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Convolution for the transform induced by 
Fourier integral transform and its inverse 

Nguyen Xuan Thaol , Nguyen Minh Tuan2 , Bui Thi Giang2 

1 Hanoi Water Resources University 
2 Hanoi University of Natural Science 

Abstract 
The convolutions for T 3P + p-l transforms are formulated, its 

properties and applications to solving integral equations are consid­
ered. 

1 Introduction 

The convolution for integral transforms were studied in the 19th century, at 
first the convolutions for Fourier transform, for the Laplace transform, for the 
Mellin transform and after that for Hilbert transform [13], Hankel transform 
[12], Kontorovich- Lebedev transform and Stieltjes transform. 
The convolution for the Fourier integral transform [10J 

+00 

U * g)(x) vh J f(x - y)g(y)dy, (1) 
-00 

for which satisfies the factorization equality 

FU * g)(y) = (FJ)(y)(Fg)(y), yE~ 

in which F is the Fourier transform [4]and is defined as follows 

+00 

j(y) == (F f)(y) = vh J e-ixy f(x)dx. 
-00 
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+00 

f(x) == (F-1j)(x) = vh J eiXYj(y)dy. 
-00 

In 1941, Churchill R. V. introduced the convolution of two functions f and 
9 for the Fourier cosine transforms [3J 

+00 

U * g)(x) vh J f(y)[g(lx - yl) + g(x + y)Jdy, x E lP£+ 

o 

for which satisfies the factorization equality 

FeU * g)(y) = (Fc!)(y)(Feg)(y), Vy E lP£+, 

here Fe is the Fourier cosine transform. 

Afterwards, in 1967, V. A. Kakichev proposed a constructive method 
for defining the convolution with a weight- function which is more general 
than the convolution (1). And as by- products, convolutions of many integral 
transforms such as the Meijer, Hankel, Fourier- sine were found. For instance, 
the convolution with the weight- function ry(y) sin y of the functions f and 
9 for the Fourier- sine integral transform Fs was studied in [1], [5J 

+00 

Uig)(x)= ~Jf(t)[sign(x-t+1)9(lx t+11) 
2v 21f 

o 
-sign (x t 1)g(lx-t-11) -g(x-H+ 1)+sign(x+t-1)g(lx+t-1I)Jdt. 

(2) 

for which the factorization property holds 

FsU i g)(y) = siny(FsJ)(y)(Fsg)(y), Vy > O. 

In 1998, Kakichev V. A and Nguyen xuan Thao proposed a construction 
method for defining the generalized convolutions of three arbitrary integral 
transforms [5J. In recents years, several generalized convolutions of integral 
transforms were published [6J-[8J. 

In this talk, we define the convolution with the weight- function for the 
T = 3F + F-1 transform, study some its properties and apply them to solving 
integral equation. 
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2 Convolution 

We consider T transform 

(Tf)(y) =3(Ff)(y) + (F-lf)(y) 
+co 

=2~ J [4 cos (yx) - 2isin(yx)lf(x)dx, y E R. 
-00 

Definition 1. The convolution with the weight- function ,(x) = e _~2 of two 
function 1, 9 for the T transform is defined as follows 

+00+00 

(f 1 g)(x) = 8~ J J f( u)g( v) [13e _(x_~_u)2 + 3e _(x+~_U)2 
-co -00 

_(x+,,+")2 _(X_u+U)2] 

- 3e 2 + 3e 2 dudv. (3) 

Theorem 1. Let f,g be function in L(R). Then the convolution with the 
.2 

weight- function ,(y) e -; of them for the T transform belongs to L(R) and 
the fractorization property holds 

T(f 1 g)(y) ,(y)(Tf)(y)(Tg)(y). 

