
Title DETERMINATION OF THE PLANT LOCATIONS FOR
ENSURING SOME ENVIRONMENTAL CRITERIA

Author(s) Tran, Gia Lich; Pham, Thanh Nam; Phan, Ngoc Vinh

Citation

Annual Report of FY 2005, The Core University
Program between Japan Society for the Promotion
of Science (JSPS) and Vietnamese Academy of
Science and Technology (VAST). 2006, p. 269-278

Version Type VoR

URL https://hdl.handle.net/11094/12955

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



DETERMINATION OF THE PLANT LOCATONS FOR ENSURING 
SOME ENVIRONMENTAL CRITERIA 

Tran Gia Lichl , Pham Thanh Nam2, Ph an Ngoc Vinh2 

I Institute of Mathematics, P.O Box 631, Bo Ho, 10000 Hanoi, Vietnam. 

2 Institute of Mechanics, 264 Doi Can St., Hanoi, Vietnam. 

ABSTRACT 

In this paper the following problems are presented: 
Algorithms for solving the two-dimensional matter propagation and its adjoint 
problems, 
Stability of the difference schemes and the non-negative property of numerical 
solution, 
Determination of the plant locations so that some environmental criteria are 
satisfied, 
Numerical experiments for the test cases and for Halong Bay area. 

Keywords: Partial differential equations, finite difference schemes. 

1. EQUATION OF THE SUSPENDED MATTER PROPAGATION AND ITS ADJOINT 
EQUATION 

1.1. Governing equations 

The equation describing the suspended matter diffusion and transport in the horizontal 2D case 
has the following form (see [1]): 
ac ac ac 
-+u-+v-+aC=/+y!':!.C (x,Y)EG,O<tsT (1) 
at ax Oy 

with the initial and boundary conditions: 

Cll=o = Co, Clr-= cp, ~~ Ir+ = 0 (2) 

where: x, y, t - space and time variables, 
6u, v)a- velocity that satisfies the condition: 
~+~=O m 
f!!::f m8fter c~ncentration, 
() - decay coefficient, 
f - source intensity, 
y - diffusion coefficient; 
r = r+ + r-, r+ - boundary part, at which un ~ 0; r- - boundary part, at which 
un < ~2 un -cf-rojection o/the velocity on the external normal vector n. 

!':!. = -:;-z + ~ - Laplace operator. 
Solution oftRl equ~on (1) may be determined under the form: C = C I + C2 

where, CI and Cz are solutions of two following problems: 
Problem 1: 

aCI aCI aCI .....r ,AC 
Tt+ u ax +v ay +uvi = yD. I 

with the initial and boundary conditions: 

C I CO C I aCI I . = 0 
I 1=0 =, I r- = cp, an r-

Problem 2: 
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(4) 

(5) 



ac ac ac? 
_2 +U __ 2 +v--+oC? = y!1C + j at ax ay - 2 

(6) 

with the initial and boundary conditions: 

aC21 = ° C2 11=0= 0, C2 Ir - = 0, an r+ . (7) 

It is well known that the adjoint equation of the equation (6), (7) has the following form (see 
[1], [2], [7]): 

ac; ac~ ac; * * (8) ---u---v-+oC? -y!1C2 = P at ax ay 
and the initial and boundary conditions of the equation (7) be chosen as follows: 

C; I,o'~ 0, C; I,~ 0, (r a~; +U"C; L ~ 0 (9) 

We have the dual form (see [1 ], [2], [7]) for the problem (6), (7) and adjoint problem (8), (9): 
T T 

fdt fpC2dG = fdt fjC;dG (lO) 
o GOG 

From equation (8), using a variable transformation tl = T - t , we obtain the another form of the 

adjoint equation: 

ac; ac; ac; oC* .AC* ---u---v-+ ? -yu ? = P atl ax 8y - -
(11) 

(12) 

1.2. Algorithm (see [2]-[6]) 

The equation (6) and the adjoint equation (11) may be rewritten in a common form: 

ac +AC=j (13) 
at 

a a2 
CJ a a2 

CJ 
where, A =AI + A 2 , Al = ±u ax - y ax2 +2' A2 = ±v ay - y ay2 +2 
Equation (13) may be solved by one of two methods of the directional decomposition (splitting 
method): 

1.2.1. First method: 

Ck+1 C k 

__ -_+ A[ec k+1 + (1- B) C k ]= jk+l 
dt 

or (I + dtBA)C k+1 = [1 - dt(l- B)A ]Ck + dt jk+1 

where 0::;; B::;; 1, I is the unique operator. Using approximation: 

