

Title	THE APPROXIMATE CONTROLLABILITY FOR THE SYSTEM DESCRIBED BY RIGHT INVERTIBLE OPERATORS
Author(s)	Hoang, Van Thi
Citation	Annual Report of FY 2005, The Core University Program between Japan Society for the Promotion of Science (JSPS) and Vietnamese Academy of Science and Technology (VAST). 2006, p. 349–362
Version Type	VoR
URL	https://hdl.handle.net/11094/12924
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

THE APPROXIMATE CONTROLLABILITY FOR THE SYSTEM DESCRIBED BY RIGHT INVERTIBLE OPERATORS

HOANG VAN THI

Hong Duc University, Vietnam

Abstract. In this paper, we deal with the approximate controllability for the linear system described by right invertible operators in the infinite dimensional Hilbert space.

Keywords: Right invertible operator, initial operator, initial value problem.

0 Introduction

By the appearance of the theory of right invertible operators, the initial, boundary and mixed boundary value problems for the linear systems described by right invertible operators and generalized invertible operators were studied by many Mathematicians (see[4, 6]). Nguyen Dinh Quyet, in his articles, has considered the controllability of linear systems described by right invertible operators in the case the resolving operator is invertible (see[8, 10, 11]). These results were generalized by A. Pogorzelec in the case of one-sized invertible resolving operators (see [5, 6]) and by Nguyen Van Mau for the system described by generalized invertible operators (see [3, 4]). The above mentioned controllability is F_1 -exactly controllable from one state to another. However, in infinite dimensional space, the exact controllability is not always realized. To overcome these restrictions, we define the so-called F_1 -approximately controllable, in the sense of: "A system is approximately controllable if any state can be transferred to the neighbourhood of other state by an admissible control". In this article, we consider the approximate controllability for the system $(LS)_0$ of the form (2.1)-(2.2) in infinite

dimensional Hilbert space, with $\dim(\ker D) = +\infty$. The necessary and sufficient conditions for the linear system $(LS)_0$ to be approximately reachable, and exactly controllable are also found.

1 Preliminaries

Let X be a linear space over a field \mathcal{F} of scalars ($\mathcal{F} = \mathbb{R}$ or \mathbb{C}). Denote by $L(X)$ the set of all linear operators with domains and ranges belonging to X . We write

$$L_0(X) = \{A \in L(X) : \text{dom}A = X\}.$$

An operator $D \in L(X)$ is said to be *right invertible* if there exists an operator $R \in L_0(X)$ such that $RX \subset \text{dom}D$ and $DR = I$ on $\text{dom}R$ (where I is an identity operator), in this case R is called a *right inverse* of D . The set of all right invertible operators in $L(X)$ will be denoted by $R(X)$. For a given $D \in R(X)$, we will denote by \mathcal{R}_D the set of all right inverses of D , i.e.

$$\mathcal{R}_D = \{R \in L_0(X) : DR = I\}.$$

An operator $F \in L_0(X)$ is said to be an *initial operator* for D corresponding to $R \in \mathcal{R}_D$ if $F^2 = F$, $FX = \ker D$ and $FR = 0$ on $\text{dom}R$. The set of all initial operators for D will be denoted by \mathcal{F}_D .

Proposition 1.1. [6] *If $D \in R(X)$ then for every $R \in \mathcal{R}_D$, we have*

$$\text{dom}D = RX \oplus \ker D. \quad (1.1)$$

Theorem 1.1. [6] *Suppose that $D \in R(X)$. A necessary and sufficient condition for an operator $F \in L(X)$ to be an initial operator for D corresponding to $R \in \mathcal{R}_D$ is that*

$$F = I - RD \quad \text{on} \quad \text{dom}D. \quad (1.2)$$

Theorem 1.2. [14] *Let X, Y, Z be infinite dimensional Hilbert spaces. Suppose that $F \in L(X, Z)$ and $G \in L(Y, Z)$, then two following conditions are equivalent:*

- (i) $\text{Im}F \subset \text{Im}G$,
- (ii) *There exists $c > 0$ such that $\|G^*f\| \geq c\|F^*f\|$ for all $f \in Z^*$.*

Theorem 1.3. (The separation theorem) Suppose that M, N are convex sets in Banach space X and $M \cap N = \emptyset$.

