
Title THE APPROXIMATE CONTROLLABILITY FOR THE SYSTEM
DESCRIBED BY RIGHT INVERTIBLE OPERATORS

Author(s) Hoang, Van Thi

Citation

Annual Report of FY 2005, The Core University
Program between Japan Society for the Promotion
of Science (JSPS) and Vietnamese Academy of
Science and Technology (VAST). 2006, p. 349-362

Version Type VoR

URL https://hdl.handle.net/11094/12924

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



THE APPROXIMATE CONTROLLABILITY 

FOR THE SYSTEM DESCRIBED BY 

RIGHT INVERTIBLE OPERATORS 

HOANG VAN THI 

Hong Due University, Vietnam 

Abstract. In this paper, we deal with the approximate controllability 
for the linear system described by right invertible operators in the in­
finite dimensional Hilbert space. 

Keywords: Right invertible operator, initial operator, initial value 
problem. 

o Introduction 

By the appearance of the theory of right invertible operators, the 
initial, boundary and mixed boundary value problems for the linear sys­
tems described by right invertible operators and generalized invertible 
operators were studied by many Mathematicians (see[4, 6]). Nguyen 
Dinh Quyet, in his articles, has considered the controllability of linear 
systems described by right invertible operators in the case the resolving 
operator is invertible (see[8, 10, ll]). These results were generalized by 
A. Pogorzelec in the case of one-sized invertible resolving operarors (see 
[5,6]) and by Nguyen Van Mau for the system described by generalized 
invertible operators (see [3,4]). The above mentioned controllability is 
FI-exactly controllable from one state to another. However, in infinite 
dimensional space, the exact controllability is not always realized. To 
overcome these restrictions, we define the so-called FI-approximately 
controllable, in the sense of: "A system is approximately controllable 
if any state can be transfered to the neighbourhood of other state by 
an admissible control". In this article, we consider the approximate 
controllability for the system (LS)o of the form (2.1)-(2.2) in infinite 
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dimensional Hilbert space, with dim(kerD) = +00. The necessary and 
sufficient conditions for the linear system (LS)o to be approximately 
reachable, and exactly controllable are also found. 

1 Preliminaries 

Let X be a linear space over a field F of scalars (F = ~ or C). 
Denote by L(X) the set of all linear operators with domains and ranges 
belonging to X. We write 

Lo(X) = {A E L(X) : domA = X}. 

An operator D E L(X) is said to be right invertible if there exists 
an operator R E Lo (X) such that RX c domD and DR = I on domR 
(where I is an identity operator), in this case R is called a right inverse 
of D. The set of all right invertible operators in L(X) will be denoted 
by R(X). For a given D E R(X), we will denote by RD the set of all 
right inverses of D, i.e. 

RD = {R E Lo (X) : DR = I} . 

An operator F E Lo(X) is said to be an initial operator for D 
corresponding to R E RD if F2 = F, F X = kerD and F R = 0 on 
domR. The set of all initial operators for D will be denoted by F D . 

Proposition 1.1. [6] If DE R(X) then for every R E R D , we have 

domD = RX kerD. (1.1 ) 

Theorem 1.1. [6] Suppose that D E R(X). A necessary and sufficient 
condition for an operator F E L(X) to be an initial operator for D 
corresponding to R E RD is that 

F = I - RD on domD. (1.2) 

Theorem 1.2. [14] Let X, Y, Z be infinite dimensional Hilbert spaces. 
Suppose that F E L(X, Z) and G E L(Y, Z), then two following condi­
tions are equivalent: 

(i) ImF c ImG , 

(ii) There exists c > 0 such that IIG* fll ~ clIF* fll for all f E Z*. 
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Theorem 1.3. (The separation theorem) Suppose that NI, N are con­
vex sets in Banach space X and NI n N = 0. 

(i) If intNI -# 0 then there exists a functional x* E X*, x* 0 and 
A E lR. such that 

(x*,x)::; A::; (x*,y), for every x E M, yEN. 

(ii) If 1\1 is a compact set, N is a closed set then there exists x* E 

X*, x* -# 0 and Ai, A2 E lR. such that 

(x*,x)::; Ai < A2::; (x*,y), for every x E M, YEN. 

The theory of right invertible operators and their applications can 

be seen in [4, 6J. The proof of Theorems 1.2 and 1.3 can be found in 

[2, 14J. 

2 The approximate controllability 

Let X and U be infinite dimensional Hilbert spaces over the same 
field F of scalars ( F = lR. or CC). Suppose that D E R(X), with 
dim(kerD) = +00, F E FD is an initial operator for D corresponding 
to R E R D , A E Lo(X), and B E Lo(U, X). 

Now we will consider the linear system (LS)o of the form: 

Dx = Ax + Bu, u E U, BU c (D - A)domD, 

Fx = Xo Xo E kerD. 

