

Title	Convolution for the transform induced by Fourier integral transform and its inverse
Author(s)	Nguyen, Xuan Thao; Nguyen, Minh Tuan; Bui, Thi Giang
Citation	Annual Report of FY 2006, The Core University Program between Japan Society for the Promotion of Science (JSPS) and Vietnamese Academy of Science and Technology (VAST). 2007, p. 201-212
Version Type	VoR
URL	https://hdl.handle.net/11094/12918
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Convolution for the transform induced by Fourier integral transform and its inverse

Nguyen Xuan Thao¹, Nguyen Minh Tuan², Bui Thi Giang²

¹ *Hanoi Water Resources University*

² *Hanoi University of Natural Science*

Abstract

The convolutions for $T = 3F + F^{-1}$ transforms are formulated, its properties and applications to solving integral equations are considered.

1 Introduction

The convolution for integral transforms were studied in the 19th century, at first the convolutions for Fourier transform, for the Laplace transform, for the Mellin transform and after that for Hilbert transform [13], Hankel transform [12], Kontorovich- Lebedev transform and Stieltjes transform.

The convolution for the Fourier integral transform [10]

$$(f * g)(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x-y)g(y)dy, \quad (1)$$

for which satisfies the factorization equality

$$F(f * g)(y) = (Ff)(y)(Fg)(y), \quad y \in \mathbb{R}$$

in which F is the Fourier transform [4] and is defined as follows

$$\tilde{f}(y) \equiv (Ff)(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-ixy} f(x)dx.$$

$$f(x) \equiv (F^{-1}\tilde{f})(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{ixy} \tilde{f}(y) dy.$$

In 1941, Churchill R. V. introduced the convolution of two functions f and g for the Fourier cosine transforms [3]

$$(f * g)(x) = \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} f(y)[g(|x-y|) + g(x+y)] dy, \quad x \in \mathbb{R}_+$$

for which satisfies the factorization equality

$$F_c(f * g)(y) = (F_c f)(y)(F_c g)(y), \quad \forall y \in \mathbb{R}_+,$$

here F_c is the Fourier cosine transform.

Afterwards, in 1967, V. A. Kakichev proposed a constructive method for defining the convolution with a weight- function which is more general than the convolution (1). And as by- products, convolutions of many integral transforms such as the Meijer, Hankel, Fourier- sine were found. For instance, the convolution with the weight- function $\gamma(y) = \sin y$ of the functions f and g for the Fourier- sine integral transform F_s was studied in [1], [5]

$$(f \overset{\gamma}{*} g)(x) = \frac{1}{2\sqrt{2\pi}} \int_0^{+\infty} f(t)[\text{sign}(x-t+1)g(|x-t+1|) - \text{sign}(x-t-1)g(|x-t-1|) - g(x+t+1) + \text{sign}(x+t-1)g(|x+t-1|)] dt. \quad (2)$$

for which the factorization property holds

$$F_s(f \overset{\gamma}{*} g)(y) = \sin y (F_s f)(y)(F_s g)(y), \quad \forall y > 0.$$

In 1998, Kakichev V. A and Nguyen xuan Thao proposed a construction method for defining the generalized convolutions of three arbitrary integral transforms [5]. In recent years, several generalized convolutions of integral transforms were published [6]-[8].

In this talk, we define the convolution with the weight- function for the $T = 3F + F^{-1}$ transform, study some its properties and apply them to solving integral equation.

2 Convolution

We consider T transform

$$\begin{aligned}(Tf)(y) &= 3(Ff)(y) + (F^{-1}f)(y) \\ &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} [4 \cos(yx) - 2i \sin(yx)] f(x) dx, \quad y \in \mathbb{R}.\end{aligned}$$

Definition 1. The convolution with the weight- function $\gamma(x) = e^{-\frac{x^2}{2}}$ of two function f, g for the T transform is defined as follows

$$(f \stackrel{\gamma}{*} g)(x) = \frac{1}{8\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(u)g(v) [13e^{-\frac{(x-u-v)^2}{2}} + 3e^{-\frac{(x+u-v)^2}{2}} - 3e^{-\frac{(x+u+v)^2}{2}} + 3e^{-\frac{(x-u+v)^2}{2}}] dudv. \quad (3)$$

Theorem 1. Let f, g be function in $L(\mathbb{R})$. Then the convolution with the weight- function $\gamma(y) = e^{-\frac{y^2}{2}}$ of them for the T transform belongs to $L(\mathbb{R})$ and the fractORIZATION property holds

$$T(f \stackrel{\gamma}{*} g)(y) = \gamma(y)(Tf)(y)(Tg)(y).$$

Proof. We prove $(f \stackrel{\gamma}{*} g)(x) \in L(\mathbb{R})$.