(i) If $\text{int}M \neq \emptyset$ then there exists a functional $x^* \in X^*$, $x^* \neq 0$ and $\lambda \in \mathbb{R}$ such that

$$\langle x^*, x \rangle \leq \lambda \leq \langle x^*, y \rangle, \quad \text{for every } x \in M, y \in N.$$

(ii) If M is a compact set, N is a closed set then there exists $x^* \in X^*$, $x^* \neq 0$ and $\lambda_1, \lambda_2 \in \mathbb{R}$ such that

$$\langle x^*, x \rangle \leq \lambda_1 < \lambda_2 \leq \langle x^*, y \rangle, \quad \text{for every } x \in M, y \in N.$$

The theory of right invertible operators and their applications can be seen in [4, 6]. The proof of Theorems 1.2 and 1.3 can be found in [2, 14].

2 The approximate controllability

Let X and U be infinite dimensional Hilbert spaces over the same field \mathcal{F} of scalars ($\mathcal{F} = \mathbb{R}$ or \mathbb{C}). Suppose that $D \in R(X)$, with $\dim(\ker D) = +\infty$, $F \in \mathcal{F}_D$ is an initial operator for D corresponding to $R \in \mathcal{R}_D$, $A \in L_0(X)$, and $B \in L_0(U, X)$.

Now we will consider the linear system $(LS)_0$ of the form:

$$Dx = Ax + Bu, \quad u \in U, \quad BU \subset (D - A)\text{dom}D, \quad (2.1)$$

$$Fx = x_0, \quad x_0 \in \ker D. \quad (2.2)$$

The spaces X and U are called the *space of states* and the *space of controls*, respectively. So that, elements $x \in X$ and $u \in U$ are called *states* and *controls*, respectively. The element $x_0 \in \ker D$ is said to be an *initial state*. A pair $(x_0, u) \in (\ker D) \times U$ is called an *input*. If (2.1)-(2.2) has solution $x = \Phi(x_0, u)$ then this solution is called *output* correspondent to input (x_0, u) .

Note that, since the inclusion $BU \subset (D - A)\text{dom}D$ is satisfied, if the resolving operator $I - RA$ is invertible then for every fixed pair $(x_0, u) \in (\ker D) \times U$, the initial value problem (2.1)-(2.2) is well-posed and has a unique solution, which is given by (see [4, 6]):

$$\Phi(x_0, u) = E_A(RBu + x_0), \quad \text{where } E_A = (I - RA)^{-1}. \quad (2.3)$$

Write

$$\text{Rang}_{U,x_0}\Phi = \bigcup_{u \in U} \Phi(x_0, u) , \quad x_0 \in \ker D . \quad (2.4)$$

Clearly, $\text{Rang}_{U,x_0}\Phi$ is the set of all solutions of (2.1)-(2.2) for arbitrarily fixed initial state $x_0 \in \ker D$. This is reachable set from the initial state x_0 by means of controls $u \in U$.

Definition 2.1. *Let a linear system $(LS)_0$ of the form (2.1) – (2.2) be given.*

- (i) *A state $x \in X$ is called approximately reachable from the initial state $x_0 \in \ker D$ if for every $\varepsilon > 0$ there exists a control $u \in U$ such that $\|x - \Phi(x_0, u)\| < \varepsilon$.*
- (ii) *The linear system $(LS)_0$ is said to be approximately reachable from the initial state $x_0 \in \ker D$ if*

$$\overline{\text{Rang}_{U,x_0}\Phi} = X .$$

Theorem 2.1. *The linear system $(LS)_0$ is approximately reachable from zero if and only if*

$$B^* R^* E_A^* h = 0 \quad \text{implies} \quad h = 0 . \quad (2.5)$$

Proof. By definition, the system $(LS)_0$ is approximately reachable from zero if

$$\overline{E_A R B U} = X . \quad (2.6)$$

According to Theorem 1.3, the condition (2.6) is equivalent to for $h \in X^*$ such that

$$\langle h, x \rangle = 0 , \quad \forall x \in \overline{E_A R B U} \implies h = 0 . \quad (2.7)$$

