

Title	ON THE GENERALIZED CONVOLUTION WITH A WEIGHT-FUNCTION FOR THE FOURIER AND COSINE-FOURIER INTEGRAL TRANSFORMS
Author(s)	Nguyen, Xuan Thao; Nguyen, Minh Khoa
Citation	Annual Report of FY 2005, The Core University Program between Japan Society for the Promotion of Science (JSPS) and Vietnamese Academy of Science and Technology (VAST). 2006, p. 333–339
Version Type	VoR
URL	https://hdl.handle.net/11094/12967
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

ON THE GENERALIZED CONVOLUTION
WITH A WEIGHT-FUNCTION FOR THE FOURIER
AND COSINE-FOURIER INTEGRAL TRANSFORMS

NGUYEN XUAN THAO

Hanoi Water Resoarces University

175 Tay Son, Dong Da, Hanoi, Vietnam

NGUYEN MINH KHOA

Hanoi University of Transport and Communications

Lang Thuong, Dong Da, Hanoi, Vietnam

Abstract. The generalized convolution for Fourier and cosine-Fourier transforms is introduced. Its properties and applications to the heat conduction equations are considered.

I. Introduction

The generalized convolution of the Fourier sine and cosine transforms was first introduced by Chuchill R. V. In 1941 [2]

$$(f * g)(x) = \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} f(y) [g(|x - y|) - g(x + y)] dy, \quad x > 0$$

for which the factorization property holds

$$F_s(f * g)(y) = (F_s f)(y) (F_c g)(y), \quad \forall y > 0.$$

In the 90s decade of the last century, Yakubovic S. B. published some papers on special cases of generalized convolutions for integral transdorm according to index [9, 10, 11]. In 1998, Kakichev V. A. and Nguyen Xuan Thao [3] proposesed a contructive method of defining the generalized convolution for any integral transforms K_1, K_2, K_3 with the weight-function $\gamma(x)$ of functions f, g for which we have the factorization property:

$$K_1(f \stackrel{\gamma}{*} g)(y) = \gamma(y)(K_2f)(y)(K_3g)(y)$$

In recent years, there have been published some works on the generalized convolution, for instance the generalized convolution for integral transforms Stieltjes Hilbert and the cosine-sine transforms [5]; the generalized convolution for H -transform [4]; the generalized convolution for I -transform [7]. For example, the generalized convolution for the Fourier cosine and sine has been defined [6] by the identity

$$(f \stackrel{2}{*} g)(x) = \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} f(y) [\sin y(y-x)g(|y-x|) + g(y+x)] dy, \quad x > 0$$

for which the factorization property holds

$$F_c(f \stackrel{2}{*} g)(y) = (F_c f)(y)(F_c g)(y), \quad \forall y > 0$$

In this article we give a notion of the generalized convolution with a weight-function of function f and g for the Fourier and Fourier cosine transforms. We will prove some of its properties as well as point out its relationship to the cosine-Fourier convolution. Finally we will apply this notion to solving systems of integral equations and an the heat conduction equation.

II. Generalized convolution for the Fourier and cosine-Fourier transforms

Definition 1. *Generalized convolution with the weight-function $\gamma(y) = \cos y$ for the Fourier and Fourier cosine transforms of functions f and g is defined by*

$$(f \stackrel{\gamma}{*} g)(x) = \frac{1}{2\sqrt{2\pi}} \int_0^{+\infty} f(t) [g(x+1+t) + g(|x+1-t|) + g(|x-1+t|) + g(|x-1-t|)] dt, \quad x > 0 \quad (1)$$

Remark.

1) For the Fourier integral transform of even function we have [1]:

$$(Ff)(y) = (F_c f)(y), \quad \forall y \in R. \quad (2)$$

2) The convolution (1) is even function.

We denote by $L(R_+)$ the set of all functions f defined on $(-\infty, \infty)$ such that $\int_{-\infty}^{+\infty} |f(x)| dx < +\infty$. We denote by $L(R_+)$.

Theorem 1. *Let f and g be continuous in $L(R_+)$. Then the generalized convolution (1) belongs to $L(R)$ and the factorization property holds*

$$F(f \overset{\gamma}{*} g)(y) = \cos y (F_c f)(|y|) (F_c g)(|y|), \quad \forall y \in R \quad (3)$$

Proof. Base on (1), (2) and the hypothesis that f and $g \in L(R_+)$ we have

$$\begin{aligned} & \int_{-\infty}^{+\infty} |(f \overset{\gamma}{*} g)(x)| dx = 2 \int_0^{+\infty} |(f \overset{\gamma}{*} g)(x)| dx = \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} |f(t)| \times \\ & \times \left[g(|x+1+t|) + g(|x+1-t|) + g(|x-1+t|) + g(|x-1-t|) \right] dt dx \\ & \leq \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} |f(t)| \left[\int_0^{+\infty} |g(|x+1+t|)| dx + \int_0^{+\infty} |g(x+1-t)| dx + \right. \\ & \left. + \int_0^{+\infty} |g(|x-1+t|)| dx + \int_0^{+\infty} |g(x-1-t)| dx \right] dt \\ & \leq \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} |f(t)| dt \cdot 4 \int_0^{+\infty} |g(u)| du < +\infty \Rightarrow (f * g)(x) \in L(R) \end{aligned}$$