We have

$$\begin{aligned}\int_{-\infty}^{+\infty} |(f \stackrel{\gamma}{*} g)|(x) dx &\leq \frac{1}{8\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} |f(u)||g(v)| \left| 13e^{-\frac{(x-u-v)^2}{2}} + 3e^{-\frac{(x+u-v)^2}{2}} - 3e^{-\frac{(x+u+v)^2}{2}} + 3e^{-\frac{(x-u+v)^2}{2}} \right| dudvdx \\ &\leq N_1 + N_2 + N_3 + N_4,\end{aligned}$$

where

$$N_1 = \frac{13}{8\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} |f(u)||g(v)| e^{-\frac{(x-u-v)^2}{2}} dudvdx.$$

$$N_2 = \frac{3}{8\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} |f(u)| |g(v)| e^{\frac{-(x+u-v)^2}{2}} du dv dx.$$

$$N_3 = \frac{3}{8\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} |f(u)| |g(v)| e^{\frac{-(x+u+v)^2}{2}} du dv dx.$$

$$N_4 = \frac{3}{8\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} |f(u)| |g(v)| e^{\frac{-(x-u+v)^2}{2}} du dv dx.$$

By using the formula $\int_{-\infty}^{+\infty} e^{-u^2/2} du = \sqrt{2\pi}$ and since $f, g \in L(\mathbb{R})$ then $N_i < +\infty$, $i = 1 \dots 4$.

So

$$\int_{-\infty}^{+\infty} |(f \stackrel{\gamma}{*} g)(x)| dx < +\infty.$$

We prove the factorization property

$$T(f \stackrel{\gamma}{*} g)(y) = \gamma(y)(Tf)(y)(Tg)(y).$$

We have

$$\begin{aligned} & \gamma(y)(Tf)(y)(Tg)(y) = \\ & = \gamma(y) \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(u) (3e^{-iyu} + e^{iyu}) du \int_{-\infty}^{+\infty} g(v) (3e^{-iyv} + e^{iyv}) dv \\ & = \frac{1}{8\pi\sqrt{2\pi}} 4\sqrt{2\pi} e^{-\frac{y^2}{2}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(u) g(v) (3e^{-iyu} + e^{iyu})(3e^{-iyv} + e^{iyv}) du dv. \end{aligned}$$

Put

$$B_1 = \sqrt{2\pi} e^{-\frac{y^2}{2}} [39e^{-iyu} e^{-iyv} + 13e^{iyu} e^{iyv}].$$

$$B_2 = \sqrt{2\pi} e^{-\frac{y^2}{2}} [9e^{iyu} e^{-iyv} + 3e^{-iyu} e^{iyv}].$$

$$B_3 = -\sqrt{2\pi} e^{-\frac{y^2}{2}} [9e^{iyu} e^{iyv} + 3e^{-iyu} e^{-iyv}].$$

$$B_4 = \sqrt{2\pi} e^{-\frac{v^2}{2}} [9e^{-iyu}e^{iyv} + 3e^{iyu}e^{-iyv}].$$

We consider

$$\begin{aligned}
B_1 &= 39\sqrt{2\pi} e^{-\frac{u^2}{2}} e^{-iyu} e^{-iyv} + 13\sqrt{2\pi} e^{iyu} e^{iyv} e^{-\frac{v^2}{2}} \\
&= 39 \int_{-\infty}^{+\infty} e^{-i(x-u-s)y} e^{\frac{-(x-u-v)^2}{2}} e^{-iyu} e^{-iyv} dx + 13 \int_{-\infty}^{+\infty} e^{i(x-u-v)y} e^{\frac{-(x-u-v)^2}{2}} e^{iyu} e^{iyv} dx \\
&= 13 \int_{-\infty}^{+\infty} 3e^{-iyx} e^{\frac{-(x-u-v)^2}{2}} dx + 13 \int_{-\infty}^{+\infty} e^{iyx} e^{\frac{-(x-u-v)^2}{2}} dx \\
&= 13 \int_{-\infty}^{+\infty} (3e^{-iyx} + e^{iyx}) e^{\frac{-(x-u-v)^2}{2}} dx. \tag{4}
\end{aligned}$$

