)- mxms=nyms-0PE
and G-isomorphisms,
o~ ~ -V -
E=p*F Uap§E1=P*”*F U @(3‘0}5’4"]{1—{1)7[*12{ ,

where ®(0p%+¢- V' )=n5(0p% 9 V7') V¢, (Remark after Proposition 1).

Let [E] be the equivalence class which contains E, then we have T'-S([E])
=[E] by the above equalities and Propositions 2,3. Let (F’, E{, ay) be a
datum, then T(F', E{, ap)=p*z5F’ U owpmxE{. Since D(ap)V'=ry(am)
and 74wy =the identity, (F’, E{, ay) is a datum of this representation. Thus
we have proved that S-T=the identity of Dy ,(M).

4. Ko(,,)( Wzn_l(d)), ngZ.

Brieskorn-Hirzebruch O(n)-manifold W**7'(d) is the loci of equations 2§+
B4 +22=0, |2,)|°+ |2,|*+ -+ |24|*=2. By 4.5 of [2], the manifold is a
special O(rn)-manifold with the orbit type (O(n—2), O(n—1)), and the orbit
space is D?, the 2-disc, and 0D°=S"=z(W**"(d)ocn_1»)-

In this section, we consider complex vector bundles, then any vector bundle
is orientable. Since the boundary S* is a trivial O(n—1)-manifold, any vector
bundle over S* is equivalent to a product O(n—1)-vector bundle, and we have

AN N
an isomorphism Vect,,_,,(S*)=O(n—1), where O(n—1) is the semi group of
isomorphism classes of complex O(z—1)-modules, (Prop. 2.2, [9]).
Let K be the Grothendieck functor, then by Theorem 2 in § 3, we have
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K(Do(n— 2,007 1)) =K( VeCto<n)( Wz"_l(d9\= Ko(n)( Wzn-l(d)) ’
Ko(n— 1)(S1):K( VeCto(n—l)(Sl)) = K(O(n_ 1)) = R(O(n— 1)) s

where R(G) is the complex representation ring of G.

Using notations in § 3, we define a homomorphism of semi groups j* :
Dy x—Vectx(n(M>) by j*(F, Ef, ay)=F'.

In the case of M=W?*""\(d), n(M, cocn_2»)=D?, where € is the radius of the
disc 7(M, cn-»). We define a homomorphism &* : Vecty,_,(S*)=Dyn_s on-1>
by R¥(S'X V)=(S*'XV, D2X1*V, atyu_p=p' X 1,4y) for each O(n—1)-module
V. Then we have j*.k*=the identity of Vect,,_,,(S"), and K ,_,,(S*)=R(O
(n—1)) is a direct summand of K..,(W**7'(d)).

Now we prove our main result in this section.
Theorem 3.
Ko(n)(WZ”—l(d)) = R(O(n—l)) .

Proof. At first we seek a linear form of a clutching function «y,_,. We
can do this quite parallely to the proof of the Bott periodicity due to Atiyah-Bott,
[4]. For any datum (S*X V, DX r*V, atyn_y), the clutching function aty,_,, is
equivariantly homotopic to a Laurent polynomial clutching function By,_,=
> a2*, 2.5, Proposition p. 130 [4], then (S*X V, DX r*V, @yn_,) is equivalent

lkl=t
to (S*X V, D2X r*V, Bya_y) by the proposition 1, § 3. There exists a polynomial
clutching function p(2)=b,+b,2-+ +--+b,2° with By,_,,=p(z)2~°. By the diagram
/5% 5% -s
s 275 s PO ooy ¢ prrr
llslxz“s laix27*

/K 43k
sxv 275 sidpy 29 o1l ¢ Disrrr,

(S'X V, D*xr*V, p(z)z~°) is equivalent to (S'X V, D2xr*V, p(2)). p(2)+1cp
+--++1, is equivariantly homotopic to a linear clutching function az+b,
further to a, 2®b_, and (S*X (s+0)V, DIxr¥(s+)V, p(2)+1p+-+1¢) is
equivalent to (S*X (s+1)V, DZx {(r*(s+1)V)SDB*(s+1)V)°}, a,2Pb_), where
(r*(s+1)V)% and (r*(s+1)V)2are O(n—2)-modules and a,, b_ are O(n—2)-
automorphisms, Proof of 3,2. p. 132, 4.6 p. 135, [4], (Since az+b is O(n—2)-
equivariant, then p,, p. are O(n—2)-equivariant and the decomposition
im p,Bker p, is O(n—2)-invariant).

