Title	ON AN INVERSE SOURCE PROBLEM FOR 3-DIMENSIONAL WAVE EQUATION
Author(s)	Ohnaka, Kohzaburo; Inui, Hirokazu
Citation	Annual Report of FY 2007, The Core University Program between Japan Society for the Promotion of Science (JSPS) and Vietnamese Academy of Science and Technology (VAST). 2008, p. 544-547
Version Type	VoR
URL	https://hdl. handle. net/11094/12970
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/
Osaka University

ON AN INVERSE SOURCE PROBLEM FOR 3-DIMENSIONAL WAVE EQUATION

Kohzaburo Ohnaka and Hirokazu Inui
Graduate School of Engineering, Osaka University, Japan

Abstract

We discuss an inverse source problem for three-dimensional wave equation. The source term is assumed to be a point source. The location of a point source does not move, and the magnitude changes with time. For such a problem, we propose a direct identification method of a point source without a priori information about the location and magnitude. The effectiveness of the method is shown by numerical examples.

Keywords: Inverse source problem, Numerical method, Wave equation, Point source

1 Introduction

Inverse problems for partial differential equations have attracted the attention of many researchers in recent years [3]. Especially, inverse source problem appears in various fields of science and engineering, such as cracks in structure, electrical activity of human brain, acoustic source identification, and so on. Investigation of numerical method for inverse source problem becomes very important $[1,4,5,6]$. Usual approach is the combination of forward analysis and least squares method. However, this approach needs a priori information about unknown parameters and requires much computation time.

In this paper, we consider an inverse source problem for three-dimensional wave equation where the source term is expressed by a point source. Assume that the location of a point source does not move, and that the magnitude changes with time. For such a problem, we propose a numerical method without using forward analysis and a priori information about unknowns. At first, special case of initial and boundary conditions is discussed. Next, our method is applied to general case using weighted integral. Numerical examples illustrate the effectiveness of the proposed method.

2 Inverse source problem for wave equation

We consider an inverse source problem for the following wave equation:

$$
\begin{equation*}
\Delta u(\boldsymbol{x}, t)-\frac{1}{c^{2}} \partial_{t}^{2} u(\boldsymbol{x}, t)=f(\boldsymbol{x}, t), \quad \boldsymbol{x} \in \mathbb{R}^{3}, \quad c>0, \quad \partial_{t}=\frac{\partial}{\partial t} . \tag{1}
\end{equation*}
$$

The source term $f(\boldsymbol{x}, t)$ is assumed to be a point source.

$$
\begin{equation*}
f(\boldsymbol{x}, t)=-q(t) \delta(\boldsymbol{x}-\boldsymbol{p}), \quad p \in \Omega, \tag{2}
\end{equation*}
$$

where $\delta(\cdot)$ is Dirac's delta function, p and $q(t)$ are the location and magnitude of a point source, respectively. The magnitude $q(t)$ is written by

$$
q(t)= \begin{cases}q_{0}(t), & t \in(a, b), \quad 0<a<b \\ 0, & \text { otherwise }\end{cases}
$$

The following function satisfies eq.(1).

$$
\begin{equation*}
u_{s}(x, t)=\frac{q\left(t_{d}\right)}{4 \pi|x-p|}, \quad t_{d}=t-|x-p| / c . \tag{3}
\end{equation*}
$$

As shown in eq.(3), u_{s} gives the information of a point source at a retarded time $t_{d}=t-|x-p| / c$. In the next section, we consider the identification of p and $q\left(t_{d}\right)$ in a special case of $u=u_{s}$.

3 Identification for special case of initial and boundary conditions

We consider the identification for the special case of eq.(1) such that

$$
\begin{array}{lll}
\text { Initial condition : } & u(x, 0)=\partial_{t} u(x, 0)=0, & x \in \Omega, \\
\text { Boundary condition : } u(x, t)=u_{s}(x, t), & x \in \Gamma=\partial \Omega .
\end{array}
$$

In this case, the solution of eq.(1) is

$$
\begin{equation*}
u(x, t)=u_{s}(x, t)=\frac{q\left(t_{d}\right)}{4 \pi|x-p|} \tag{4}
\end{equation*}
$$

In the following, we show the identification of the location and magnitude using observations of u and its derivatives at a point outside of the convex hull of Ω.