Similarly, we have

$$B_2 = 3 \int_{-\infty}^{+\infty} (3e^{-iyx} + e^{iyx}) e^{\frac{-(x+u-v)^2}{2}} dx. \tag{5}$$

$$B_3 = -3 \int_{-\infty}^{+\infty} (3e^{-iyx} + e^{iyx}) e^{\frac{-(x+u+v)^2}{2}} dx. \tag{6}$$

$$B_4 = 3 \int_{-\infty}^{+\infty} (3e^{-iyx} + e^{iyx}) e^{\frac{-(x-u+v)^2}{2}} dx. \tag{7}$$

From (4), (5), (9), (7) we obtain

$$\begin{aligned}
4\sqrt{2\pi} e^{-\frac{t^2}{2}} (3e^{-iyu} + e^{iyu}) (3e^{-its} + e^{its}) &= \int_{-\infty}^{+\infty} (3e^{-iyx} + e^{iyx}) [13e^{\frac{-(x-u-v)^2}{2}} \\
&\quad + 3e^{\frac{-(x+u-v)^2}{2}} - 3e^{\frac{-(x+u+v)^2}{2}} + 3e^{\frac{-(x-u+v)^2}{2}}] dx.
\end{aligned}$$

Hence

$$\begin{aligned}
\gamma(y)(Tf)(y)(Tg)(y) &= \\
&= \frac{1}{\sqrt{2\pi}} \frac{1}{8\pi} \int_{-\infty}^{+\infty} (3e^{-iyx} + e^{iyx}) \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(u)g(v) [13e^{\frac{-(x-u-v)^2}{2}} \\
&\quad + 3e^{\frac{-(x+u-v)^2}{2}} - 3e^{\frac{-(x+u+v)^2}{2}} + 3e^{\frac{-(x-u+v)^2}{2}}] du dv dx \\
&= T(f \overset{\gamma}{*} g)(y).
\end{aligned}$$

□

Remark 1. In the $L(\mathbb{R})$ space, the convolution (3) is comutative, associative and distributive.

Theorem 2. *In the space $L(\mathbb{R})$, there does not exist the unit element for the operation of the convolution with a weight function for the T transform.*

Proof. Suppose that exists e , the unit element of the operation of convolution in the space $L(\mathbb{R})$: $e \overset{\gamma}{*} g = g \overset{\gamma}{*} e = g$ for any function g belonging to $L(\mathbb{R})$. Then we have

$$T(e \overset{\gamma}{*} g)(y) = (Tg)(y), \quad \forall y \in \mathbb{R}.$$

Hence

$$e^{-y^2/2}(Te)(y)(Tg)(y) = (Tg)(y), \quad \forall y \in \mathbb{R}.$$

The last is eqivalent to the equality

$$(Tg)(y)[e^{-y^2/2}(Te)(y) - 1] = 0, \quad \forall y \in \mathbb{R}.$$

Choosing g so that $(Tg)(y) \neq 0, \forall y \in \mathbb{R}$, we see that $e^{-y^2/2}(Te)(y) - 1 = 0$ or $(Te)(y) = e^{y^2/2}$. Since assumption that $e \in L_1(\mathbb{R})$ then

$$(Te)(y) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (3e^{-ixy} + e^{ixy}) e(x) dx.$$

$$|(Te)(y)| \leq \frac{4}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} |e(x)| dx < +\infty, \forall y.$$

So $(Te)(y)$ is bounded function and $e^{y^2/2}$ is not bounded function. This is a contradiction. Hence there does not exists unit element for the operation of convolution with a weight function for the T transform in the space $L(\mathbb{R})$.

