u

) <

The University of Osaka
Institutional Knowledge Archive

THE APPROXIMATE CONTROLLABILITY FOR THE SYSTEM

Title | DESCRIBED BY RIGHT INVERTIBLE OPERATORS

Author(s) |Hoang, Van Thi

Annual Report of FY 2005, The Core University
Program between Japan Society for the Promotion
of Science (JSPS) and Vietnamese Academy of
Science and Technology (VAST). 2006, p. 349-362

Citation

Version Type|VoR

URL https://hdl. handle.net/11094/12924

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



THE APPROXIMATE CONTROLLABILITY
FOR THE SYSTEM DESCRIBED BY
RIGHT INVERTIBLE OPERATORS

HoANG VAN THI
Hong Duc University, Vietnam

Abstract. In this paper, we deal with the approximate controllability
for the linear system described by right invertible operators in the in-
finite dimensional Hilbert space.

Keywords: Right invertible operator, initial operator, initial value
problem.

0 Introduction

By the appearance of the theory of right invertible operators, the
initial, boundary and mixed boundary value problems for the linear sys-
tems described by right invertible operators and generalized invertible
operators were studied by many Mathematicians (see[4, 6]). Nguyen
Dinh Quyet, in his articles, has considered the controllability of linear
systems described by right invertible operators in the case the resolving
operator is invertible (see[8, 10, 11]). These results were generalized by
A. Pogorzelec in the case of one-sized invertible resolving operarors (see
15, 6]) and by Nguyen Van Mau for the system described by generalized
invertible operators (see [3, 4]). The above mentioned controllability is
Fi-exactly controllable from one state to another. However, in infinite
dimensional space, the exact controllability is not always realized. To
overcome these restrictions, we define the so-called Fi-approximately
controllable, in the sense of: ” A system is approximately controllable
if any state can be transfered to the neighbourhood of other state by
an admissible control”. In this article, we consider the approximate
controllability for the system (LS)y of the form (2.1)-(2.2) in infinite
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dimensional Hilbert space, with dim(kerD) = +o00. The necessary and
sufficient conditions for the linear system (LS)q to be approximately
reachable, and exactly controllable are also found.

1 Preliminaries

Let X be a linear space over a field F of scalars (F = RorC).
Denote by L(X) the set of all linear operators with domains and ranges
belonging to X. We write

Ly(X)={A € L(X) : domA = X} .

An operator D € L(X) is said to be right invertible if there exists
an operator R € Lo(X) such that RX C domD and DR = I on domR
(where [ is an identity operator), in this case R is called a right inverse
of D. The set of all right invertible operators in L(X) will be denoted
by R(X). For a given D € R(X), we will denote by Rp the set of all
right inverses of D, i.e.

Rp ={R€ Ly(X): DR=1}.

An operator F' € Lo(X) is said to be an initial operator for D
corresponding to R € Rp if F? = F,FX = kerD and FR = 0 on
domR. The set of all initial operators for D will be denoted by Fp.

Proposition 1.1. [6] If D € R(X) then for every R € Rp, we have
domD = RX @ kerD . (1.1)

Theorem 1.1. [6] Suppose that D € R(X). A necessary and sufficient
condition for an operator F € L(X) to be an initial operator for D
corresponding to R € Rp is that

F=I-RD on domD. (1.2)

Theorem 1.2. [14] Let X,Y, Z be infinite dimensional Hilbert spaces.
Suppose that F' € L(X,Z) and G € L(Y, Z), then two following condi-
tions are equivalent:

(i) ImF  ImG |
(11) There exists ¢ > 0 such that ||G*f|| = c||F*f|| for all f e Z*.
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Theorem 1.3. (The separation theorem) Suppose that M, N are con-
ver sets in Banach space X and M NN = (.

(i) If intM # () then there exists a functional z* € X* z* # 0 and
A €R  such that

(e",0) SA< (&), forevery €M, yeN.

(ii) If M is a compact set, N 1is a closed set then there exists x* €
X* x* £ 0 and A\, ds € R such that

(", 2) <\ < Ao < (2,y), forevery z€M,yeN.

The theory of right invertible operators and their applications can
be seen in [4, 6]. The proof of Theorems 1.2 and 1.3 can be found in

[2, 14].

2 The approximate controllability

Let X and U be infinite dimensional Hilbert spaces over the same
field F of scalars ( F = R or C). Suppose that D € R(X), with
dim(kerD) = 400, F € Fp is an initial operator for D corresponding
to R€Rp, A€ Lo(X), and B € Ly(U, X).