By $E_A R B U$ is subspace of X , (2.7) is also equivalent to

$$\langle h, x \rangle = 0 , \quad \forall x \in E_A R B U \implies h = 0 ,$$

or equivalently

$$\langle h, E_A R B u \rangle = 0 , \quad \forall u \in U \implies h = 0 .$$

That is

$$\langle B^* R^* E_A^* h, u \rangle = 0, \forall u \in U \implies h = 0.$$

This implies that

$$B^* R^* E_A^* h = 0 \implies h = 0.$$

Conversely, if the condition (2.5) satisfied, then (2.7) is also satisfied, and therefore we obtain (2.6). \square

Definition 2.2. [6] Let be given a linear system $(LS)_0$ and $F_1 \in \mathcal{F}_D$ be arbitrary initial operator for D .

- (i) A state $x_1 \in \ker D$ is said to be F_1 -reachable from the initial state $x_0 \in \ker D$ if there exists a control $u \in U$ such that $x_1 = F_1 \Phi(x_0, u)$. The state x_1 is called a final state.
- (ii) The system $(LS)_0$ is said to be F_1 -controllable if for every initial state $x_0 \in \ker D$,

$$F_1(\text{Rang}_{U,x_0} \Phi) = \ker D.$$

- (iii) The system $(LS)_0$ is said to be F_1 -controllable to zero if

$$0 \in F_1(\text{Rang}_{U,x_0} \Phi),$$

for every initial state $x_0 \in \ker D$.

Definition 2.3. Let a linear system $(LS)_0$ of the form (2.1) – (2.2) be given. Suppose that $F_1 \in \mathcal{F}_D$ is arbitrary initial operator for D .

- (i) The system $(LS)_0$ is said to be F_1 -approximately reachable from the initial state $x_0 \in \ker D$ if

$$\overline{F_1(\text{Rang}_{U,x_0} \Phi)} = \ker D.$$

- (ii) The system $(LS)_0$ is said to be F_1 -approximately controllable if for every initial state $x_0 \in \ker D$, we have

$$\overline{F_1(\text{Rang}_{U,x_0} \Phi)} = \ker D.$$

- (iii) The system $(LS)_0$ is said to be F_1 -approximately controllable to $x_1 \in \ker D$ if

$$x_1 \in \overline{F_1(\text{Rang}_{U,x_0} \Phi)},$$

for every initial state $x_0 \in \ker D$.

Lemma 2.1. *Let there be given a linear system $(LS)_0$ of the form (2.1) – (2.2) and an arbitrary initial operator $F_1 \in \mathcal{F}_D$. Suppose that the system $(LS)_0$ is F_1 -approximately controllable to zero and*

$$F_1 E_A(\ker D) = \ker D. \quad (2.8)$$

Then every final state $x_1 \in \ker D$ is F_1 -approximately reachable from zero.

Proof. By the assumption, $0 \in \overline{F_1(\text{Rang}_{U,x_0}\Phi)}$, for all $x_0 \in \ker D$. Therefore, for every $x_0 \in \ker D$ and $\varepsilon > 0$, there exists a control $u_0 \in U$ such that

$$\|F_1 E_A(RBu_0 + x_0)\| < \varepsilon. \quad (2.9)$$

The condition (2.8) implies that with any $x_1 \in \ker D$, there exists $x_2 \in \ker D$ such that

$$F_1 E_A x_2 = -x_1.$$

This equality and (2.9) together imply that for every $x_1 \in \ker D$ and $\varepsilon > 0$, there exists a control $u_1 \in U$ such that

$$\|F_1 E_A RBu_1 - x_1\| < \varepsilon.$$

This proves that every final state x_1 is F_1 -approximately reachable from zero. \square

Theorem 2.2. *Suppose that all assumptions of Lemma 2.1 are satisfied. Then the system $(LS)_0$ is F_1 -approximately controllable.*