From eq.(4), $\partial_{t} u(\boldsymbol{x}, t)$ and $\nabla u(\boldsymbol{x}, t)$ are written by

$$
\begin{aligned}
\partial_{t} u(x, t) & =\frac{\dot{q}\left(t_{d}\right)}{4 \pi|x-p|}, \\
\nabla u(x, t) & =-\frac{q\left(t_{d}\right)}{4 \pi} \frac{x-p}{|x-p|^{3}}-\frac{\dot{q}\left(t_{d}\right)}{4 \pi c} \frac{x-p}{|x-p|^{2}} \\
& =-\left(\frac{q\left(t_{d}\right)}{4 \pi|x-p|^{2}}+\frac{1}{c} \frac{\dot{q}\left(t_{d}\right)}{4 \pi|x-p|}\right) \frac{x-p}{|x-p|},
\end{aligned}
$$

where $\dot{q}(t)=d q(t) / d t$. Therefore, the observations at $\boldsymbol{x}=\boldsymbol{\xi}$ and $t=\tau$ are

$$
\begin{align*}
u(\xi, \tau) & =\frac{q\left(\tau_{d}\right)}{4 \pi|\xi-p|}, \quad \partial_{t} u(\xi, \tau)=\frac{\dot{q}\left(\tau_{d}\right)}{4 \pi|\xi-p|}, \\
\nabla u(\xi, \tau) & =-\left(\frac{q\left(\tau_{d}\right)}{4 \pi|\xi-p|^{2}}+\frac{1}{c} \frac{\dot{q}\left(\tau_{d}\right)}{4 \pi|\xi-p|}\right) \frac{\xi-p}{|\xi-p|},
\end{align*}
$$

Substituting $u(\boldsymbol{\xi}, \tau)$ and $\partial_{t} u(\boldsymbol{\xi}, \tau)$ into $\nabla u(\boldsymbol{\xi}, \tau)$, we have

$$
\begin{equation*}
\nabla u(\xi, \tau)=\left(\frac{u(\xi, \tau)}{|\xi-p|}+\frac{1}{c} \partial_{t} u(\xi, \tau)\right) e_{p}, \quad e_{p}=-\frac{\xi-p}{|\xi-p|} . \tag{6}
\end{equation*}
$$

Suppose that $|\nabla u(\xi, \tau)| \neq 0$. Then, the following equation holds:

$$
\begin{equation*}
\frac{\nabla u(\boldsymbol{\xi}, \tau)}{|\nabla u(\boldsymbol{\xi}, \tau)|}=\operatorname{sgn}\left(\frac{u(\boldsymbol{\xi}, \tau)}{|\boldsymbol{\xi}-\boldsymbol{p}|}+\frac{1}{c} \partial_{t} u(\boldsymbol{\xi}, \tau)\right) e_{p} . \tag{7}
\end{equation*}
$$

We cannot evaluate the signum function in eq.(7). Therefore, two unit vectors $\pm \nabla u /|\nabla u|$ are obtained as candidates of e_{p}. However, e_{p} can be uniquely determined since an observation point ξ exists outside of the convex hull of Ω.

Multiply both sides of eq.(6) by the unit vector e_{p}, then we have

$$
\nabla u(\boldsymbol{\xi}, \tau) \cdot \boldsymbol{e}_{p}=\frac{u(\boldsymbol{\xi}, \tau)}{|\boldsymbol{\xi}-\boldsymbol{p}|}+\frac{1}{c} \partial_{\tau} u(\boldsymbol{\xi}, \tau) .
$$

In case of $u(\xi, \tau) \neq 0$, the distance $|\xi-p|$ is identified by

$$
\begin{equation*}
|\xi-p|=\left(\frac{\nabla u(\boldsymbol{\xi}, \tau)}{u(\boldsymbol{\xi}, \tau)} \cdot e_{p}-\frac{1}{c} \frac{\partial_{t} u(\boldsymbol{\xi}, \tau)}{u(\boldsymbol{\xi}, \tau)}\right)^{-1} . \tag{8}
\end{equation*}
$$

We can identify the direction $e_{p}=-(\xi-p) /|\xi-p|$ and distance $|\xi-p|$. Therefore, the location p is written by

$$
p=\xi+|\xi-p| e_{p}=\xi+\left(\frac{\nabla u(\xi, \tau)}{u(\xi, \tau)} \cdot e_{p}-\frac{1}{c} \frac{\partial_{t} u(\xi, \tau)}{u(\xi, \tau)}\right)^{-1} e_{p}
$$

From eqs.(5) and (8), the magnitude $q\left(\tau_{d}\right)$ becomes

$$
q\left(\tau_{d}\right)=4 \pi\left(\frac{\nabla u(\boldsymbol{\xi}, \tau)}{u(\boldsymbol{\xi}, \tau)} \cdot e_{p}-\frac{1}{c} \frac{\partial_{t} u(\boldsymbol{\xi}, \tau)}{u(\boldsymbol{\xi}, \tau)}\right)^{-1} u(\boldsymbol{\xi}, \tau)
$$