Now we will consider the linear system (LS)y of the form:

Dx=Az+Bu,uwe U, BU C (D - A)domD, (2.1)
Fr=wy , wzp€kerD. (2.2)

The spaces X and U are called the space of states and the space of
controls, respectively. So that, elements x € X and u € U are called
states and controls, respectively. The element xy € kerD is said to be
an initial state. A pair (zg,u) € (kerD) x U is called an input. If
(2.1)-(2.2) has solution & = @(xg, u) then this solution is called output
correspondent to input (zg, u).

Note that, since the inclusion BU C (D — A)domD is satisfied, if
the resolving operator I — RA is invertible then for every fixed pair
(%o, u) € (kerD) x U, the initial value problem (2.1)-(2.2) is well-posed
and has a unique solution, which is given by (see [4, 6]):

®(zg,u) = E4(RBu+ ), where E4 = ([ — RA)™. (2.3)
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Write

Rangy ., = U D(zo,u) , 1w € kerD . (2.4)

uel

Clearly, Rangy;,® is the set of all solutions of (2.1)-(2.2) for ar-
bitrarily fixed initial state xq € kerD. This is reachable set from the
initial state zg by means of controls u € U.

Definition 2.1. Let a linear system (LS)q of the form (2.1) — (2.2) be
given.

(1) A state x € X 1s called approzimately reachable from the initial
state xg € kerD if for every € > 0 there exists a control u € U
such that || — @(zo,u)|| < e.

(1) The linear system (LS)o 1s said to be approzimately reachable
from the initial state xq € kerD if

Rangy ., = X .

Theorem 2.1. The linear system (LS)y is approzimately reachable
from zero if and only if

B*R*E%h =0 1implies h=0. (2.5)

Proof. By definition, the system (LS)g is approximately reachable from
zero if

E.RBU = X . (2.6)

According to Theorem 1.3, the condition (2.6) is equivalent to for h €
X* such that

(h,z) =0,Vz € EARBU = h=0. (2.7)
By E4RBU is subspace of X, (2.7) is also equivalent to

(h,z) =0,Vz € E4RBU = h=20,
or equivalently

(h,EARBu) =0,YueU=>h=0.
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That is
(B*R*E3hyu)y =0,YVue U= h=0.

This implies that
B*R'E,h=0= h=0.

Conversely, if the condition (2.5) satisfied, then (2.7) is also satisfied,
and therefore we obtain (2.6). O

Definition 2.2. [6] Let be given a linear system (LS)y and Fy € Fp
be arbitrary initial operator for D.

(i) A state 1 € kerD is said to be Fy-reachable from the initial
state o € kerD if there exists a control w € U such that ©; =
F1®(zg,u). The state x1 is called a final state.

(i) The system (LS)q is said to be Fy-controllable if for every initial
state zg € kerD,

Fi(Rangy ;,®) = kerD .

(i11) The system (LS)q is said to be Fy-controllable to zero if
0e F1 (Rangy,wogﬁ) ,
for every initial state xy € kerD.

Definition 2.3. Let a linear system (LS)g of the form (2.1) — (2.2) be
given. Suppose that Fy € Fp 1s arbitrary initial operator for D.

(i) The system (LS)q is said to be Fy-approzimately reachable from
the nitial state xg € kerD if

Fy(Rangy ., P) = kerD .

(1) The system (LS)g is said to be Fi-approzimately controllable if
for every initial state xg € kerD, we have

Fi(Rangy ,,®) = kerD.

(111) The system (LS)o is said to be Fi-approzimately controllable to
xy € kerD of

z1 € Fi(Rangy .,9P) ,

for every initial state zo € kerD.
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Lemma 2.1. Let there be given a linear system (LS)y of the form
(2.1) — (2.2) and an arbitrary initial operator Fy € Fp. Suppose that
the system (LS)o is Fi-approzimately controllable to zero and

F1E4(kerD) = kerD . (2.8)

Then every final state x1 € kerD is Fi-approximately reachable from
zero.

Proof. By the assumption, 0 € Fj(Rangy,,®), for all zy € kerD.
Therefore, for every xo € kerD and € > 0, there exists a control ug € U
such that

HFlEA(RBUQ -+ .'1?0)” < €. (29)

The condition (2.8) implies that with any z; € kerD, there exists zo €
kerD such that
F 1E ALy = —XT1.

This equality and (2.9) together imply that for every x; € kerD and
€ > 0, there exists a control u; € U such that

HFlEARB’U,l - 371” < £.

This proves that every final state x; is Fi-approximately reachable from
Z€ero. 0

Theorem 2.2. Suppose that all assumptions of Lemma 2.1 are satis-
fied. Then the system (LS)q is Fi-approximately controllable.