[1 +dtB(A I +A2)]=(I +dtBAI)(I +dtBAl)+O(dt2) 

from (14), one deduces: 
(I +dtBA1)(I +dtBA2 )Ck+l =[1 -dt(l-B)A]C k +dtfk+1 

The computational process includes two steps: 

(14) 

(I + dtBAJCk+1I2 = [I - dt(l- B)A ]Ck + dt jk+l (15) 

(I + dtBA 2 )Ck+l = C k+1/2 (16) 

1.2.2 Second method: 

270-



where, 

1.2.3. Discretizing the equations (15) and (17) by an implicit finite difference scheme in the x
direction: 

C k+1/2 _ 2Ck+1/2 + Ck+1/2 
111+1,n !}l,11 m-l,n 

dx2 

we obtain: C k+1I2 b Ck+1/2 + Ck +l!2 - d am m+l,n + m m,n em m-l,11 - m (19) 

where, alll,blll,c
lII 

are known values satisfying the following conditions: 

bill >0, alii <0, c lII <0 and Ibm l:2:la",I+lcm l+8, 8>1 (20) 

So, the linear equation system (19) has the unique solution and the computational error of the 
following double sweep method: 

Ck+1 L Ck+1 K 
111,11 = m m+l,n + III 

-am 
where, Lm = ----"'--

b", +cm LIII
_ I 

is not accumulated (see [7]). 

(21) 

K = dm - cmKm_1 

III b L m +cm m-I 

1.2.4. Discretizing the equations (16) and (18) by a difference scheme in the y direction: 

ac == V m,n 111,11 - m,n-l + V - V m,n m,n+l - m,n 

( )

k+1 (+ /V/)k+1 Ck+1 Ck+1 (/ /)k+1 Ck+1 Ck+1 

V 8y 111.11 2 dy 2 dy 

(8 2C)k+1 = ck+1 2Ck
+
1 + Ck+1 111,11+1 - l11,n m,n-l 

0;2 m.1I dy2 

we also get: 
a ck+1 +b C k+1 + ~ Ck+1 = d 

11 m,f1+1 f1 m,n en m,n-l J1 

where, a""~II,c'1I are known values satisfying the following conditions: 

~II >0, alii <0, cm <0 and 1~1I1:2:/am/+/cm/+8, 8>1 

(22) 

(23) 

Also, the equation system (22) has the unique solution and the double sweep method (21) does 
not produce an accumulated computational error. 

1.3. Stability of the finite-difference schemes and non-negative property of the numerical 
solutions 

1.3.1. Stability of the difference scheme 
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Suppose that u = canst, v = canst, (j = canst, r = canst, e = 1 , then am = canst, bm = canst 

,cm = canst and dm = C,~,n + dt /,,~,:I , Difference schemes satisfy the necessary and sufficient 

conditions of the stability, 
a) Necessary condition 
Let 1 = 0 and the solution C is defined by the form: 

C,~,n = A :C,~eim<P, /= -1, qJE[O, 211:) 

then 
A k+l12 

C k
+

1/2 = C k 
m,l1 A.. m,n 

x 

Putting (24) into (19) it yields 
A k+1/2[b +( +) '( _ )' ] _ 1 k x m am Cm COSqJ+Z am cm SlnqJ -/l, x 

From (20) we have: 

bm +(am +cm)cosqJ;::: (j +Iaml+lcml+(am +cm)cosqJ > 1 

Therefore 

(24) 

(25) 

(26) 

A k+1/2 1 
1---"'--:--1 = --;:,=============== < 1 

A x [bm + (am +cm)COSqJ]2 + (am -cm)2sin 2 
qJ 

Similarly, from equation (22), (23) one deduces 
A k+1 

Ck+1 Y Ck+1/2 
111,11 = IL k+lJ2 111,11 

and 
Y 

A k+1 
)' 

A k+1/2 < 1. 
)' 

From (25) and (27), we obtain: 
Ck+1 = AkCk 

111,n 111,11 

where 

k A ~+I A ~+1/2 
I"t; 1= ~--k-<1. 