□

Definition 2. The norm in the space $L(\mathbb{R})$ is defined by

$$\|f\| = \frac{1}{2\sqrt{2\pi}} \int_{-\infty}^{+\infty} |f(x)| dx.$$

Theorem 3. If f, g are functions in to $L(\mathbb{R})$, then the following inequality holds

$$\|f \overset{\gamma}{*} g\| \leq \|f\| \cdot \|g\|.$$

Put

$$L(e^{|x|}, \mathbb{R}) = \{h, \int_{-\infty}^{+\infty} e^{|x|} |h(x)| dx < \infty, \quad h \in L(\mathbb{R})\}.$$

Theorem 4 (A Titchmarsh theorem). Let $f, g \in L(e^{|x|}, \mathbb{R})$.

If $(f \overset{\gamma}{*} g)(x) = 0, \forall x \in \mathbb{R}$ then either $f(x) = 0$ or $g(x) = 0, \forall x \in \mathbb{R}$.

Proof. Under the hypothesis $(f \overset{\gamma}{*} g)(x) = 0, \forall x \in \mathbb{R}$, it follows that

$$T(f \overset{\gamma}{*} g)(x) = \gamma(x)(Tf)(x)(Tg)(x), \forall x \in \mathbb{R}.$$

$$\gamma(x)(Tf)(x)(Tg)(x) = 0, \quad x \in \mathbb{R}.$$

Consider

$$(Tf)(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (3e^{-ixy} + e^{ixy}) f(x) dx, \quad \forall x \in \mathbb{R}.$$

Since

$$\begin{aligned} \left| \frac{d^n}{dy^n} [3e^{-ixy} + e^{ixy}] f(x) \right| &= |(ix)^n| [(-1)^n 3e^{-ixy} + e^{ixy}] f(x) | \\ &\leq |4x^n f(x)| = |4x^n e^{-|x|} \cdot h(x)| \\ &\leq c|h(x)|. \end{aligned}$$

Due to Weierstrass' criterion, the integral $\int_{-\infty}^{+\infty} \frac{d^n}{dy^n} [3e^{-ixy} + e^{ixy}] f(x) dx$ uniformly converges on \mathbb{R} . Therefore, based on the differentiability of integrals depending on parameter, we conclude that $(Tf)(y)$ is analytic for $y \in \mathbb{R}$. Similarly, $(Tg)(y)$ is analytic for $y \in \mathbb{R}$.

So we have $(Tf)(y) = 0$ or $(Tg)(y) = 0$. It follows that either $f(x) = 0$ or $g(x) = 0$. \square

Theorem 5. *If f and g are functions in $L(\mathbb{R})$, then the following equality holds*

$$(f \overset{\gamma}{*} g)(x) = \frac{1}{8\pi} \left[13[f \overset{*}{F} (e^{-v^2/2} \overset{*}{F} g(v))](x) + 3[f_1 \overset{*}{F} (e^{-v^2/2} \overset{*}{F} g(v))](x) \right. \\ \left. - 3[f \overset{*}{F} (e^{-v^2/2} \overset{*}{F} g(v))](x) + 3[f_1 \overset{*}{F} (e^{-v^2/2} \overset{*}{F} g(v))](x) \right]$$

where $f(-x) = f_1(x)$.

Proof. We have

$$\frac{13}{8\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(u)g(v) e^{\frac{-(x-u-v)}{2}} du dv = \frac{13}{8\pi} \int_{-\infty}^{+\infty} f(u) \int_{-\infty}^{+\infty} e^{\frac{-(x-u-v)}{2}} g(v) dv \\ = \frac{13}{8\pi} \int_{-\infty}^{+\infty} f(u) (e^{-s^2/2} \overset{*}{F} g(v))(x-u) du \\ = \frac{13}{8\pi} [f \overset{*}{F} (e^{-v^2/2} \overset{*}{F} g(v))](x). \quad (8)$$

Similarly, we obtain

$$\frac{3}{8\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(u)g(v) e^{\frac{-(x+u-v)}{2}} du dv = \frac{3}{8\pi} \int_{-\infty}^{+\infty} f(u) (e^{-v^2/2} \overset{*}{F} g(v))(x+u) du \\ = \frac{3}{8\pi} [f_1 \overset{*}{F} (e^{-v^2/2} \overset{*}{F} g(v))](x). \quad (9)$$

$$-\frac{3}{8\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(u)g(v) e^{\frac{-(x+u+v)}{2}} du dv = -\frac{3}{8\pi} \int_{-\infty}^{+\infty} f(u) (e^{-v^2/2} \overset{*}{F} g(v))(-x-u) du \\ = -\frac{3}{8\pi} [f \overset{*}{F} (e^{-v^2/2} \overset{*}{F} g(v))](x). \quad (10)$$