Proof. According to our assumption, for every $x_0 \in \ker D$ and $\varepsilon > 0$, there exists a control $u_0 \in U$ such that

$$\|F_1 E_A(RBu_0 + x_0)\| < \frac{\varepsilon}{2}. \quad (2.10)$$

By Lemma 2.1, for every $x_1 \in \ker D$ there exists $u_1 \in U$ such that

$$\|F_1 E_A RBu_1 - x_1\| < \frac{\varepsilon}{2}. \quad (2.11)$$

From (2.10) and (2.11), it follows that for every $x_0, x_1 \in \ker D$ and $\varepsilon > 0$, there exists a control $u = u_0 + u_1 \in U$ such that

$$\begin{aligned} \|F_1 E_A(RBu + x_0) - x_1\| &= \|F_1 E_A[R(B(u_0 + u_1) + x_0) - x_1]\| \\ &\leq \|F_1 E_A(RBu_0 + x_0)\| + \|F_1 E_A RBu_1 - x_1\| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

The arbitrariness of $x_0, x_1 \in \ker D$ and $\varepsilon > 0$ implies $\overline{F_1(\text{Rang}_{U,x_0}\Phi)} = \ker D$. \square

Theorem 2.3. *Let there be given a linear system $(LS)_0$ and an arbitrary initial operator $F_1 \in \mathcal{F}_D$. Then the system $(LS)_0$ is F_1 -approximately controllable if and only if it is F_1 -approximately controllable to every element $y' \in F_1 E_A R X$.*

Proof. The necessary condition is easy to be obtained. In order to prove the sufficient condition, first we prove the equality

$$F_1 E_A (R X \oplus \ker D) = \ker D. \quad (2.12)$$

Indeed, since $(I - RA)(\text{dom } D) \subset \text{dom } D = R X \oplus \ker D$ (by Proposition 1.1 and property of the right invertible operator), there exists a set $E \subset X$ and $Z \subset \ker D$ such that

$$R E \oplus Z = (I - RA)(\text{dom } D).$$

This implies $E_A(R E \oplus Z) = E_A(I - RA)(\text{dom } D) = \text{dom } D$. Thus, we have

$$\begin{aligned} \ker D &= F_1(\text{dom } D) = F_1 E_A(R E \oplus Z) \\ &\subset F_1 E_A(R X \oplus \ker D) \\ &\subset \ker D. \end{aligned}$$

Therefore, the formula (2.12) holds.

Suppose that the system $(LS)_0$ is F_1 -approximately controllable to every element $y' = F_1 E_A R y$, $y \in X$, i.e. for every $y \in X$ and arbitrary $\varepsilon > 0$ there exists a control $u_0 \in U$ such that

$$\|F_1 E_A(R B u_0 + x_0) - F_1 E_A R y\| < \frac{\varepsilon}{2}.$$

That is

$$\|F_1 E_A(R B u_0 + x_0 + x_2) - F_1 E_A(R y + x_2)\| < \frac{\varepsilon}{2}. \quad (2.13)$$

where $x_2 \in \ker D$ is arbitrary.

By the formula (2.12), for every $x_1 \in \ker D$, there exists $y_1 \in X$ and $x'_2 \in \ker D$ such that

$$x_1 = F_1 E_A(R y_1 + x'_2).$$

This equality and (2.13) together imply

$$\|F_1 E_A(RBu'_0 + x_0 + x'_2) - x_1\| < \frac{\varepsilon}{2}. \quad (2.14)$$

On the other hand, since $0 \in F_1 E_A R X$ and our assumptions allows that $(LS)_0$ is F_1 -approximately controllable to zero, i.e.

$$0 \in \overline{F_1(\text{Rang}_{U,x_0}\Phi)}, \text{ for arbitrary } x_0 \in \ker D.$$

Thus, for the element $x'_2 \in \ker D$ there exists $u_1 \in U$ such that

$$\|F_1 E_A(RBu_1 - x'_2)\| < \frac{\varepsilon}{2}. \quad (2.15)$$

From (2.14) and (2.15), it is concluded that for every $x_0, x_1 \in \ker D$ and $\varepsilon > 0$ there exist $u = u'_0 + u_1 \in U$ such that

$$\begin{aligned} & \|F_1 E_A(RBu + x_0) - x_1\| \\ &= \|F_1 E_A[R(B(u'_0 + u_1) + x_0) - x_1]\| \\ &= \|F_1 E_A(RBu'_0 + x_0 + x'_2) - x_1 + F_1 E_A(RBu_1 - x'_2)\| \\ &\leq \|F_1 E_A(RBu'_0 + x_0 + x'_2) - x_1\| + \|F_1 E_A(RBu_1 - x'_2)\| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