Proof. We prove (f 1 g) (x) E L(R). 
We have 

+00 +00 +00 +00 J l(f 1 g)l(x)dx ~8~ J J J If(u)llg(v)1113e _(x_~_u)2 
-00 -00 -00-00 

_(x+u_tJ)2 

+ 3e 2 -

~Nl + N2 + N3 + N4 , 

where 
+00 +00 +00 

13 J J J _(x_,,_u)2 
Nl = 81r If(u)llg(v)le 2 dudvdx. 

-00 -00-00 
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+00 +00 +00 

N2 = 8
3
7f J J J If(u)llg(v)le _(X+;_V)2 dudvdx. 

-00 -00-00 

+00 +00 +00 

N3 8: J J J If(u)llg(v)le _(x+;+v)2 dudvdx. 
-00 -00-00 

+00 +00 +00 

N4 8
3
7f J J J If(u)llg(v)le _("_;+u)2 dudvdx. 

-00-00 -00 

+00 
By using the formula J e-u2

/
2du V2if and since f, 9 E L(JR) then Ni < 

+00, i = 1 ... 4. 
So 

-00 

+00 J 1(11 g)l(x)dx < +00. 
-00 

We prove the fractorization property 

T(I 1 9 )(y) = ry(y )(T f)(y )(Tg )(y). 

We have 

ry(y)(Tf)(y)(Tg)(y) = 

+00 +00 

=ry(y)_l __ l_ J f(u)(3e- iyU + eiYU)du J g(v)(3e-iyv + eiYV)dv 
V2if V2if 

-00 -00 

-00 -00 

Put 
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We consider 

+00 +00 

=39 J e-i(x-u-s)Ye _<x_;_")2 e-iyue-iyvdx + 13 J ei(x-u-v)Ye _<x_;_")2 eiyueiyvdx 

-00 -00 

+00 +00 

=13 J 3e-iyxe _<x_;_")2 dx + 13 J eiyxe _<x_;_")2 dx 

-00 -00 

+00 

=13 J (3e-iyx + eiyx)e _<x_;_")2 dx. (4) 
-00 

Similarly, we have 

+00 

B2 = 3 J (3e-iyx + eiyx)e _<x+;_")2 dx. (5) 
-00 

+00 

B3 = -3 J (3e- iyX + eiyx)e _<x+;+")2 dx. (6) 
-00 

+00 

B4 = 3 J (3e-iyx + eiyx)e _<x_;+")2 dx. (7) 
-00 

From (4), (5), (9), (7) we obtain 

+00 

4~e -i2 
(3e-iyu + eiYU)(3e-its + eits ) = J (3e-iyx + eiyx ) [13e _<x_;_")2 

-00 
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Hence 

,(y)(Tf)(y)(Tg)(y) = 
+00 +00 +00 

=_1_~ J (3e-iyx + eiYx ) J J f(u)g(v) [13e _(X_~_V)2 
,j2;81r 

-00 -00 -00 

+ 
=T(j 1 g)(y). 

o 
Remark 1. In the L(~) space, the convolution (3) is comutative, associative 
and distributive. 

Theorem 2. In the space L(~); there does not exist the unit element for the 
operation of the convolution with a weight function for the T transform. 

Proof. Suppose that exists e, the unit element of the operation of convolution 
in the space L(~): e 1 9 = g;j; e 9 for any function 9 belonging to L(~). 
Then we have 

T(e 1 g)(y) (Tg)(y), Vy ER 

Hence 
e-y2 /2 (Te)(y)(Tg)(y) = (Tg)(y), Vy E R 

The last is eqivalent to the equality 

(Tg)(y)[e- y2/2 (Te)(y) - 1] = 0, VyER 

Choosing 9 so that (Tg)(y) 10, Vy E ~, we see that c y2 /2(Te)(y) - 1 ° 
or (Te)(y) = ey2

/
2

. Since assumption that e E Ll(~) then 

+00 

(Te)(y) 2~ J (3e- iXY + eiXY)e(x)dx. 
-co 

+00 

I(Te)(y)1 ~ ~ J le(x)ldx < +00, Vy. 