$$\begin{aligned}
\frac{3}{8\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(u)g(v) e^{-\frac{(x-u+v)}{2}} du dv &= \frac{3}{8\pi} \int_{-\infty}^{+\infty} f(u) (e^{-v^2/2} \ast_F g(v)) (-x+u) du \\
&= \frac{3}{8\pi} [f_1 \ast_F (e^{-v^2/2} \ast_F g(v))](-x)
\end{aligned} \tag{11}$$

in which $f(-x) = f_1(x)$.

From (8), (9), (10), (11) we obtain

$$\begin{aligned}
(f \overset{\gamma}{*} g)(x) &= \frac{1}{8\pi} \left[13f \ast_F (e^{-v^2/2} \ast_F g(v))(x) + 3[f_1 \ast_F (e^{-v^2/2} \ast_F g(v))(x) \right. \\
&\quad \left. - 3[f \ast_F (e^{-v^2/2} \ast_F g(v))](-x) + 3[f_1 \ast_F (e^{-v^2/2} \ast_F g(v))](-x) \right],
\end{aligned}$$

here $f(-x) = f_1(x)$. \square

3 Application to solving integral equations

Consider the integral equation

$$f(x) + \frac{\lambda}{8\pi} \int_{-\infty}^{+\infty} f(u) \psi(x, u) du = f(x). \tag{12}$$

Here

$$\psi(x, u) = \int_{-\infty}^{+\infty} g(v) [13e^{-\frac{(x-u-v)^2}{2}} + 3e^{-\frac{(x+u-v)^2}{2}} - 3e^{-\frac{(x+u+v)^2}{2}} + 3e^{-\frac{(x-u+v)^2}{2}}] dv$$

$\lambda \in \mathbb{C}$, g are functions in $L(\mathbb{R})$, f is unknown function. To solving the integral equation we introduce the following definition

Definition 3. The generalized convolution of two function f, g for the T, F transforms with the weight- function $\gamma(x) = e^{-x^2/2}$ is defined as follows

$$\begin{aligned}
(f \overset{T}{*} g)(x) &= \frac{1}{16\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(u)g(v) \left[9e^{-\frac{(x-u-v)^2}{2}} + 3e^{-\frac{(x+u-v)^2}{2}} \right. \\
&\quad \left. - 3e^{-\frac{(x+u+v)^2}{2}} - e^{-\frac{(x-u+v)^2}{2}} \right] du dv. \tag{13}
\end{aligned}$$

Lema 1. Let f, g be function in $L(\mathbb{R})$. Then the generalized convolution (13) belongs to $L(\mathbb{R})$ and the fractarization property holds

$$T(f * g)(y) = \gamma(y)(Tf)(y)(Fg)(y).$$

Theorem 6. With the condition $1 + \lambda e^{-y^2/2}(Tg)(y) \neq 0, \forall y \in \mathbb{R}$, there exists a solution in $L(\mathbb{R})$ of (12) which is defined by

$$f = h - \lambda(h * l),$$

here $l = l_1 + l_2$, $l_1(x), l_2(x) \in L(\mathbb{R})$ and it is defined by

$$(Fl_1)(y) = \frac{3(Fg)(y)}{1 + \lambda e^{-y^2/2}[3(Fg)(y) + (Fg)(-y)]},$$

$$(Fl_2)(y) = \frac{(Fg)(-y)}{1 + \lambda e^{-y^2/2}[3(Fg)(y) + (Fg)(-y)]}.$$

Proof. The equation (12) can be rewritten in the form

$$f + \lambda(f * g) = h.$$

Due to Theorem 1

$$(Tf)(y) + \lambda T(f * g)(y) = (Th)(y).$$

It follows that

$$(Tf)(y)[1 + \lambda e^{-y^2/2}(Tg)(y)] = (Th)(y).$$

Since $1 + \lambda e^{-y^2/2}(Tg)(y) \neq 0, \forall y \in \mathbb{R}$

$$(Tf)(y) = (Th)(y) \frac{1}{1 + \lambda e^{-y^2/2}(Tg)(y)}$$

$$= (Th)(y) \left[1 - \frac{\lambda e^{-y^2/2}(Tg)(y)}{1 + \lambda e^{-y^2/2}(Tg)(y)} \right]$$

$$\frac{(Tg)(y)}{1 + \lambda e^{-y^2/2}(Tg)(y)} = \left[\frac{3(Fg)(y)}{1 + \lambda e^{-y^2/2}[3(Fg)(y) + (F^{-1}g)(y)]} \right.$$

$$\left. + \frac{(F^{-1}g)(y)}{1 + \lambda e^{-y^2/2}[3(Fg)(y) + (F^{-1}g)(y)]} \right].$$