Ay Ax 

b) Sufficient condition 

Let 

From equation (19), (20) we get: 

sup IC k
+

I12
1 m,11 

l$n$N-1 

I
b Ck+1/2 -I a 1 Ck+1/2 -I c 1 Ck+Jl2 

1 = ICk + dt /,k 1 
m 1110,110 In ma+I,no 111 111o-i,no 1110,110 mo,l1o' 

(27) 

sup sup IC,~~;I2I::::; sup sup IC,~,n 1 + dt sup sup sup I!',~,nl 
I$III$M-I l$n$N-1 l$m$M-ll$n$N-1 k I$m$M-ll$n$N-l 

Similarly, from equation (22), (23) we get: 

sup sup IC,~~; I::::; sup sup IC,~~;121 
l:S;m:S;Al-i lSn:S;;N-l l:;;m::';A1-1 l:S;n:::;N-l 

Therefore 

sup sup IC,~~~ I::::; sup sup IC,~,"1 + dt sup sup sup I/';,n 1 
I$m$/Vf-II$II$N-l I$m$M-ll$lI$N-1 k l$m$M-ll$n$N-l 

::::; .. ,::::; sup sup IC2"n 1 + dt( k + 1) sup sup sup 11117,11 1 
tSm::';j\11.$I1'::;:N k 15mSAf-ll.=:;:n:5N-l 

For second difference scheme (17), (18) we also get inequality (28) 
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If the boundary condition is an function rp, then 
ek _ k ek _ k ek _ k ek _ k 

0,11 - CfJo,n' AI,n - CfJAl,Il' m,O - fPm,o, m,N - tpm,N 

If the boundary condition IS ae = 0 
an ek ek ek ek 

, 00 - I I> 0 N - I N-I> , , ,. ,-

ek ek b . 
M,N = M-I,N-I' we 0 taIn 

sup le;."I:::; sup sup le,:,11 I = A 
11 l:S;m:S;M-i l$;n:5"N-1 

suple'~'I1I:::; A, suple,:,ol:::; A, sUple!,NI:::; A 
Let the nomfs of the functioJis are defined as'follow: 

Ilell = sup sup sup le;,,11 I = sup sup suple,:,,,1 
k 05.m::;:Af O$n::;N k m n 

Ileo II = sup suple'~'11 I 
m 11 

(29) 

Ilfll = sup sup sup 1J,'~'1I1 (30) 
k l:S;m$AI-i l$;n:5:N-l 

Ilrpll = max { s~p s~plrp;,//I, S~p S~plrp;I,//I, S~p s~plrp;,.o I, S~p s~plrp;"N I} 

Then, from the inequality (28), (29) and (30), we obtain: 

sup sup sup le,:,//I:::;lleoll+Tllfll (31) 
k ISm:>M-I I:>//:>N-I 

max {s~p s~ple;'11 I, s~p s~~ple,~.//I, s~p s~ple,:,ol, s~p s~ple;"'N I} :::; max {llrpll, Ileo II + Tllfll } (32) 

f~m {J~{ ~~pJ ~~,!E~2~:>~~~_~0,t", I, s~p s~ple;,n I, s~p s~pleJ~'1I I, s~p s~ple,~,o I, s~p s~ple':'N I} 

:::; max~leoll + Tllfll,llrpll} 
Therefore 

Ilell :::; Ileo II + Tllfll + Ilrpll 
and the stability of the difference schemes is proved. 

1.3.2. Non-negative property of the numerical solution 

The equation (19) can be solved by the double sweep method 

where 

e k+1/2 
- L ek+1I2 K 

m,n - m m+l,n + m 

-am L
m
=---"-'---

bm +cm Lm_1 

K = dm -cIIlKm_ 1 • L = 0 K = e hl12 
, m '0 '0 O,n 

bm +c
lIl 

Lm_1 

Using the inductive method, we can prove 
0:::; Lm < 1 and Km;::: 0 . (m=1, ... ,M-l) 

(33) 

Indeed, assumed that 0:::; Lm-J :::; 1 and Km-J ;::: O. Let 8=1, we obtain dm ;::: O. From equation (20) 
and f(x, y, t) ;::: 0, we get: 

bm +cmLm_1 = bm -laml-jcml+laml+lcml-lcmILm_1 = 
= 0 +laml+(1- Lm_I)lcml > laml 

(34) 

Therefore, 

I am I <l5J=1 
bm +cm Lm_ 1 I am I 

(35) O L 
-am 

:::; m = ---"'--
b

m 
+C

m 
L

m
_1 

K = d m -cmKm_1 

m b L 
III +cm 171-1 

dm+lcm I K m_ 1 ;:::0. 
bm +cm Lm_

1 

(36) 
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From inequalities (35), (36) and the non-negative boundary conditions Cb ~ 0, we have: 
C k+1I2 - L C k+1I2 K >0 

l11,n - In m+l,n + m -

Similarly, we also get C,:~:?: O. So we obtain the non-negative property of the numerical 

solution. 

