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COMPLEX SYSTEMS AND MATHEMATICAL MODELS 

MASASHI AIDA AND ATSUSHI YAGI 

Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan 

ABSTRACT. We shall present several mathematical models for the various complex 
systems using the non linear diffusion system of equations. We shall also present some 
simulation results which show excellent correlation with observations. 

keywords: complex system, nonlinear diffusion system, chemotaxis-growth. 

INTRODUCTION 

In recent years many scientists try to formulate nonlinear diffusion systems to 
describe essential aspcts of the various complex systems. Its general form is in fact 
written as 

ot = aLlu+ \7. {u\7Xl(V)} + !(u,v), 

{ 

ou 

ov 
fJt = bLlv + \7. {v\7X2(U)} + g(u,v). 

Here, u = u(x, t) denotes the concentration of a substance or a biological species, 
say A, at a position x E n and a time t E [0,00) which disperses in a region n of 
]Rd (d = 1,2,3), and v = v(x, t) denotes the concentration of another substance or 
another biological species, say B, which similarly disperses in the same region n. 

We incorporate into the model three effects, that is, diffusions, interactions, and 
reactions. A and B have the nature of random walking in n mutually independently 
with the diffusion rates a and b, respectively. On the other hand, they have mobil­
ity directed by interactions, Xl (v) and X2 (u) are potential functions or sensitivity 
functions. If Xl (v) 2:: 0, then A moves to evade B. If Xl (v)' :::; 0, then A moves to 
pursue B. Reactions in the model are governed by the two functions ! ( u, v) and 
g(u,v). If !v(u,v) 2:: 0, then B acts as a activator of A. If !v(u,v):::; 0, then B acts 
as an inhibitor of A. 

SOME EXAMPLE IN PHYSICS, BIOLOGY, AND ECONOMICS 

Let us present some mathematical models. 
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Absorbate-Induced Phase Transition Model. Hildebrand et al. (1999) have 
shown that microreactors with submicroreactor and nanometer sizes may sponta­
neously develop in surface chemical reactions by a nonequilibrium self-organization 
process. The self-organized micrometers represent localized structure resulting from 
the interplay between the reaction, diffusion, and an absorbate-induced structure 
transformation of the surface. They assumed also that the free energy is associ­
ated with the first-order surface phase transition due to the adsorption of chemical 
substance. 

Their system is in fact written as follows: 

ou 
at = aLlu + du(u + v - 1)(1- u), 

(AI) ov ot = bLlv + \7 . {v(l - v )\7X( u)} feCY
:
xCu)v 

-gv+h(l-v). 

Here, u(x, t) denotes the order parameter and takes values in 0 S; uS; 1. The order 
parameter denotes the thermodynamic state of the surface n c llt2. And v(x, t) 
denote the absorbate coverage rate of the surface by the carbon monoxide, v(x, t) 
also takes values in 0 S; v S; 1. The coverage rate v has a tendency to move toward 
lower values of the chemical potential x(u) with the rate 1- v. We may note from 
the first-order phase transition that a prototype of x(u) is x(u) = -cu2(3 - 2u). 
v decreases with the rate feax(u). The order parameter u has three equilibrium 
points 0, 1 - v, and 1; 0 and 1 are stable, on the other hand 1 - v is unstable. 

Chemotaxis-Growth Model. Mimura and Tsujikawa (1996) modeled by a sim­
ple diffusion system the aggregating pattern formation of biological individuals due 
to the effects of chemotaxis and growth. Their equations are written as 

(CG) { 

ou ot = aLlu- \7. {u\7X(p)} + f(u), 

~ = bLlp - cp + duo 

Here, u(x, t) denotes the population density of biological individuals which disperse 
in a region ne llt2 . And p(x, t) denotes the concentration of a chemical substance 
produced by the amebas .. The amebas have the directed mobility toward higher 
concentration of the chemical substance. This nature is called chemotaxis in biology. 
X(p) is the sensitivity function of the individuals; the normalized forms of X(p) are, 
for example, 

x(p)=p, p2, logp, p~l 

and so on. f(u) is the growth term of U; a prototype is f(u) = fu(u - a)(l - u), 
where f > 0 and 0 < a < 1 are constants, with two stable equilibriums 0 and 1 
and one unstable equilibrium 0 < a < 1. 
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Labor Mobility and Urbanization Model. Let us now derive a growth model 
of macro economics incorporating the mobility of labor and of capital in an economic 
sector n c IIl2 • Let L(x,t) denotes the population density of labor, and K(x,t) 
denotes the concentration of capital. The product function is denoted by F 
F(L, K), here we use the production function of Cobb-Douglas type, namely 

where, > 0 is a constant and a and f3 are two exponents such that 0 < a, f3 < 1 
and a + f3 = 1. Our model centers on two concentrations, cf. Takagi et al. (1995): 
(i) Labor have a tendency to move toward higher earnings and the earnings are in 
proportion to F(L,K)jL = ,(KjL)f3. 
(ii) Capital move toward higher profit rates which are in proportion to F(L,K)jK 
= ,(LjK)<". 

Our model is then governed by the following nonlinear system of equations: 

(LK) 

a is a diffusion rate of the labor. Xl (Kj L) is a sensitivity function of L toward the 
capital labor ratio, and X2 (L j K) is a sensitivity function of K toward the labor 
capital ratio. 1 - (j is an investment rate of F, where (j is a constant such that 
0< (j < 1. f1, is a rate of the capital depreciation. Finally, f(L) is a growth term of 
the labor. 

CHEMOTAXIS-GROWTH MODEL 

In their paper, Woodward et al. (1995) found remarkable pattern formation by 
Salmonella typhimurium. They inoculated typhimurium on agar in a shot. Bacteria 
propagated themselves and spread out over agar forming bold aggregating patterns. 
By the conditions of medium, different patterns were observed. If agar contained 
much nourishment, bacteria spread out forming concentric circles. If nourishment 
was little, they aggregated in a certain number of spot points and the spot points 
were placed very regularly on concentric circumferences. 

To understand theoretically such chemotactic pattern formation, several models 
have been proposed by Alt (1985), Woodward et al. (1995), and Kawasaki et al. 
(Preprint). Among them, Mimura and Tsujikawa presented the very simple model 
(CG) above, centering on the three effects, diffusions, chemotaxis, and growth. The 
authors of the present article have performed numerical simulations for Mimura­
Tsujikawa equations. So far three kinds of pattern solutions were found by choosing 
various parameters appropriately. Fig.1 shows a solution of the target pattern or 
the concentric circles. Fig. 2 shows a solution of the spot pattern. Fig.3 shows 
the network pattern. These simulations show us excellent correlation between the 
experimental results and the nonlinear diffusion model. 
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CONCLUSION 

Many scientists are trying to model the complex systems as nonlinear diffusion 
systems incorporating interactions and reactions for restricted two species. In some 
models very good accordance with observations is reported in physics, biology, and 
economics. It might now be a good position to import such strategy in order to 
investigate the complex systems in environmental science. 
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Fig.1 : Target pattern 
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Fig.2 : Spot pattern 
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Fig.3 : Network pattern 
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