-00 
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So (Te)(y) is bounded function and ey2j2 is not bounded function. This is a 
contradiction. Hence there does not exists unit element for the operation of 
convolution with a weight function for the T tramsform in the space L(R.). 

o 
Definition 2. The norm in the space L(R.) is defined by 

+00 

11 J Ilfll = r;c If(x)ldx. 
2v 27r 

-00 

Theorem 3. If f, 9 are functions in to L(R.), then the following inequality 
holds 

Put 
+00 

L(e1x1,R.) {h, J e1x1Ih(x)ldx < 00, hE L(R.)}. 

-00 

Theorem 4 ( A Titchmarch theorem). Let f, 9 E L( e1xl , R.). 
If (J i g)(x) = 0, \/x E R. then either f(x) = 0 or g(x) = 0, \/x E R.. 

Proof. Under the hypothesis (J i g) (x) = 0, \/x E R., it follows that 

Consider 

Since 

T(J J; g)(x) = ,(x)(Tf)(x)(Tg)(x), \/x E R 

,(x)(Tf)(x)(Tg)(x) = 0, x E R 

+00 

(T f)(y) = _1_ J (3e-ixy + eiXY)f(x )dx, \/x E R.. 
V2i 

-00 

1 ~[3e-iXY + eixY]j(x) I =1(ixt[(-lt3e-ixy + eiXYlf(x) I 
dyn 

~ 14xn f(x)1 = 14xne-lxl.h(x)1 

~ clh(x)l· 
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+00 

Due to Weierstrass' criterion, the integral J :;n [3e-iXY + eixY]f(x )dx uni-
-00 

forrnly converges on lRL Therefore, based on the differentiability of integrals 
depending on parameter, we conclude that (Tf)(y) is analytic for y E lRL 
Similarly, (Tg)(y) is analytic for y E lRL 
So we have (Tf)(y) = 0 or(Tg)(y) = O. It follows that either f(x) = 0 or 
g(x) = O. 0 

Theorem 5. If f and 9 are functions in L(R.), then the following equality 
holds 

(j i g)(x) = ~ [13[j * (e- v2
/
2 * g(v))](x) + 3[fr * (e-v2

/
2 * g(v))](x) 

811" F F F F 

- 3[f * (e-v2
/
2 * g(v))](-x) + 3[j1 * (e-v2

/
2 * g(v))](-x)] 

F F F F 

where f(-x) fr(x). 

Proof. We have 
+00 +00 +00 +00 

13 J J -(x-u-v) 13 J J -(x-u-v) 
811" f(u)g(v)e 2 dudv = 811" f(u) e 2 g(v)dV 

-00-00 -00 -00 

+00 

=8
13 J f(u)(e-

s2
/

2 * g(v))(x - u)du 
11" F 

-00 

=~[j * (e-v2
/
2 * g(v))](x). 

811" F F 
(8) 

Similarly, we obtain 
+00 +00 +00 

3 J J -(x+u-v) 3 J 2/2 811" f(u)g(v)e 2 dudv = 811" f(u)(e- V ;g(v))(x + u)du 
-00-00 -00 

8
3 [fr * (e-v2

/
2 * g(v))](x). 

11" F F 
(9) 