By the arbitrariness of $x_0, x_1 \in \ker D$ and $\varepsilon > 0$, we obtain $\overline{F_1(\text{Rang}_{U,x_0}\Phi)} = \ker D$. \square

Theorem 2.4. *Let a linear system $(LS)_0$ and an arbitrary initial operator $F_1 \in \mathcal{F}_D$ be given. Then the system $(LS)_0$ is F_1 -approximately reachable from zero if and only if*

$$B^* R^* E_A^* F_1^* h = 0 \quad \text{implies} \quad h = 0. \quad (2.16)$$

Proof. Suppose that the system $(LS)_0$ is F_1 -approximately reachable from zero, we have

$$\overline{F_1(\text{Rang}_{U,0}\Phi)} = \ker D.$$

This means that

$$\overline{F_1 E_A R B U} = \ker D. \quad (2.17)$$

According to Theorem 1.3, the equality (2.17) is equivalent to for $h \in (\ker D)^*$ such that

$$\langle h, x \rangle = 0, \forall x \in \overline{F_1 E_A R B U} \implies h = 0. \quad (2.18)$$

Because $F_1 E_A R B U$ is a subspace of $\ker D$, the condition (2.18) is also equivalent to

$$\langle h, x \rangle = 0, \forall x \in F_1 E_A R B U \implies h = 0,$$

or equivalently

$$\langle h, F_1 E_A R B u \rangle = 0, \forall u \in U \implies h = 0.$$

It is satisfied if and only if

$$\langle B^* R^* E_A^* F_1^* h, u \rangle = 0, \forall u \in U \implies h = 0. \quad (2.19)$$

Hence, the condition (2.19) allows $B^* R^* E_A^* F_1^* h = 0$ which implies $h = 0$.

Conversely, if (2.16) is satisfied then (2.19) holds. This implies (2.17) and therefore we obtain

$$\overline{F_1(\text{Rang}_{U,0}\Phi)} = \ker D.$$

□

Theorem 2.5. *A necessary and sufficient condition for the system $(LS)_0$ to be F_1 -controllable is that there exists a real number $\alpha > 0$ such that*

$$\|B^* R^* E_A^* F_1^* f\| \geq \alpha \|f\|, \quad \text{for all } f \in (\ker D)^*. \quad (2.20)$$

Proof. Necessity. Suppose that the system $(LS)_0$ is F_1 -controllable, we have

$$F_1(\text{Rang}_{U,x_0}\Phi) = \ker D, \quad \text{for every } x_0 \in \ker D.$$

It implies that $F_1 E_A R B U = \ker D$. By Theorem 1.2, there exists a real number $\alpha > 0$ such that

$$\|(F_1 E_A R B)^* f\| \geq \alpha \|f\|, \quad \text{for all } f \in (\ker D)^*,$$

i.e. the condition (2.20) is held.

Sufficiency. Suppose that the condition (2.20) is satisfied, by Theorem 1.2, we obtain

$$F_1 E_A R B U \supseteq \ker D$$

Moreover, $F_1 E_A R B U \subseteq \ker D$, since F_1 is an initial operator for D . Consequently, we have $F_1 E_A R B U = \ker D$. It implies that

$$F_1(\text{Rang}_{U,x_0}\Phi) = \ker D, \quad \text{for every } x_0 \in \ker D.$$

□

Theorem 2.6. *The linear system $(LS)_0$ is F_1 -controllable to zero if and only if there exists $\beta > 0$ such that*

$$\|B^*R^*E_A^*F_1^*f\| \geq \beta\|E_A^*F_1^*f\|, \quad \text{for every } f \in (\ker D)^*. \quad (2.21)$$