On the other hand

$$\begin{aligned} (f * g)(x) &= \frac{1}{2\sqrt{2\pi}} \int_0^{+\infty} f(t) \left[g(|x+1+t|) + \right. \\ &\quad \left. g(|x+1-t|) + (|x-1+t|) + g(|x-1-t|) \right] dt \\ &= \frac{1}{2\sqrt{2\pi}} \int_0^{+\infty} f(t) \left[\sqrt{\frac{2}{\pi}} \int_0^{+\infty} \cos \tau |x+1+t| (F_c g)(|\tau|) d\tau + \right. \\ &\quad \left. \sqrt{\frac{2}{\pi}} \int_0^{+\infty} \cos \tau |x+1-t| \times F_c g(|\tau|) d\tau + \sqrt{\frac{2}{\pi}} \int_0^{+\infty} \cos \tau |x-1+t| \right. \\ &\quad \left. (F_c g)(|\tau|) d\tau + \sqrt{\frac{2}{\pi}} \int_0^{+\infty} \cos \tau |x-1-t| F_c g(|\tau|) d\tau \right] dt. \end{aligned}$$

Because

$$\begin{aligned} \cos \tau \cos(\tau t) \cos(\tau x) &= \frac{1}{4} \left[\cos \tau (x+1+t) + \right. \\ &\quad \left. \cos \tau (x+1-t) + \cos \tau (x-1+t) + \cos \tau (x-1-t) \right], \end{aligned}$$

we have

$$\begin{aligned}
(f \overset{\gamma}{*} g)(x) &= \sqrt{\frac{2}{\pi}} \int_0^{+\infty} \cos(\tau t) f(t) dt \sqrt{\frac{2}{\pi}} \int_0^{+\infty} \cos(\tau x) \cos \tau (F_c g)(|\tau|) d\tau \\
&= \sqrt{\frac{2}{\pi}} \int_0^{+\infty} \cos(\tau x) \cos \tau (F_c f)(|\tau|) (F_c g)(|\tau|) d\tau
\end{aligned}$$

From (2) and F_c is symmetrical [8]

$$\begin{aligned}
F(f \overset{\gamma}{*} g)(y) &= F_c(\overset{\gamma}{*} g)(y) = F_c\{F_c\{\cos \tau (F_c f)(|\tau|) (F_c g)(|\tau|), x\}, y\} \\
&= \cos y (F_c f)(|y|) (F_c g)(|y|), \quad \forall y \in R.
\end{aligned}$$

Theorem 2. *In the space of continuous belonging to $L(R)$, the generalized convolution (1) is commutative, associative and distributive.*

Proof. We prove the generalized convolution with a weight-function for Fourier and cosine-Fourier integral transforms is associative, i.e.

$$(f \overset{\gamma}{*} g) \overset{\gamma}{*} h = f \overset{\gamma}{*} (g \overset{\gamma}{*} h)$$

Indeed,

$$\begin{aligned}
F[(f \overset{\gamma}{*} g) \overset{\gamma}{*} h](y) &= \cos y F_c[f \overset{\gamma}{*} g](|y|) (F_c h)(|y|) \\
&= \cos y \cos y (F_c f)(|y|) (F_c g)(|y|) (F_c h)(|y|) \\
&= \cos y (F_c f)(|y|) [\cos y (F_c g)(|y|) (F_c h)(|y|)] \\
&= \cos y (F_c f)(|y|) F_c[g \overset{\gamma}{*} h](|y|) = F[f \overset{\gamma}{*} (g \overset{\gamma}{*} h)](y), \quad \forall y \in R
\end{aligned}$$

implies that

$$(f \overset{\gamma}{*} g) \overset{\gamma}{*} h = f \overset{\gamma}{*} (g \overset{\gamma}{*} h).$$

The commutative, distributive properties are similarly proved. The theorem is proved.

Theorem 3. *If f and g are continuous functions in $L(R)$, then the following equality hold*

$$(f \overset{\gamma}{*} g)(x) = \frac{1}{2} [(f \overset{\gamma}{*} g)(|x+1|) + (f \overset{\gamma}{*} g)(|x-1|)], \quad \forall x \in R \quad (4)$$

Here $(f \overset{\gamma}{*} g)$ is the convolution of $f(x)$ and $g(x)$ for cosine Fourier integral transform [8]

Theorem 4. *In the space of continuous in $L(R)$ there does not exist the unit element for the operation of the generalized convolution (1). Set*

$$L(e^{-x}, R) = \{e^{-x} f_1, \quad f_1 \in L(R)\}$$

Theorem 5. (Tichmarch type theorem)

Let $f, g \in L(e^{-x}, R_+)$. If $(f \ast g)(x) \equiv 0, \quad \forall x \in R$, then either $f(x) = 0$ or $g(x) = 0, \quad \forall x \in R$.