+00+00 +00 

-- f(u)g(v)e 2 dudv = -- f(u)(e- V 
2 * g(v))( -x - u)du 3 J J -(x+u+v) 3 J 2/ 

811" 811" F 
-00 -00 -00 

= -~[f * (e-v2
/

2 * g(v))]( -x). 
811" F F 

(10) 
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+00 +00 +00 

8~ J J f(u)g(v)e -<x-2"+V) dudv ~ J f(u) (e-
V2

/2 * g(V))( -X + u)du 
81T F 

-00 -00 -co 

in which f( -x) = JI(x). 
From (8), (9), (10), (11) we obtain 

(j J., g)(x) = 8
1 

[13f * (e-
v2

/2 * g(v))](x) + 3[JI * (e-
v2

/2 * g(v))](x) 
1T F F P P 

- 3[f * (e-v2 /2 * g( v))]( -x) + 3[JI * (e-v2 /2 * g(v))]( -x)], 
P P F P 

here f(-x) = JI(x). o 

3 Application to solving integral equations 

Consider the integral equation 

+co 

f(x) + 8~ J f(u)1jJ(x, u)du = f(x). (12) 
-co 

Here 

+00 
1jJ(x, u) = J g( v)[13e _<x_;_v)2 + 3e _<x+;_v)2 _ 3e _<x+;+v)2 + 3e -<x-;+V)2]dv 

-00 

A E C, g, h are functions in E L(lR), f is unlmown function. To solving the 
integral equation we introduce the following definition 

Definition 3. The generalized convolution of two function f, 9 for the T, F 
transforms with the weight- function "((x) = e-x2/2 is defined as follows 

+00 +00 

(j ~g)(x) 1~1T J J f(u)g(v) [ge _<x_;_v)2 + 3e _<x+;_v)2 

-00 -00 

_(x+u+v)2 _(X_u+V)2] 
- 3e 2 - e 2 dudv. (13) 
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Lema 1. Let j, 9 be function in L(JR). Then the generalized convolution (13) 
belongs to L(JR) and the jractorization property holds 

T(f * g)(y) = ~((y)(Tf)(y)(Fg)(y). 
T 

Theorem 6. With the condition 1 + Ae-y2 /2(Tg)(y) =J 0, Vy E JR, there exists 
a solution in L(JR) of (12) which is defined by 

here l h + l2, h(x), l2(X) E L(JR) and it is defined by 

3(Fg)(y) 
(Fll)(y) 1 + Ae-y2 /2[3(Fg)(y) + (Fg)( _y)]' 

(Fg)( -V) 
(Fl2)(y) = 1 + Ae-y2 /2[3(Fg)(y) + (Fg)( -V)]' 

Proof. The equation (12) can be rewritten in the form 

j +A((1 g) h. 

Due to Theorem 1 

(Tf)(y) + AT(f 1 g)(y) = (Th)(y). 

It follows that 

(Tf)(y)[l + Ae-y2/2(Tg) (y)] = (Th)(y). 

Since 1 + ACy2/2(Tg)(y) =J 0, Vy E JR 

1 
(Tj)(y) =(Th)(y) 1 + Ae-y2/2(Tg)(y) 

(Tg )(y) 

Ae-y2/2 (Tg )(y) 
=(Th)(y)[l- 1 + Ae-y2/2(Tg)(y)] 

1 + Ae-y2/2(Tg)(y) 
[ 3(Fg)(y) 
1 + Ae-y2 /2[3(Fg)(y) + (F-lg)(y)] 

(F-1g)(y) ] 
+ 1 + Ae-y2 /2[3(Fg)(y) + (F-lg)(y)] . 
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Due to Wiener-Levi's theorem) there exists a function h E L E lR such that 

Fl = 3(Fg)(y) 
( l)(y) 1 + Ae-y2 / 2 [3(Fg)(y) + (Fg)( _y)]' 

Similarly, there exists l2 E L E lR such that 

(Fg)(-y) 
(Fl2)(y) = 1 + Ae-y2 / 2 [3(Fg)(y) + (Fg)( _y)]' 

Put l = II + l2. It implies that 

(Tg)(y) = F(l) 
1 + Ae-y2

/ 2(Tg)(y) . 

Hence 
Tf)(y) = (Th)(y)[l- Ae-y2

/
2 (Fl)(y)]. 

It follows that 
(Tf)(y) = (Th)(y) - AT(h * l)(y). 

T 

Thus 
f=h A(hd). 

'1' 

o 
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