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COMPLEX SYSTEMS AND MATHEMATICAL MODELS

MASASHI AIDA AND ATSUSHI YAGI

Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan

ABSTRACT. We shall present several mathematical models for the various complex
systems using the nonlinear diffusion system of equations. We shall also present some
simulation results which show excellent correlation with observations.

keywords: complex system, nonlinear diffusion system, chemotaxis-growth.

INTRODUCTION

In recent years many scientists try to formulate nonlinear diffusion systems to
describe essential aspcts of the various complex systems. Its general form is in fact

written as

Ou
yri alu+ V- {uVx1(v)} + f(u,v),
Ov
5= bAv + V- {vVx2(u)} + g(u,v).
Here, u = u(z,t) denotes the concentration of a substance or a biological species,
say A, at a position z € Q and a time ¢ € [0,00) which disperses in a region Q of
R (d = 1,2,3), and v = v(z,t) denotes the concentration of another substance or

another biological species, say B, which similarly disperses in the same region (2.

We incorporate into the model three effects, that is, diffusions, interactions, and
reactions. A and B have the nature of random walking in  mutually independently
with the diffusion rates a and b, respectively. On the other hand, they have mobil-
ity directed by interactions, xi(v) and x2(u) are potential functions or sensitivity
functions. If x}(v) > 0, then A moves to evade B. If x1(v)’ <0, then A moves to
pursue B. Reactions in the model are governed by the two functions f(u,v) and
g(u,v). If fy(u,v) > 0, then B acts as a activator of A. If f,(u,v) <0, then B acts
as an inhibitor of A.

SOME EXAMPLE IN PHYSICS, BIOLOGY, AND ECONOMICS

Let us present some mathematical models.
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Absorbate-Induced Phase Transition Model. Hildebrand et al. (1999) have
shown that microreactors with submicroreactor and nanometer sizes may sponta-
neously develop in surface chemical reactions by a nonequilibrium self-organization
process. The self-organized micrometers represent localized structure resulting from
the interplay between the reaction, diffusion, and an absorbate-induced structure
transformation of the surface. They assumed also that the free energy is associ-
ated with the first-order surface phase transition due to the adsorption of chemical
substance.

Their system is in fact written as follows:

du

-5t- = gAu + du(u-i—v - 1)(1 —’U,),
(AT) ‘Z_: = bAv + V- {v(1 — v)Vx(u)} — FeX¥y

—gv+ h(l—v).

Here, u(xz,t) denotes the order parameter and takes values in 0 < » < 1. The order
parameter denotes the thermodynamic state of the surface & ¢ R And v(z,t)
denote the absorbate coverage rate of the surface by the carbon monoxide, v(z,t)
also takes values in 0 < v < 1. The coverage rate v has a tendency to move toward
lower values of the chemical potential x(u) with the rate 1 —v. We may note from
the first-order phase transition that a prototype of x(u) is x(u) = —cu?(3 — 2u).
v decreases with the rate fe®*(*), The order parameter u has three equilibrium
points 0, 1 — v, and 1; 0 and 1 are stable, on the other hand 1 — v is unstable.

Chemotaxis-Growth Model. Mimura and Tsujikawa (1996) modeled by a sim-
ple diffusion system the aggregating pattern formation of biological individuals due
to the effects of chemotaxis and growth. Their equations are written as

5_? = alu—V - {uVx(p)} + f(u),

(CQ) gp

Bt = bAp — cp + du.

Here, u(z,t) denotes the population density of biological individuals which disperse
in a region Q C R2. And p(z,t) denotes the concentration of a chemical substance
produced by the amebas.. The amebas have the directed mobility toward higher
concentration of the chemical substance. This nature is called chemotaxis in biology.
x(p) is the sensitivity function of the individuals; the normalized forms of x(p) are,
for example,

x(p) = p, P, logp, 55

and so on. f(u) is the growth term of u; a prototype is f(u) = fu(u — o)(1 — u),
where f > 0 and 0 < & < 1 are constants, with two stable equilibriums 0 and 1
and one unstable equilibrium 0 <a < 1.
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Labor Mobility and Urbanization Model. Let us now derive a growth model
of macro econormics incorporating the mobility of labor and of capital in an econormic
sector  C R?. Let L(z,t) denotes the population density of labor, and K(z,?)
denotes the concentration of capital. The product function is denoted by F' =
F(L, K), here we use the production function of Cobb-Douglas type, namely

F(L,K)=~L*K?,

where v > 0 is a constant and a and 3 are two exponents such that 0 < o, < 1
and a + 8 = 1. Our model centers on two concentrations, cf. Takagi et al. (1995):
(i) Labor have a tendency to move toward higher earnings and the earnings are in
proportion to F(L, K)/L = v(K/L)A.

(ii) Capital move toward higher profit rates which are in proportion to F(L, K)/K
= A (L/K)*

Our model is then governed by the following nonlinear system of equations:

oL
K g{: aAL -V - {LVx1(£)} + £(L),
= =~V {EVxa(£)} - pK +9(1 - HL*K?.

a is a diffusion rate of the labor. x;(K/L) is a sensitivity function of L toward the
capital labor ratio, and x2(L/K) is a sensitivity function of K toward the labor
capital ratio. 1 — § is an investment rate of ¥, where ¢ is a constant such that
0 < d < 1. u is a rate of the capital depreciation. Finally, f(L) is a growth term of
the labor.

CHEMOTAXIS-GROWTH MODEL

In their paper, Woodward et al. (1995) found remarkable pattern formation by
Salmonella typhimurium. They inoculated typhimurium on agar in a shot. Bacteria
propagated themselves and spread out over agar forming bold aggregating patterns.
By the conditions of medium, different patterns were observed. If agar contained
much nourishment, bacteria spread out forming concentric circles. If nourishment
was little, they aggregated in a certain number of spot points and the spot points
were placed very regularly on concentric circumferences.

To understand theoretically such chemotactic pattern formation, several models
have been proposed by Alt (1985), Woodward et al. (1995), and Kawasaki et al.
(Preprint). Among them, Mimura and Tsujikawa presented the very simple model
(CG) above, centering on the three effects, diffusions, chemotaxis, and growth. The
authors of the present article have performed numerical simulations for Mimura-
Tsujikawa equations. So far three kinds of pattern solutions were found by choosing
various parameters appropriately. Fig.l shows a solution of the target pattern or
the concentric circles. Fig. 2 shows a solution of the spot pattern. Fig.3 shows
the network pattern. These simulations show us excellent correlation between the
experimental results and the nonlinear diffusion model.
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CONCLUSION

Many scientists are trying to model the complex systems as nonlinear diffusion
systems incorporating interactions and reactions for restricted two species. In some
models very good accordance with observations is reported in physics, biology, and
economics. It might now be a good position to import such strategy in order to
investigate the complex systems in environmental science.
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Fig.1: Target pattern
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Fig.2  Spot pattern
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