III. Application to solving the heat conduction equaiton

Consider the heat conduction euqation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \quad (5)$$

with initial condition $u(x, 0) = f(x), \quad x \in R$, $f(x)$ is even function and $u(x, t) \rightarrow 0, \quad \frac{\partial u(x, t)}{\partial x} \rightarrow 0$ when $|x| \rightarrow \infty$.

Theorem 6. The above problem has a solution $u_0(x, t)$ which is satisfies

1) $u_0(x, t)$ is even function.

2) $u_0(x+1, t) + u_0(x-1, t) = A(t)(f \ast g)(x)$ with $A(t) = \sqrt{\frac{2}{t}}, g(v) = e^{-\frac{v^2}{4t}}$.

Proof. In [8], the equation (5) has a solution

$$u_0(x, t) = \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} f(\xi) e^{-\frac{(x-\xi)^2}{4t}} d\xi$$

+) when $x \geq 0$, we have

$$\begin{aligned} u_0(x, t) &= \frac{1}{2\sqrt{\pi t}} \int_0^{+\infty} f(\xi) e^{-\frac{(x-\xi)^2}{4t}} d\xi + \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^0 f(\xi) e^{-\frac{(x-\xi)^2}{4t}} d\xi \\ &= \frac{1}{2\sqrt{\pi t}} \left\{ \int_0^{+\infty} f(\xi) e^{-\frac{(x-\xi)^2}{4t}} d\xi - \int_{-\infty}^0 f(y) e^{-\frac{(x+y)^2}{4t}} dy \right\} \\ &= \frac{1}{2\sqrt{\pi t}} \left\{ \int_0^{+\infty} f(\xi) g(|x-\xi|) d\xi + \int_{-\infty}^0 f(y) (x+y) dy \right\} \\ &= \frac{1}{2\sqrt{\pi t}} (f \ast_{F_c} g)(x) \end{aligned} \quad (6)$$

+) Similaly, when $x < 0$ we get

$$u_0(x, t) = \frac{1}{\sqrt{2t}} (f \ast_{F_c} g)(-x) \quad (7)$$

From (6), (7) we obtain

$$u_0(x, t) = \frac{1}{\sqrt{2t}} (f * g)(|x|) \quad (8)$$

i.e. $u(x, t)$ is even function for x .

From (8) we have

$$\begin{aligned} u_0(x+1, t) &= \frac{1}{\sqrt{2t}} (f * g)(|x+1|) \\ u_0(x-1, t) &= \frac{1}{\sqrt{2t}} (f * g)(|x-1|) \end{aligned} \quad (9)$$

From (9) and Theorem 3 we have

$$u_0(x+1, t) + u_0(x-1, t) = A(t) (f \overset{\gamma}{*} g)(x), \quad \forall x \in R; \quad A(t) = \sqrt{\frac{2}{t}}.$$

The theorem is proved.

References

- [1] Bateman H., Erdelyi A., Tables of integral transform, Newyork-Toronto - London Mc Gray-Hill, V. 1, 1954.
- [2] R. V. Churchill, "Fourier series and boundary value problems", New York, 1941.
- [3] V. A. Kakichev and Nguyen Xuan Thao, On the design method for the generalized integral convolution, Izv. Vuzov. Mat. 1(1998) 31-40 (in Russian).
- [4] V. A. Kakichev and Nguyen Xuan Thao, On the generalized convolution for H- transforms, Izv. Vuzov Mat. N.8 (2001) 21-28 (in Russian)
- [5] Nguyen Xuan Thao, On the generalized convolution for the Stieltjes, Hilbert, Fouriercosine and sine transforms, UKR. Mat. J. (2001), V.53, N.4, 560-567 (in Russian).
- [6] Nguyen Xuan Thao, V. A. Kakichev and Vu Kim Tuan, On the generalized convolution for Fourier cosine and sine transforms, East-west 5. Math. (1998), V.1, N.1,
- [7] Nguyen Xuan Thao and Trinh Tuan, On the generalized convolution for I-transform, Acta Mathematica (2003), V. 28, N. 2 159–174.
- [8] I. N. Sneddon, Fourier Transform, MC. Gray Hill, New York, 1951.
- [9] M. Saigo and S. B. Yakubovich, On the thoery of convolution integrals for G-transforms, Fukuoka, Univ. Sci. Report. (1991), V. 21, N.2, 181-193.
- [10] S. B. Yakubovic, On the construction method for construction of integral convolution, DAN BSSSR (1990), V.34, N.7, 588-591.
- [11] S. B Yakubovich and A. I. Mosinski, Integral-equation and convolutions for transform of Kontorovich-Lebedev type, Dif, Uravnenia (1993), V29, N.7, 1272-1284.

¹Hanoi Water Resoarces University, 175 Tay Son, Dong Da, Hanoi, Vietnam.
Email: thaoxbmai@yahoo.com

²Hanoi Universtity of Transport and Communications, Lang Thuong, Dong Da,
Hanoi, Vietnam.