Proof. According to our assumption, for every xg € kerD and € > 0,
there exists a control ug € U such that

| FyEa(RBug + x0)|| < -;- . (2.10)
By Lemma 2.1, for every z; € kerD there exists uy € U such that
IR EsRBu; — 21| < -; . (2.11)

From (2.10) and (2.11), it follows that for every zg,z; € kerD and
g > 0, there exists a control u = ug + u; € U such that
HFlEA(RBU -+ CL‘()) - 371“ = HFlEA[RB<UQ -+ ul) + ZEO} — ZLl”

< FLEA(RBug + o) + [[FiEaRBur — 24|

B

2 2
The arbitrariness of zg, 21 € kerD and € > 0 implies F;(Rangy ., @) =
kerD. O
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Theorem 2.3. Let there be given a linear system (LS)o and an arbi-
trary initial operator Fy € Fp. Then the system (LS)g is Fy-approzimatelyf]
controllable if and only if it is Fi-approximately controllable to every
elementy € FiE4RX.

Proof. The necessary condition is easy to be obtained. In order to prove
the sufficient condition, first we prove the equality

FiEA(RX @& kerD) = kerD . (2.12)

Indeed, since (I — RA)(domD) € domD = RX @ kerD (by Proposition
1.1 and property of the right invertible operator), there exists a set
E C X and Z C kerD such that

RE® Z = (I — RA)(domD).

This implies E4(RE @ Z) = E4(I — RA)(domD) = domD. Thus, we

have

kerD = Fi(domD) = F1EA(RE & Z)
C MEA(RX @ kerD)
C kerD.

Therefore, the formula (2.12) holds.

Suppose that the system (L.S)q is Fi-approximately controllable to
every element ¢y = F1E Ry, y € X, i.e. for every y € X and arbitrary
£ > 0 there exists a control vy € U such that

€
|FyEa(RBug + o) — F1E4Ry|| < 5
That is
| Py Ea(RBug + % + 22) — FyEa(Ry + 2)|| < -2- (2.13)

where x5 € kerD is arbitrary.

By the formula (2.12), for every 27 € kerD, there exists y; € X and
x4 € kerD such that

Ty = FlEA(Ryl + 3};) .
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This equality and (2.13) together imply
| FLEa(RBu) + 30 + 2) — 2] < -;- . (2.14)

On the other hand, since 0 € F1 F4RX and our assumptions allows
that (LS)g is Fy-approximately controllable to zero, i.e.

0 € Fi(Rangy,,?), for arbitrary zy € kerD .
Thus, for the element z, € kerD there exists u; € U such that
€
|FiEa(RBuy — )| < 5 (2.15)

From (2.14) and (2.15), it is concluded that for every o, z; € kerD
and e > 0 there exist u = uj + u; € U such that

|IF1E4(RBU+(E0) — CElll
= HFlEA[RB(Ug + Ul) + 113'0] - CC1H

= ||FLEs(RBuy + 2o + 74y) — x1 + F1E4(RBuy — z)||
< ||F1Ea(RBugy + 2o + 24) — 21| + || FiEa(RBuy — 24) ||
B

2 2

By the arbitrariness of zg, 21 € kerD and € > 0, we obtain Fj(Rangy ., P) :i
kerD. O

Theorem 2.4. Let a linear system (LS)y and an arbitrary initial op-
erator Fy € Fp be given. Then the system (LS)o is Fi-approzimately
reachable from zero if and only if

B*R*ELF;h =0 implies h=0. (2.16)

Proof. Suppose that the system (L.S)q is Fj-approximately reachable
from zero, we have
Fy(Rangy ¢®) = kerD .

This means that
HNEJRBU =kerD . (2.17)

According to Theorem 1.3, the equality (2.17) is equivalent to for h €
(kerD)* such that

(h,z) =0,Vz € {E4RBU = h=0. (2.18)



Because F1E4RBU is a subspace of kerD, the condition (2.18) is also
equivalent to

(h,z) =0,Vz € E4RBU = h =0,
or equivalently
(h, FiE4RBu) =0,Yue U = h=0.
It is satisfied if and only if
(B*R*'E}Fihyu)y =0,YVue U = h=0. (2.19)

Hence, the condition (2.19) allows B*R*E%F;'h = 0 which implies
h = 0.

Conversely, if (2.16) is satisfied then (2.19) holds. This implies (2.17)
and therefore we obtain

Fy(Rangy ¢®) = kerD .
D

Theorem 2.5. A necessary and sufficient condition for the system
(LS)o to be Fi-controllable is that there exists a real number o > 0
such that

IB*R*EZFrf| > allfll, forall fe (kerD). (2.20)

Proof. Necessity. Suppose that the system (LS)q is Fi- controllable,
we have

Fy(Rangy ,,@) = kerD | for every xzy € kerD .