Due to Wiener-Levi's theorem , there exists a function $l_1 \in L \in \mathbb{R}$ such that

$$(Fl_1)(y) = \frac{3(Fg)(y)}{1 + \lambda e^{-y^2/2}[3(Fg)(y) + (Fg)(-y)]}.$$

Similarly, there exists $l_2 \in L \in \mathbb{R}$ such that

$$(Fl_2)(y) = \frac{(Fg)(-y)}{1 + \lambda e^{-y^2/2}[3(Fg)(y) + (Fg)(-y)]}.$$

Put $l = l_1 + l_2$. It implies that

$$\frac{(Tg)(y)}{1 + \lambda e^{-y^2/2}(Tg)(y)} = F(l).$$

Hence

$$(Tf)(y) = (Th)(y)[1 - \lambda e^{-y^2/2}(Fl)(y)].$$

It follows that

$$(Tf)(y) = (Th)(y) - \lambda T(h * l)(y).$$

Thus

$$f = h - \lambda(h * l).$$

□

References

- [1] V.A.Kakichev, *On the convolution for integral transforms*, Izv. ANB-SSR, Ser. Fiz. Mat 1967, N.2, p 48-57 (in Russian).
- [2] V. A. Kakichev and Nguyen Xuan Thao, " *On the design method for the generalized integral convolution* ", Izv. Vuzov. Mat, 1998, N. 1, 31-40 (in Russian).
- [3] Churchill R. V. (1941) " *Fourier series and boundary value problems* ", New York, 58p.
- [4] Bateman H., Erdelyi A. (1954), " *Tables of integral transform* ", New York- Toronto- London. MC Gray- Hill, V.1.

- [5] Nguyen Xuan Thao, Nguyen Thanh Hai (1997), " *Convolutions for integral transform and their application*," Computer Centre of the Russian Academy, Moscow, 44pages (Russian).
- [6] Nguyen Xuan Thao, " *On the generalized convolution for Stieltjes, Hilbert, Fourier cosine and sine transforms*," Ukr. math. J. 53(2001), 560-567. (in Russian).
- [7] V.A.Kakichev, Nguyen Xuan Thao, Vu Kim Tuan (1998), " *On the generalized convolutions for Fourier cosine and sine transforms*" East- West Journal of Mathematics Vol1, No 1 pp. 85-90.
- [8] Nguyen Xuan Thao and Trinh Tuan, " *On the generalized convolution for I- transform*", Acta- Mat. Vietnamica. 18(2003), 135- 145.
- [9] Nguyen Xuan Thao, Nguyen Minh Khoa (2004), " *On the convolution with a weight- function for the Cosine- Fourier integral transform*" Acta Mathematica Vietnamica, Vol 29, No 2, pp.149- 162.
- [10] F. G. Tricomi, (1951) " *On the finite Hilbert transform* ", Quart. J. Math. 2 , 199- 211
- [11] O. I. Marchev, (1983) " *Handbook of Integral Transforms of Higher Transcendental Functions. Theory and Algorithmic Tables*", New York - Birbane- Toronto.
- [12] Vu Kim Tuan and Saigo M., " *Convolution of Hankel transform and its applications to an integral involving Bessel function of first kind*", J. Math, and Math. Csi. 1995, V. 18, N. 2, 545-50.
- [13] H, J, Glaeske and Vu Kim Tuan, " *Convolution of the Hilbert transform and its application to some nonlinear singular integral euqations*", Integral Transform and Special Functions, 3(1995), N. 4, 2663- 268.
- [14] Srivastava H. M, Vu Kim Tuan (1995) " *A new convolution theorem for the Stieltjes transform and its application to a class of singular integral equations*", Arch. Math V64, P-144-149.