(2.1) 

(2.2) 

The spaces X and U are called the space of states and the space of 
controls, respectively. So that, elements x E X and u E U are called 
states and controls, respectively. The element Xo E kerD is said to be 
an initial state. A pair (xo, u) E (kerD) x U is called an input. If 
(2.1)-(2.2) has solution x = iP(xo, u) then this solution is called output 
correspondent to input (xo, u). 

Note that, since the inclusion BU c (D - A)domD is satisfied, if 
the resolving operator I RA is invertible then for every fixed pair 
(xo, u) E (kerD) x U, the initial value problem (2.1)-(2.2) is well-posed 
and has a unique solution, which is given by (see [4, 6]): 

iP(xo, u) = EA(RBu + xo), where EA = (I - RA)-i . (2.3) 
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Write 

Rangu,xQP = U p(xo, u), Xo E kerD. 
uEU 

(2.4) 

Clearly, Rangu,xQP is the set of all solutions of (2.1)-(2.2) for ar­
bitrarily fixed initial state Xo E kerD. This is reachable set from the 
initial state Xo by means of controls u E U. 

Definition 2.1. Let a linear system (L8)0 of the form (2.1) - (2.2) be 
gwen. 

(i) A state x E X is called approximately reachable from the initial 
state Xo E kerD if for every c > 0 there exists a control u E U 
such that Ilx - p(xo, u) II < c. 

(ii) The linear system (L8)0 is said to be approximately reachable 
from the initial state Xo E ker D if 

Rangu,XQ P X . 

Theorem 2.1. The linear system (L8)0 is approximately reachable 
from zero if and only if 

B* R* E~h = 0 implies h O. (2.5) 

Proof. By definition, the system (L8)0 is approximately reachable from 
zero if 

(2.6) 

According to Theorem 1.3, the condition (2.6) is equivalent to for h E 

X* such that 

(h,x) = 0, Vx E EARBU ===? h = O. (2.7) 

By EARBU is subspace of X, (2.7) is also equivalent to 

(h, x) = 0 , V x E E ARB U ===? h = 0 , 

or equivalently 

(h,EARBu) = 0, Vu E U ===? h = O. 
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That is 
(B*R*E'Ah,u) = 0, \:Iu E U ==} h = O. 

This implies that 
B* R* E'A h = 0 ==} h = 0 . 

Conversely, if the condition (2.5) satisfied, then (2.7) is also satisfied, 
and therefore we obtain (2.6). 0 

Definition 2.2. [6] Let be given a linear system (L8)0 and FI E FD 
be arbitrary initial operator for D. 

(i) A state Xl E kerD is said to be Fl-reachable from the initial 
state Xo E kerD if there exists a control u E U such that Xl = 

Fd5(xo,u). The state Xl is called a final state. 

(ii) The system (L8)0 is said to be FI -controllable if for every initial 
state Xo E ker D, 

(iii) The system (L8)0 is said to be FI -controllable to zero if 

o E FI (Rangu,xo if» , 

for every initial state Xo E ker D . 

Definition 2.3. Let a linear system (L8)0 of the form (2.1) - (2.2) be 
given. Suppose that FI E F D is arbitrary initial operator for D. 

(i) The system (L8)0 is said to be Fl-approximately reachable from 
the initial state Xo E kerD if 

FI (Rangu,xo if» = ker D . 

(ii) The system (LS)o is said to be FI -approximately controllable if 
for every initial state Xo E kerD, we have 

(iii) The system (L8)0 is said to be Fl-approximately controllable to 
Xl E kerD if 

for every initial state Xo E ker D . 
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Lemma 2.1. Let there be given a linear system (LS)o of the form 
(2.1) - (2.2) and an arbitrary initial operator FI E F D . Suppose that 
the system (LS)o is Fl-approximately controllable to zero and 

FIEA(kerD) = kerD. (2.8) 

Then every final state Xl E kerD is Fl-approximately reachable from 
zero. 

Proof. By the assumption, 0 E FI(Rangu.xo<P), for all Xo E kerD. 
Therefore, for every Xo E kerD and E > 0, there exists a control Uo E U 
such that 

(2.9) 

The condition (2.8) implies that with any Xl E kerD, there exists X2 E 

ker D such that 
F I E A X 2 -Xl' 

This equality and (2.9) together imply that for every Xl E kerD and 
E > 0, there exists a control UI E U such that 

II FIEARBuI xIII < E. 

This proves that every final state Xl is Fl-approximately reachable from 
zero. D 

Theorem 2.2. Suppose that all assumptions of Lemma 2.1 are satis­
fied. Then the system (LS)o is Fl-approximately controllable. 