1.4. Comparison with the analytical solution 

The matter propagation problem: 

~~ +u ~~ + v ~ + (J"C - Y I1C = Q5(r- ro)5(t -to), (37) 

C = 0 for t = 0 
C -+ 0 for 1rI-+ 00 

with assumption: u = canst?: 0 and v = canst?: 0, has the following analytical solution (see 
[1] [2]): 

1 
Q exp{- a(r - ro,t - to)}' 

C(x,y,t)= 4;zy(t-to) 

0, 

where 

() 
(X-ut)2 +(y-vt)2 

a r, t = (J" t + -'------'----'-"---"--
4yt 

Let the computational region G, that containing source point ro, is large enough so that C=O at 
the boundaries. The algorithm is applied for calculating the matter propagation problem of two 
test cases with and without the advection term: 

1.4.1. Without the advection term (u=v=O) 

The input parameters are as follows: y= 0.5 m2/s, (J"= 0.01 lis, Q = 100 mgllls, to = 10. s, ro= 
(100,100), dx = dy = 1m, dt = 1. s. We obtain velY good agreement between the computed and 
analytical solutions (see Fig. 1 ). 

(mgll) 
0.45,----------------------------, 

0.4 

0.35 

0.3 

0.25 -

0.2 

0.15 

0.1 . 

0.05 

O*mm==mm=~w=~m=~~~====~~~~~~~~~==rn=~ 

I 10 19 28 37 46 55 64 73 82 91 100109118127136145154163172 181 190199 

- Analytical solution 

Figure 1. Concentration distribution along a ray passing the source point and parallel with 
the Ox axis, at t = 50 s, t = 100 sand t = 150 s 

1.4.2. With the advection term 

The input parameters are as follows: u = 0.5 mis, v = O. mis, y= 0.5 m2/s, (J"= 0.01 lis, Q = 100 
mgllls, to = 10. s, ro= (30,100), dx = dy = 1m, dt = 1.2 s. Figure 2 shows an agreement between 
the computed and analytical solutions. 
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0.45 -,----------------------------, 

0.4 

0.35 

0.3 . 

0.25 - . 

0.2 

0.15 

0.1 

0.05 

zt=100S-

'-. ./t=150S 

O·~. ~==~~~~~~~=m==~~m===~~~~~~~m=~H 

1 10 19 28 37 46 55 64 73 82 91 100 109118127 136 145 154 163 172 181 190199 

Figure 2. Concentration distribution along a ray passing the source point and parallel with 
the flow direction, at t = 50 s, t = 100 sand t = 150 s . 

2. OPTIMIZATION PROBLEM OF PLANT LOCATION (SEE [1]) 

Assume that the suspended matter concentration C is calculated from the equation (1). 
We consider the following generalized functional called the pollution-level reflecting 
functional (see [1]): 

and Pk is a function referring to the economic, sanitary, ecological, health standards and so on, 
ak is a settling coefficient. 

Let Gk(k=1,2, ... ,m) be considered areas, recreation zones or other environmentally sensitive 
areas on the region G. Our problem is to determine the domain QkCG so that the pollution 
matter from a plant located in this domain .ok satisfies the following condition for the sensitive 
area Gk: 

~S~ 0~ 
where, Ck is a given value. 

Assume that on the region G there are m sensitive areas Gk (k=l, ... , m) and the source of 
matter emission is located at a point ro =(xo'Yo)' Then, the source intensity can be described 
by the function: 
!(x,y) = Qo(r-ro), Q=const 

{
oo , r = ro 

where, oCr) = is Dirac function, o ,r:;f::. ro 

For the purpose of determination of the domain .0, in which the plant can be located so that in 
all sensitive areas Gk , the generalized functional Yk satisfies the condition (38), we take the 
following steps: 

2.1. Step 1 

Calculation of concentration C from the problem (4) and (5) and generalized functional: 
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T 

Yk = f dt fpc dG = Ck 

o Gk 

2.2. Step 2 

Solving m adjoint equations (11): 

OC; oC; oC; * * 
---u---v--+oCk -ytJ.Ck = Pk 
otl ax oy 

{~+ak , (X,Y)EGk where, Pk = T 
o , (x,y) >}.Gk 

with the conditions: 

C;I = 0, C;lr- = 0, 
11=0 

we obtain the solutions C;(k = 1,2, ... ,m). From the dual form (10), we get: 
T T T T 

Yk* = fdt fPk C dG = fdt fQ5(r - ro)C;dG = fQC;(ro,t)dt = fQC;(ro,T -ti )dti 
o GOG 0 0 

which must satisfY the condition: Yk* :::; ck - ck = ck 

T 

Now we consider the function: Yk* (r) = Q fC; (r,t)dt and draw the iso-grams of ~* (r) = const . 
o 

We obtain the domains nk in which if the plant is located, then the functional Yk* (r) :::; c: in the 

area Gk . If there is perchance no area nk inside G, it may be re-established anyway by reducing 
the discharge intensity Q. III 

Overlaying all the areas n k (k = 1, ... ,m), we obtain the domain n, (n = nnk ) • n will be the 
domain in which the plant can be located so that pollution standards will be met in all the areas 
Gk c G, (k= 1,2, ... m). 