By the corollary 2 (i) [7], r* : R(O(n—1))—R(O(n—2)) is epimorphic, then
for any O(r—2)-module L there exist O(n—1)-modules L,, L, with L=r*L,—
r*L,, and so L+4r*L,=r*L, in R(O(n—1)). Thus L+4r*L +L,=r*L,+L,,
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where L, is a trivial O(n—2)-module and it can be considered as a trivial O(n—
1)-module. Then we can choose O(rn—1)-modules. V., V_ with (r*(s+1)V)L P
r*Veimr*. Since [a,2P]P[b_Ply_]={[a.Ply,]B[b_P1v_1}. {[=]D[1]},
adding the datum (S'x(V,PV_), Dix (r*V Pr*V_), zpl)eim k* to the
last one, the datum
D) (< {s+OWpV, BV}, DEx {[(r*(s+1)V)sPr*V JP[r*(s+ 1))
®r*V_1}, [a.2D:]Db-®1v_])
is equivalent to
2) (') A{(s+1)V V. @V }, Dix {[(r*(s+1)V)\Pr*V B[r*(s+1)V)%
©r*V_1}, [a.Dly, 1Dy ]) .
The O(n—2)-automorphism [a, D1y, ]D[b_P1y_] has the extension to an O(n—
2)-automorphism of DZx {[(r*(s+1)V)sPr*V_ ]D[(r*(s+1)V)°Pr*V _]}, thus
the datum (2) is equivalent to
3) (S')x{s+1)VaV.,. V. }, DX {[(r(s+1)V)SDrV, ]B[r*(s+1)V)2
@r*V_]}, the identity),

which belongs to im k*. By the remark before the theorem 3, we have proved
the theorem.

RemARK. S. Araki has obtained the theorem by using a Fary type spectral
sequence.

5. Invariant vector field on W*"(d), n>2

5.1 A Killing vector field on W**7(d)
The manifold W**7*(d) is an SO(2) X O(n)-manifold. In fact for 4 O(n),
the action is defined by

A(zm Byttt .2’,,) = (.2’0, A(zu Ty zn)) .

On the other hand the 1-parameter group {Diag (¢*%, ¢4, .-, &?*); 0<t<
27} =80(2) acts by

Diag (€%, e, --+, e¥*)(2,, *++, 24)=(€"*2,, €¥'¢2,, +--, €¥'3,),

and the action is free for sufficiently small [#|. The actions of SO(2) and O(n)
are commutative.

Choosing an SO(2)X O (n)-invariant Riemannian metric on W**7(d), we
have SO(2) x O(n)c I(W?**~\(d)), the group of isometries of W**~'(d), and SO(2)
is an 1-parameter group of transformations. Define a vector field on W**~'(d) by
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(1) X,f = Y@ for any fe C=(Up), B,
t=0
where U(p) is a neighborhood of a point p in W?**7Y(d), and ¢,=Diag (¢**,
et ..., ¢%'"), then by definition, X is a complete vector field on W?*7'(d).

The next proposition is well known in differential geometry.

Proposition 5. Let X be a complete vector field on a Riemannian manifold
M, then X is a Killing vector field if and only if Exp tX is an isometry of M for
each t=R.

Thus the vector field X defined by (1) is a Killing vector field. Since ¢,
acts freely for sufficiently small |¢], the vector field X has no singularity.

DrrINITION. Let G be a compact Lie group. 4 vector field X on a G-
manifold M is called G-invariant if it satisfies the equality

2) (dg), X, = X,, forall pe M and geG .