Proof. Suppose that the system $(LS)_0$ is F_1 -controllable to zero. This means that

$$0 \in F_1(\text{Rang}_{U,x_0}\Phi), \quad \text{for all } x_0 \in \ker D.$$

Therefore, for arbitrary $x_0 \in \ker D$, there exists $u \in U$ such that

$$F_1E_A(RBu + x_0) = 0.$$

It allows that for every $x'_0 \in \ker D$, there exists $u' \in U$ such that $F_1E_Ax'_0 = F_1E_ARBu'$. Thus, we obtain $F_1E_A(\ker D) \subseteq F_1E_ARBU$. Using Theorem 1.2, there exists $\beta > 0$ such that

$$\|(F_1E_ARB)^*f\| \geq \beta\|(F_1E_A)^*f\|, \quad \text{for all } f \in (\ker D)^*.$$

Conversely, Assume that (2.21) is satisfied, according to Theorem 1.2, we conclude that

$$F_1E_A(\ker D) \subseteq F_1E_ARBU.$$

Hence, for every $x_0 \in \ker D$, there exists $u \in U$ such that

$$F_1E_A(RBu + x_0) = 0,$$

i.e. the system $(LS)_0$ is F_1 -controllable to zero. \square

Example. Consider the control system

$$\frac{\partial x(t, s)}{\partial t} = \lambda x(t, s) + u(t), \quad (2.22)$$

with initial condition

$$x(0, s) = f(s). \quad (2.23)$$

Let $X = C(\mathbb{R}^2)$ be the space of all continuous functions over \mathbb{R}^2 . Write $D = \frac{\partial}{\partial t}$, $R = \int_0^t$. It is possible to check that $\text{dom}D = \{x \in X : x(t, s_0) \in C^1(\mathbb{R}) \text{ for every fixed } s_0 \in \mathbb{R}\}$, $\ker D = \{x \in X : x(t, s) =$

$\varphi(s), \varphi \in C(\mathbb{R})\}$. Thus, we have $\dim(\ker D) = +\infty$, and $\text{dom}R = X$. In addition,

$$(DRx)(t, s) = \frac{\partial}{\partial t} \left(\int_0^t x(\tau, s) d\tau \right) = (Ix)(t, s), \text{ for all } x \in X.$$

So the operator D is right invertible and R is a right inverse of D . The initial operator for D corresponding to R is defined by $(Fx)(t, s) = (I - RD)x(t, s) = x(0, s)$.

Moreover, for every $t_i \in \mathbb{R}, i = 1, 2, 3, \dots$ let $R_i = \int_{t_i}^t$, then R_i are right inverses of D , and $F_i x(t, s) = x(t_i, s)$ are the initial operators for D corresponding to R_i , respectively (see[6]).

Therefore, the problem (2.22)-(2.23) can be rewritten in the form:

$$Dx = Ax + Bu, u \in U \quad (2.24)$$

$$Fx = x_0, \quad x_0 \in \ker D. \quad (2.25)$$

Where $A = \lambda I, B = I$ are stationary operators, since $AD = DA, AR = RA, BD = DB$ and $BR = RB$. The set $U = C(\mathbb{R})$ is the space of all continuous functions over \mathbb{R} . If write

$$(Cx)(t, s) = \int_0^t e^{\lambda(t-\tau)} x(\tau, s) d\tau,$$

then

$$(I + \lambda C)(I - \lambda R)x(t, s) = (I - \lambda R)(I + \lambda C)x(t, s) = Ix(t, s).$$

This means that the resolving operator $I - \lambda R$ is invertible and its inverse is given by

$$\begin{aligned} (E_Ax)(t, s) &= (I - \lambda R)^{-1}x(t, s) = (I + \lambda C)x(t, s) \\ &= x(t, s) + \lambda \int_0^t e^{\lambda(t-\tau)} x(\tau, s) d\tau. \end{aligned}$$

Hence, for every $u(t) \in C(\mathbb{R})$, by formula (2.3), the solution of (2.24)-(2.25) (which is also the solution of (2.22)-(2.23)) is given by

$$x(t, s) = E_A(RBu + x_0)(t, s) = e^{\lambda t} \left(\int_0^t e^{-\lambda \tau} u(\tau) d\tau + f(s) \right).$$

In addition, it is easy to check that $F_1 E_A x_0 = e^{\lambda(t_1)} x_0 = S(t_1) x_0$, for every $x_0 \in \ker D$. Where $S(t)$ is a semigroup of continuous linear operators generated by A .