Proof. According to our assumption, for every Xo E kerD and E > 0, 
there exists a control Uo E U such that 

E 

xo)11 < 2"' (2.10) 

By Lemma 2.1, for every Xl E kerD there exists UI E U such that 
E 

IIFIEARBuI - xIII < 2' (2.11) 

From (2.10) and (2.11), it follows that for every xo, Xl E kerD and 
E > 0, there exists a control U = Uo + UI E U such that 

IIFIEA(RBu xo) - xIII = IIFIEA[RB(uo UI) + Xo]- xIII 
:S IIFIEA(RBuo + xo)11 IIFIEARBuI - xIII 

E E 
<-+-=E. 

2 2 

The arbitrariness of xo, Xl E kerD and E > 0 implies FI (Rangu.xo <P) = 
kerD. D 
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Theorem 2.3. Let there be given a linear system (L8)0 and an arbi­
trary initial operator FI E F D . Then the system (L8)0 is FI-approximatel'lJ 
controllable if and only if it is Fl-approximately controllable to every 
element y' E FIEARX. 

Proof. The necessary condition is easy to be obtained. In order to prove 
the sufficient condition, first we prove the equality 

(2.12) 

Indeed, since (I RA)(domD) c domD = RX tfjkerD (by Proposition 
1.1 and property of the right invertible operator), there exists a set 
E c X and Z c kerD such that 

RE tfj Z = (I - RA)(domD). 

This implies EA(RE tfj Z) = EA(I RA)(domD) = domD. Thus, we 
have 

kerD FI(domD) = FIEA(RE Z) 

c FIEA(RX tfj kerD) 

c kerD. 

Therefore, the formula (2.12) holds. 

Suppose that the system (L8)0 is Frapproximately controllable to 
every element y' = FIEARy, y E X, i.e. for every y E X and arbitrary 
E > 0 there exists a control Uo E U such that 

That is 

(2.13) 

where X2 E kerD is arbitrary. 

By the formula (2.12), for every Xl E kerD, there exists YI E X and 
x; E ker D such that 
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This equality and (2.13) together imply 

IIFIEA(RBu~ + Xo + x;) - xIII < ~. (2.14) 

On the other hand, since 0 E FIEARX and our assumptions allows 
that (L8)0 is Frapproximately controllable to zero, i.e. 

o E FI (Rangu,xQ p), for arbitrary Xo E ker D . 

Thus, for the element x; E ker D there exists UI E U such that 

(2.15) 

From (2.14) and (2.15), it is concluded that for every xo, Xl E kerD 
and c > 0 there exist U = u~ + UI E U such that 

IIFIEA(RBu + xo) - xIII 

= IIFIEA[RB(u~ + UI) + Xo]- xIII 

IIFIEA(RBu~ + Xo + X;) Xl + FIEA(RBuI - x;)11 

::; IIFIEA(RBu~ + Xo + X;) - XIII + IIFIEA(RBuI x;)11 
c c 

<2+"2 c. 

By the arbitrariness of xo, Xl E kerD and c > 0, we obtain FI (Rangu,xQ p) =. 
kerD. 

Theorem 2.4. Let a linear system (L8)0 and an arbitrary initial op­
erator FI E FD be given. Then the system (L8)0 is Fl-approximately 
reachable from zero if and only if 

B* R* E~ F; h = 0 implies h = 0 . (2.16) 

Proof. Suppose that the system (L8)0 is Fl-approximately reachable 
from zero, we have 

This means that 

(2.17) 

According to Theorem 1.3, the equality (2.17) is equivalent to for h E 

(kerD)* such that 

(h, x) = 0, "Ix E FIEARBU ==} h = O. (2.18) 
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Because FIEARBU is a subspace of kerD, the condition (2.18) is also 
equivalent to 

or equivalently 

(h, FIEARB'Ll) = 0, \:!u E U =} h = o. 
It is satisfied if and only if 

(B*R*E'AFI*h,u) = 0, \:!u E U =} h = o. (2.19) 

Hence, the condition (2.19) allows B* R* E'AFI*h = 0 which implies 
h = o. 
Conversely, if (2.16) is satisfied then (2.19) holds. This implies (2.17) 
and therefore we obtain 

FI (Rangu,01>) = kerD . 

o 
Theorem 2.5. A necessary and sufficient condition for the system 
(L8)0 to be FI-controllable is that there exists a rocal number a > 0 
such that 

IIB* R* E'AFI* fll 2:: allfll, for all f E (kerD)* . (2.20) 

Proof. Necessity. Suppose that the system (L8)0 is Fr controllable, 
we have 

FI (Rangu,xo 1» = ker D , for every Xo E kerD . 