Let {p, : t=R} be an l-parameter group of transformations of a G-
manifold M, and suppose to be gp,=@,g for all g=G and ¢ R, then for any

feC=(Ulgp), R),

()} X 1) = Xf-) = WP D) doled)) —x,,f,

then the condition (2) is satisfied, and the vector field X is G-invariant.
By these discussions, we have proved

Theorem 4. There exists an O(n)-invariant Killing vector field without
singularity on W**7(d).

The next proposition is well known in the case without G-action.

Proposition 5. A G-manifold M admits a G-invariant vector field without
singularity if and only if the tangent bundle T(M)of M has a G-invariant
decomposition T(M)=E B0, where E is a G-vector bundle and 6' is the product
G-line bundle over M, and the decomposition is smooth.

We can prove the proposition quite similarly to the case without G-action.

RemaRKk (1). Suppose 7 to be a positive odd integer and #=3, then W?*™*
(2k+1) is diffeomorphic to S**7%, the standard sphere if 2k+1 =41 mod 8, and
to D' the Kervaire sphere if 2k+1=+43 mod 8, and >¥' is not
diffeomorphic to S**7* if 2k+1=+43 mod 8 and #-+1 is not a power of 2.
(11.3, [2]).
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REMARK (2) S**'admits 1-field but not 2-field (27.11, [11]). Here we quote
a theorem in [10]. Let f:S”—> be an orientation preserving homotopy
equivalence of the standard n-sphere S” onto a homotopy sphere >}, then
we have an equivalence f*T(3*)~T(S”). Thus >** admits 1-field but not
2-field.

5.2 Non existence of invariant 2-fields
Now we proved the following

Theorem 5. For n=2, the O(n)-manifold W** *(d) admits an O(n)-
invariant 1-field, but not O(n)-invariant 2-fields.

Proof. The orbit map = : W?*7'(d)—D? is the projection (2, 2, ***, ,)—
Z,. Since |z =1, |2,|°=]z,|’=1 for (2, 2,)eP(O(n—1)) and z,=e""#, z,
=12 for 0=<t<1. Then
164D = —ged™it if g is odd ,
= 1e?™" if d is even .
Thus
(3) P(O(rn—1)) = S'if d is odd and the orbit map P(O(n—1))—S" is the
non trivial covering,

= S'US", the disjoint sum, if d is even and the orbit map

is the trivial covering.

Let X be a vector field on a G-manifold M and generate the 1l-parameter
group of transformations {p,}. The next proposition is well known.

Proposition 6. X is G-invariant if and only if gp,—=@,g for each t= R and
geG.

Proof. The if part has been proved in 5.1. Suppose X to be G-invariant.
For any fe C=(U(gp)), f-g= C=(U(p)), 5.1 for notations. By the equalities

(dgX ,)f = X ,(f-8)
— lim (f-g-p:—f-2)g " (gP)

t>0 t
— lim 8287 —1)8P)
t>0 t

1

dgX generates g-@;-g”'. Since dgX=X, we have g-p,-g7'=p, by the
uniqueness of the solution of ordinary differential equations.

Proposition 7. Suppose M to be a G-manifold with non empty fixed point
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set F, and admits an invariant vector field X without singularity. Then the
restriction X | F is a tangent vector field on F.

Proof. Suppose X to be a vector field on M and the restriction X|F to
be a non trivial, non tangential vector field on F, then X can not be G-invariant.
For, if X is G-invariant and generates the 1-parameter group of transformations
{®:}, then there exist p,= F and t,= R with @, p,eF since X is not tangential

to F. By Proposition 6 g+, «po=,, - gP=p:,p, for any g G, then ¢, p,c F
which is a contradiction.

Now we return to the proof of the theorem. If X is an O(n)-invariant,
then it is O(n—1)-invariant. By (11) and Proposition 7, W?"7}(d) can not admit
O(n—1)-invariant 2-fields. Thus we proved the theorem.
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