3. NUMERICAL EXPERIMENTS 

The first mentioned-above method is applied to solve the following two optimization problems 
of plant location: 

3.1. Test case 1 

The computed rectangular region G = 1000m x 1000m is covered by a uniform grid 51 x51 
with spacing steps: dx = 20m, dy = 20m. A constant velocity field (u,v): u = 0.5 mis, v = -0.5 
mls. Diffusion coefficient: y= 0.5m2/s. Decay coefficient: (J'= 0.0005s- l

. Time step: dt = 5 s. 
Time simulation: T = 20000 s. 3 considered sensitive rectangular areas Gk inside G (k=1,2,3) 
with the left-bottom comer coordinates and the right-top comer coordinates are as follows: 

G1 = [(24.5,8.5),(25.5,9.5)], 
G2 = [(37.5,12.5),(39.5,14.5)], 
G3 = [(29.5,33.5),(30.5,34.5)]. 

And standard concentration: ck = 1 Omg II (k=I,2,3). 

The numerical results are illustrated in Fig. 3. In this figure, the number on the contour lines 
indicates value of the pollution-level reflecting functionals ~* • As a result, the domain n 
where the plant can be located so that the sanitary condition in the all areas Gk are satisfied 
(that means Yk* :::; c;) is in white. 
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3.2. Test case 2 

The computed area, Ha Long Bay, is covered by a uniform grid 69x45 with spacing steps: dx = 
1000m, dy = 1000m. Diffusion coefficient: r = 1Om2/s. The decay coefficient: (J' = 0.001 1/s. 
Time step: dt = lOs. Simulation time: T = 24 h. The cunent is determined by solving the 
Navier-Stockes equation for the incompressible water as the follows: 
au au au op 
-+u-+v-+- = ryf1u 
at ax oy ax 

ov 8v ov op 
-+u-+v-+-=ryf1v 
at ax Qy oy 

ou+ov=O 
ax oy 

with 17 is the viscosity of water. 
3 considered sensitive rectangular areas Gk inside G (k=1,2,3) with the left-bottom comer 
coordinates and the right-top comer coordinates are as follows: 

G1 = [(13.5,13.5),(16.5,16.5)]- DoSon beach area, 
G2 = [(25.5,34.5),(26.5,35.5)]- HaLong beach area, 
G3 = [(33.5,20.5),(35.5,22.5)]- a some area. 

And standard concentration: c; = 10mg / I (k=1,2,3). 

The numerical results are illustrated in Fig. 4. Also, in this figure, the number on the contour 
lines indicates value of the pollution level-reflecting functionals Yk*' Consequently, the domain 
Q where the plant can be located so that the sanitary 
standards in the all areas GK are satisfied ( that means Yk* ~ c;) is also in white. 

45. 
LEGEND 

.. Plant can't be located 

40. Plant can be located 

Sensitive Area 

30.00~ 

15.00~ 
i 
I 

10.00-1 

5.00~ 
I 
I 

0'0~-+.6~0--5-"'.6~0-~1~0-':0~0-~1~5".0~0~20.00 25:00 30:00 35:00 40:00 45.00 

r 
~ 
I 

Figure 3: Distribution of value ofthe pollution level-reflecting functionals ~* for test case 1 
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40.00, 

I 
I 
I 
I 

30.00-

20.00 30.00 

Figure 4: Distribution of value of the pollution level-reflecting functionals Yk* for test case 2 

4. CONCLUSIONS 

The algorithms for solving the matter propagation and its adjoint problems are stable. The 
numerical solution is non-negative and agreement with the analytical solution. 
For detennination of the plant location satisfying the condition (38), we suppose that the plant 
locates at the point ro = (xo,Yo) , then we solve the equation (1) and verify the condition (38). If 
the condition (38) is satisfied, the requisite plant location at point ro is found. Conversely, we 
must suppose new plant location at the other point Il and recur the previous process of the 
above computation and verification. This process might be recur several times. However, if we 
use the adjoint equation (11), then we solve the equation (11) and (4) only one time for 
determining the region, in which plant pollution satisfied the condition (38). As a result, it is 
very convenient for determination of the plant location ensuring the given environmental 
criteria in the sensitive areas if the adjoint equation is applied. 
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