Since B is a stationary operator and $\ker R = \{0\}$, in this case, the condition (2.16) is equivalent to $B^* E_A^* F_1^* h = 0$ which implies $h = 0$ or $B^*(F_1 E_A)^* h = 0$ implies $h = 0$. This means that

$$B^* S^*(t_1) h = 0 \implies h = 0. \quad (2.26)$$

Note that, the condition (2.26) is necessary and sufficient for the linear system in infinite dimensional space to be approximately reachable (see [14]). For the system (2.22)-(2.23), the condition (2.26) is completely satisfied. Hence, by Theorem 2.4, the system (2.24)-(2.25) is F_1 -approximately reachable from zero.

This example shows that in the case D is a differential operator, the concept and results of F_1 -approximately controllable are completely coincident with the approximate controllability of the linear control system in infinite dimensional space.

Acknowledgements. I would like to take this opportunity to thank Professor Nguyen Dinh Quyet and Professor Nguyen Van Mau for their great contributions to this article in terms of correction and fulfilment.

References

- [1] A. V. Balakrishnan (1976) *Applied Functional Analysis*, Springer-Verlag, New York- Heidelberg- Berlin.
- [2] A. D. Ioffe, V. M. Tihomirov (1979) *Theory of Extremal Problems*, North-Holland Publishing Company, Amsterdam- New York- Oxford.
- [3] Nguyen Van Mau (1990) Controllability of general linear systems with right invertible operators, preprint No. 472, Institute of Mathematics, Polish Acad. Sci., Warszawa.
- [4] Nguyen Van Mau (1992) *Boundary value problems and controllability of linear systems with right invertible operators*, Dissertationes Math., CCCXVI, Warszawa.

- [5] A. Pogorzelec (1983) *Solvability and controllability of ill-determined systems with right invertible operators*, Ph.D.Diss., Institute of Mathematics, Technical University of Warsaw, Warszawa.
- [6] D. Przeworska - Rolewicz (1988) *Algebraic Analysis*, PWN and Reidel, Warszawa- Dordrecht.
- [7] D. Przeworska - Rolewicz and S. Rolewicz (1968) *Equations in Linear Spaces*, Monografie Math. 47, PWN, Warszawa.
- [8] Nguyen Dinh Quyet (1977) Controllability and observability of linear systems described by the right invertible operators in linear space, Preprint No. 113, Institute of Mathematics, Polish Acad. Sci. , Warszawa.
- [9] Nguyen Dinh Quyet (1978) On Linear Systems Described by Right Invertible Operators Acting in a Linear Space, *Control and Cybernetics*, vol.7 ,pp 33 - 45.
- [10] Nguyen Dinh Quyet (1981) *On the F_1 - controllability of the system described by the right invertible operators in linear spaces*, Methods of Mathematical Programming, System Research Institute, Polish Acad. Sci., PWN- Polish Scientific Publisher, Warszawa, 223- 226.
- [11] Nguyen Dinh Quyet, Hoang Van Thi (2002) The Controllability of Degenerate System Described by Right Invertible Operators, *VNU. Journal of Science, Mathematics-Physics*, Viet Nam National University, Ha Noi, T.XVIII, No3, pp 37-48.
- [12] S. Rolewicz (1987) *Functional Analysis and Control Theory*, Polish Sci. Publication, Warszawa.
- [13] Hoang Van Thi, Degenerate Systems Described by Generalized Invertible Operators and Controllability, (to appear in *Demonstratio Mathematica*).
- [14] J. Zabczyk (1992) *Mathematical Control Theory*, Birkhauser, Boston-Basel-Berlin.

Address: Hong Duc University
 Faculty of Natural Science
 307 - Le Lai Street

Thanh Hoa City, VIETNAM
E-mail: thihdu2004@yahoo.com