It implies that FIEARBU = kerD. By Theorem 1.2, there exists a 
real number a > 0 such that 

II (FIEARB)* fll 2:: allfll, for all f E (kerD)* , 

i.e. the condition (2.20) is held. 
Sufficiency. Suppose that the condition (2.20) is satisfied, by Theorem 
1.2, we obtain 

FIEARBU;;;;? kerD 

Moreover, FIEARBU ~ kerD, since FI is an initial operator for D. 
Consequently, we have FIEARBU = kerD. It implies that 

FI(Rangu,xo1» = kerD, for every Xo E kerD. 
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Theorem 2.6. The linear system (L8)0 is Frcontrollable to zero if 
and only if there exists ,8 > 0 such that 

IIB* R* E~F; fll 2:: ;3IIE~F; fll, for every f E (kerD)* . (2.21) 

Proof. Suppose that the system (L8)0 is FI- controllable to zero. This 
means that 

o E FI (Rangu,xo!J» , for all Xo E kerD. 

Therefore, for arbitrary Xo E kerD, there exists u E U such that 

It allows that for every x~ E kerD, there exists u' E U such that 
FIEAX~ = FIEARBu'. Thus, we obtain FIEA(kerD) s:;:; FIEARBU. 
Using Theorem 1.2, there exists ;3 > 0 such that 

Conversely, Assume that (2.21) is satisfied, according to Theorem 1.2, 
we conclude that 

FIEA(kerD) s:;:; FIEARBU. 

Hence, for every Xo E ker D, there exists u E U such that 

i.e. the system (L8)0 is FI-controllable to zero. 

Example. Consider the control system 

ox(t,s)_\ ( ) 
ot - AX t, s u(t) , 

with initial condition 

X(O,s) = f(s). 

(2.22) 

(2.23) 

Let X = C(J"R.2 ) be the space of all continous functions over J"R.2 . Write 

D = ~, R J. It is possible to check that domD = {x EX: 
ut 0 

x(t, so) E CI(J"R.) for every fixed So E J"R.}, kerD = {.r EX: x(t, s) = 
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cp(s), cp E C(JR.)}. Thus, we have dim(kerD)=+oo, and domR = X. 
In addition, 

(DRx)(t, s) ~ %t (I X(T, S)dT) ~ (Ix)(t, s), for all x EX 

So the operator D is right invertible and R is a right inverse of D. The 
initial operator for D corresponding to R is defined by (Fx) (t, s) = 

(I - RD)x(t, s) = x(O, s). 
t 

Moreover, for every ti E JR., i = 1,2,3, ... let Ri = J, then Ri are right 
ti 

inverses of D, and FiX(t, s) = X(ti' s) are the initial operators for D 
corresponding to Ri , respectively (see[6]). 
Therefore, the problem (2.22)-(2.23) can be rewritten in the form: 

Dx = Ax + Eu, u E U 

Fx = Xo, Xo E kerD. 

(2.24) 

(2.25) 

Where A = AI, E = I are stationary operators, since AD = DA, AR = 

RA, ED = DE and ER = RE. The set U = C(JR.) is the space of all 
continous functions over lR. If write 

then 

t 

(Cx)(t, s) = J eA(t-T)x(T, S)dT, 

o 

(I + AC)(I - AR)x(t, s) = (I - AR)(I + AC)X(t, s) = Ix(t, s). 

This means that the resolving operator I - AR is invertible and its 
inverse is given by 

(EAX)(t,S) = (I AR)-lX(t,S) = (I + AC)X(t,s) 
t 

= x(t, s) + A J eA(t-T)x(T, S)dT. 

o 

Hence, for every u(t) E C(JR.) , by formula (2.3), the solution of 
(2.24)-(2.25) ( which is also the solution of (2.22)-(2.23)) is given by 

x(t, s) ~ EA(RBu + xo)(t, s) ~ eAt (I e~ATv'(T)dT f(S)) , 
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In addition, it is easy to check that FIEAXO = eA(t1)xo = S(tl)xo, for 
every Xo E ker D. Where S (t) is a semigroup of continuous linear oper­
ators generated by A. 

Since B is a stationary operator and kerR = {O}, in this case, the 
condition (2.16) is equivalent to B* E'AFth = 0 which implies h = 0 or 
B*(FIEA)*h 0 implies h = O. This means that 

B*S*(tdh = 0 ==? h = O. (2.26) 

Note that, the condition (2.26) is necessary and sufficient for the 
linear system in infinite dimensional space to be approximately reach­
able (see [14]). For the system (2.22)-(2.23), the condition (2.26) is 
completely satisfied. Hence, by Theorem 2.4, the system (2.24)-(2.25) 
is FI-approximately reachable from zero. 

This example shows that in the case D is a differential operator, the 
concept and results of FI-approximately controllable are completely co­
incident with the approximate controllability of the linear control sys­
tem in infinite dimensional space. 
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