4 Identification for general case of initial and boundary conditions

This section considers the general case of eq.(1) such that

$$
\begin{array}{lll}
\text { Initial condition : } & u(\boldsymbol{x}, 0)=\phi(\boldsymbol{x}), \quad \partial_{t} u(\boldsymbol{x}, 0)=\psi(\boldsymbol{x}), & \boldsymbol{x} \in \Omega, \\
\text { Boundary condition : } u(\boldsymbol{x}, t)=h(\boldsymbol{x}, t), & \boldsymbol{x} \in \Gamma,
\end{array}
$$

where Ω is a bounded domain, and ϕ and ψ are unknown functions. In the following, we generate u_{s}, $\partial_{t} u_{s}$, and ∇u_{s} at a pseudo observation point ξ using a weighted integral.

Multiply both sides of eq.(1) by a weighting function g and integrate over Ω and $T=\left[0, t_{F}\right]$, then we have [2]

$$
\begin{equation*}
\int_{T} \int_{\Omega} g\left(\Delta u-\frac{1}{c^{2}} \partial_{t}^{2} u\right) d V(\boldsymbol{x}) d t=\int_{T} \int_{\Omega} f g d V(\boldsymbol{x}) d t . \tag{9}
\end{equation*}
$$

Here, we use a fundamental solution of wave equation as a weighting function g.

$$
g(x, t ; \boldsymbol{\xi}, \tau)=\frac{1}{4 \pi r} \delta\left(t-t_{r}\right), \quad r=|x-\xi|, \quad t_{r}=\tau-r / c .
$$

Suppose that ξ does not belong to the closure of Ω, and that τ exists in the interval

$$
\max _{\eta \in \bar{\Omega}}|\xi-\eta| / c+\varepsilon \leq \tau \leq t_{F}+\min _{\eta \in \bar{\Omega}}|\xi-\eta| / c-\varepsilon
$$

where $\varepsilon(>0)$ is sufficiently small constant. Under the above assumption, t_{r} exists in T. Then, the right-hand side of eq.(9) becomes

$$
\begin{align*}
\int_{T} \int_{\Omega} f g d V(\boldsymbol{x}) d t & =\int_{T} \int_{\Omega} q(t) \delta(\boldsymbol{x}-p) \frac{1}{4 \pi r} \delta\left(t-t_{r}\right) d V(\boldsymbol{x}) d t \\
& =-\frac{q\left(\tau_{d}\right)}{4 \pi|\boldsymbol{\xi}-\boldsymbol{p}|}=-u_{s}(\boldsymbol{\xi}, \tau) \tag{10}
\end{align*}
$$

From $\xi \notin \bar{\Omega}$, weighting function g satisfies

$$
\Delta g(\boldsymbol{x}, t ; \boldsymbol{\xi}, \tau)-\frac{1}{c^{2}} \partial_{t}^{2} g(\boldsymbol{x}, t ; \boldsymbol{\xi}, \tau)=0, \quad x \in \Omega
$$

The left-hand side of eq.(9) is written by

$$
\begin{align*}
\int_{T} & \int_{\Omega} g\left(\Delta u-\frac{1}{c^{2}} \partial_{t}^{2} u\right) d V(\boldsymbol{x}) d t \\
& =\int_{T} \int_{\Omega}\left\{g\left(\Delta u-\frac{1}{c^{2}} \partial_{t}^{2} u\right)-u\left(\Delta g-\frac{1}{c^{2}} \partial_{t}^{2} g\right)\right\} d V(\boldsymbol{x}) d t \\
& =\int_{T} \int_{\Omega}(g \Delta u-u \Delta g) d V(\boldsymbol{x}) d t-\frac{1}{c^{2}} \int_{T} \int_{\Omega}\left(g \partial_{t}^{2} u-u \partial_{t}^{2} g\right) d V(\boldsymbol{x}) d t \tag{11}\\
& =\int_{T} \int_{\Gamma}\left(g \partial_{n} u-u \partial_{n} g\right) d S(\boldsymbol{x}) d t-\frac{1}{c^{2}} \int_{\Omega}\left[g \partial_{t} u-u \partial_{t} g\right]_{0}^{t_{F}} d V(\boldsymbol{x}),
\end{align*}
$$

where ∂_{n} denotes the outward normal differentiation $\partial / \partial \boldsymbol{n}$. The second term of eq.(11) vanishes since $t_{r} \neq 0, t_{F}$. The first term of eq.(11) becomes

$$
\begin{align*}
& \int_{T} \int_{\Gamma}\left(g \partial_{n} u-u \partial_{n} g\right) d S(\boldsymbol{x}) d t \\
& \quad=\frac{1}{4 \pi} \int_{\Gamma} \frac{1}{r}\left\{\frac{n_{r}}{r} u\left(\boldsymbol{x}, t_{r}\right)+\partial_{n} u\left(\boldsymbol{x}, t_{r}\right)+\frac{n_{r}}{c} \partial_{t} u\left(\boldsymbol{x}, t_{r}\right)\right\} d S(\boldsymbol{x}), \quad n_{r}=\partial_{n} r . \tag{12}
\end{align*}
$$