It implies that FyE4RBU = kerD. By Theorem 1.2, there exists a
real number « > 0 such that

I(B2EARB) f|| Z el f||, forall fe (kerD)",

i.e. the condition (2.20) is held.
Sufficiency. Suppose that the condition (2.20) is satisfied, by Theorem
1.2, we obtain

FiEARBU D kerD

Moreover, F1E4RBU C kerD, since F; is an initial operator for D.
Consequently, we have F1 E,RBU = kerD. It implies that

Fy(Rangy ,,,?) = kerD, for every o € kerD.
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Theorem 2.6. The linear system (LS)y is Fi-controllable to zero if
and only if there exists 3 > 0 such that

|B*R*ELFY fI| = BIEAFTfI,  for every f € (kerD)*. — (2.21)

Proof. Suppose that the system (LS)g is Fi- controllable to zero. This
means that

0 € Fi(Rangy.,®), forall € kerD.
Therefore, for arbitrary zo € kerD, there exists u € U such that
FiEA(RBu+x9) =0.

It allows that for every z;; € kerD, there exists v’ € U such that
FiE zy = FLE,RBvY. Thus, we obtain FyE4(kerD) C F{E4RBU.
Using Theorem 1.2, there exists § > 0 such that

I(F1EARB)*fl| =2 BI(FLEA) fIl ,  forall f e (kerD)".

Conversely, Assume that (2.21) is satisfied, according to Theorem 1.2,

we conclude that
FiEs(kerD) C F1EARBU .

Hence, for every zg € kerD, there exists u € U such that
FiE4(RBu+ x9) =0,
i.e. the system (LS)q is Fj-controllable to zero. O

Example. Consider the control system

Oz (t
25) _ \aits) + ut), (2.22)
ot
with initial condition
z(0,8) = f(s). (2.23)
Let X = C(R?) be the space of all continous functions over R?. Write
t
D = %’ R = [. It is possible to check that domD = {z € X :
0

z(t, 50) € CHR) for every fixed sg € R}, kerD = {z € X : z(t,s) =
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©(s), ¢ € C(R)}. Thus, we have dim(kerD)=+o00, and domR = X.
In addition,

t

(DRx)(t,s) = —(% /a:(T, s)ydr | = (Iz)(t,s), forall z € X.

0

So the operator D is right invertible and R is a right inverse of D. The
initial operator for D corresponding to R is defined by (Fz)(t,s) =
(I — RD)z(t,s) = z(0, s).

¢
Moreover, for every ¢; € R,i = 1,2,3,... let R; = [, then R; are right
t;

inverses of D, and Fjz(t,s) = x(t;,s) are the initial operators for D
corresponding to R;, respectively (see[6]).
Therefore, the problem (2.22)-(2.23) can be rewritten in the form:

Dy = Az +Bu,uelU (2.24)

Fr=x9, zp€kerD. (2.25)
Where A = A, B = [ are stationary operators, since AD = DA, AR =
RA,BD = DB and BR = RB. The set U = C(R) is the space of all
continous functions over R. If write

i

(Cz)(t,s) = /\e’\(t”T):zc(T7 s)dr,
0
then

(I +XCYI = AR)x(t,s) = (I — AR)(L + XC)x(t,s) = Iz(t,s) .

This means that the resolving operator / — AR is invertible and its
inverse is given by

(Eaz)(t,s) = (I = AR)™'a(t,s) = (I + \C)a(t,

s)
BYES
0
Hence, for every u(t) € C(R), by formula (2.3), the solution of
(2.24)-(2.25) ( which is also the solution of (2.22)-(2.23)) is given by

t

z(t,s) = E4(RBu + 20)(t, s) = e /e“’\Tu(’r)d'r + f(s)

0
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In addition, it is easy to check that FiE zo = e*®zy = S(t1)zg, for
every g € kerD. Where S(t) is a semigroup of continuous linear oper-
ators generated by A.

Since B is a stationary operator and kerR = {0}, in this case, the
condition (2.16) is equivalent to B*E% F;'h = 0 which implies A =0 or
B*(F1E4)*h =0 implies h = 0. This means that

B*S*(t))h=0 = h=0. (2.26)

Note that, the condition (2.26) is necessary and sufficient for the
linear system in infinite dimensional space to be approximately reach-
able (see [14]). For the system (2.22)-(2.23), the condition (2.26) is
completely satisfied. Hence, by Theorem 2.4, the system (2.24)-(2.25)
is Fi-approximately reachable from zero.

This example shows that in the case D is a differential operator, the
concept and results of Fi-approximately controllable are completely co-
incident with the approximate controllability of the linear control sys-
tem in infinite dimensional space.
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