From eqs.(9), (10), (11), and (12), the following equation holds:

$$
\begin{equation*}
u_{s}(\boldsymbol{\xi}, \tau)=-\frac{1}{4 \pi} \int_{\Gamma} \frac{1}{r}\left\{\frac{n_{r}}{r} u\left(\boldsymbol{x}, t_{r}\right)+\partial_{n} u\left(\boldsymbol{x}, t_{r}\right)+\frac{n_{r}}{c} \partial_{t} u\left(\boldsymbol{x}, t_{r}\right)\right\} d S(\boldsymbol{x}) . \tag{13}
\end{equation*}
$$

Equation (13) shows that $u_{s}(\xi, \tau)$ can be calculated from the observations of $u, \partial_{n} u$, and $\partial_{t} u$ on Γ. Using $\partial_{t} g$ instead of g as weighting function, $\partial_{t} u_{s}(\xi, \tau)$ are written by

$$
\begin{equation*}
\partial_{t} u_{s}(\boldsymbol{\xi}, \tau)=-\frac{1}{4 \pi} \int_{\Gamma} \frac{1}{r}\left\{\frac{n_{r}}{r} \partial_{t} u\left(\boldsymbol{x}, t_{r}\right)+\partial_{t} \partial_{n} u\left(\boldsymbol{x}, t_{r}\right)+\frac{n_{r}}{c} \partial_{t}^{2} u\left(\boldsymbol{x}, t_{r}\right)\right\} d S(\boldsymbol{x}) . \tag{14}
\end{equation*}
$$

For weighting function ∇g, we have

$$
\begin{align*}
& \nabla u_{s}(\boldsymbol{\xi}, \tau)=-\frac{1}{4 \pi} \int_{\Gamma} \frac{1}{r}\left\{\frac{3 n_{r} \nabla r-n}{r^{2}} u\left(\boldsymbol{x}, t_{r}\right)+\frac{\nabla r}{r} \partial_{n} u\left(\boldsymbol{x}, t_{r}\right)+\frac{\nabla r}{c} \partial_{t} \partial_{n} u\left(\boldsymbol{x}, t_{r}\right)\right. \\
&\left.+\frac{3 n_{r} \nabla r-n}{c r} \partial_{t} u\left(\boldsymbol{x}, t_{r}\right)+\frac{n_{r} \nabla r}{c^{2}} \partial_{t}^{2} u\left(\boldsymbol{x}, t_{r}\right)\right\} d S(\boldsymbol{x}) . \tag{15}
\end{align*}
$$

As shown in eqs.(13), (14), and (15), pseudo observations $u_{s}, \partial_{t} u_{s}$, and ∇u_{s} can be obtained from observations of $u, \partial_{n} u, \partial_{t} u, \partial_{t} \partial_{n} u$, and $\partial_{t}^{2} u$ on Γ. Moreover, we also assume that ξ is a point outside of the convex hull of Ω. Then, the location and magnitude of a point source are identified from pseudo observations of $u_{s}, \partial_{t} u_{s}$, and ∇u_{s} as shown in Section 3.

Numerical examples are shown in the presentation.

Acknowledgement

We would like to thank Dr. T. Ohe of Okayama University of Science for his useful discussions and helpful comments.

References

[1] Ammari H., Bao G., Fleming J. L.: An Inverse Source Problem for Maxwell's Equations in Magnetoencephalography, SIAM J. Appl. Math., Vol.62, pp.1369-1382 (2002).
[2] Brebbia C. A., Telles J.C.F., Wrobel L.C.: Boundary Element Techniques, Springer-Verlag, Berlin (1984).
[3] Groetsch C. W.: Inverse Problems in the Mathematical Sciences, Vieweg, Braunschweig (1993).
[4] Inui H., Yamatani K., Ohnaka K.: Reliable Identification of Electric Current Dipoles using Harmonic Functions, J. Comput. Appl. Math., Vol.157, pp.107-123 (2003).
[5] Inui H., Ohnaka K.: An Identification Method of Dipolar Sources in Homogeneous Space for Time-harmonic Maxwell's Equations, Sci. Math. Jpn., Vol.62, pp.119-129 (2005).
[6] Yamatani K., Ohnaka K.: A Reliable Estimation Method of a Dipole for Three-dimensional Poisson Equation, J. Comput. Appl. Math., Vol.95, pp.139-151 (1998).

