
Title
COMPLEX METHODS IN HIGHER DIMENSIONS : RECENT
TRENDS FOR SOLVING BOUNDARY VALUE AND INITIAL
VALUE PROBLEMS

Author(s) Le, Hung Son; Tutschke, W.

Citation

Annual Report of FY 2005, The Core University
Program between Japan Society for the Promotion
of Science (JSPS) and Vietnamese Academy of
Science and Technology (VAST). 2006, p. 323-331

Version Type VoR

URL https://hdl.handle.net/11094/12972

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



COMPLEX METHODS IN HIGHER 

DIMENSIONS 

RECENT TRENDS FOR SOLVING 

BOUNDARY VALUE AND INITIAL VALUE 

PROBLEMS 

LE HUNG SON 

Hanoi University of Technology, Faculty of Applied Mathematics and Informatics 

Dai Co Viet Road 1, 10000 Hanoi, Vietnam, e-mail: lehung@netnam.org.vn 

1 

W. TUTSCHKE 

Graz University of Technology, Department of Mathematics D 

Steyrergasse 30/3, A-8010 Graz, Austria, e-mail: tutschke@tugraz.at 

Abstract 

From the very beginning, Complex Analysis is closely connected 
with partial differential equations. The paper surveys present gener­
alizations of these connexions to higher dimensions. 

Boundary and initial value problems 
classical Complex Analysis 

. 
In 

The two basic connexions between Complex Analysis and partial differential 
equations are the Cauchy-Riemann system for real and imaginary part of a 
holomorphic function w = u + iv and the Cauchy-Kovalevskaya Theorem. 
The first fact shows that on can find holomorphic functions with arbitrary 
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boundary values of the real part (since 6u = 0). Knowing u, the imaginary 
part is uniquely determined up to an arbitrary real constant. 

Boundary value problems can also be solved not only for the linear Vekua 
equation 

ow 
o-Z = a(z)w + b(z)w (1) 

(see I. N. Velma's monograph [?]), but also for the fully non-linear complex 
first order equation 

ow ( ow) o-Z =:F z,w, oz (2) 

(see [?]). 

The second connexion between Complex Analysis and partial differential 
equations, the Cauchy-Kovalevskaya Theorem, can also be extended to gen­
eralizations of the Cauchy-Riemann system. Under suitable conditions, an 
initial value problem of Cauchy-Kovalevskaya type can be constructed for 
initial functions which are solutions of an equation of the form (1) (see [?]). 

2 Complex methods in higher dimensions 

Of course, boundary and initial value problems in higher dimensions can be 
solved also in the framework of Real Analysis. Methods of Complex Analysis, 
however, lead to additional information at least for some classes of equations. 

Generally speaking, there are three possibilies to apply complex methods in 
higher dimensions: 

a) One considers a higher-dimensional system of differential equations having 
similar properties as the Cauchy-Riemann system has. Using arguments of 
classical Complex Analysis, one tries to prove similar statements such as 
a generalized Cauchy Integral Formula and a generalized Cauchy-Pompeiu 
Formula. Such a higher-dimensional analog to the Cauchy-Riemann system 
is, for instance, the system 

div U = 0 

curl U = 0 
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for so-called potential vectors u = (Ul, U2, U3) in R3. 

b) Another possibility for using ideas of Complex analysis in higher dimen­
sions is to investigate complex-valued functions in several complex variables. 

c) A third possibility, finally, is to investigate equations containing the 
Cauchy-Riemann operator 

of Clifford Analysis where the desired functions depend on xo, Xl, ... , Xn and 
are Clifford algebra valued. Then the so-called (left- ) monogenic functions 
Uo satisfying the generalized Cauchy-Riemann equation Duo = 0 can be 
interpreted as holomorphic functions in R n+1 . 

3 Boundary value problems 

Consider a boundary value problem of the form 

L U = F (x, u) in n 
Bu = g on an 

(3) 
(4) 

where B is an operator acting on the boundary an of a domain n in R n . 

The simplest examples for such boundary operators are the restriction of 
the desired solution it to the boundary (Dirichlet problem) or to prescribe 
the normal derivative (Neumann problem). In case L is a linear operator 
possessing a fundamental solution E(x, ~), fixed points of the operator 

U(X) = Uo + J E(x,~)F(~,u(~))d~, 
[l 

where Uo is a solution of the simplified equation LUo = 0, turn out to be 
solutions of the (non-linear) differential equation (3) (cf. [?]). In addition, 
the boundary condition (4) is satisfied if the boundary values of Uo are given 
by the condition BU = g on an. In this way boundary value problems for 
equations of the form (3) can be reduced to boundary value problems for the 
simplified equation LUo = O. 
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Since 
1 1 
1[" ( z 

is a fundamental solution of the Cauchy-Riemann system, boundary value 
problems for the non-linear system (2) can be reduced to boundary value 
problems for holomorphic functions. Using the fundamental solution of the 
Cauchy-Riemann equation Du = 0 in Rn+1, in a similar way boundary value 
problems for 

Du = F(x,u) (5) 

can be reduced to boundary value problems for monogenic functions. 

Concerning boundary value problems for monogenic functions (and thus also 
for solutions of systems of the form (5)), one can solve the Dirichlet bound­
ary value problem for one component of the monogenic function (because 
each component satisfies the Laplace equation). The other components can 
be prescribed only on a lower-dimensional part of the boundary (see, for in­
stance, the paper [?] of 1. Stern), according to the fact that the imaginary 
part of a holomorphic function is determined up to a (real) constant if one 
prescribes the real part on the boundary. 

Research to be done in the framework of the above fixed-point method should 
also include a comparison of different norms (sup-norm, Holder norm, Lp­
norm). Generally speaking, fixed-point method are to be applied in closed 
subsets such as balls of the underlying function space. Better results can 
thus be obtained in optimal balls or optimal polycylinders (see [?] and S. 
Graubner [4, 5, 6] resp.). 

An introduction into boundary value problems for functions in several com­
plex variables can be found in H. G. W. Begehr's and A. Dzhuraev's book 
[2] 

4 Initial value problems 

Solutions u = u(t, x) of the initial value problem 

OtU = F(t,x,u,oXju) 

u(O, x) = <p(x) 
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where t means the time and x = (Xl, ... , xn ) is a point of Rn are fixed points 
of the integro-differential operator 

t 

U(t,x) = SO(x) + J F(T,X,U,Oxju)dT. (8) 
o 

Fixed points of (8) can be constructed by the contraction-mapping principle 
under the following assumptions: 

a) Fu satisfies the (global) Lipschitz condition 

IIFu - Fvll ::; Lo Ilu - vii "L.Lj II0xju - OXjVl1 
J 

with respect to the norm of a certain Banach space B with respect to the 
spacelike variables (where x runs in a domain D of Rn). 

b) The operator F on the right-hand side of (8) possesses an associated 
operator Q (with time-independent coefficients), that is, Qu = 0 implies 
Q(Fu) = 0 (for each fixed t). 

c) The solutions of Qu = 0 satisfy an interior estimate of the form 

11
0 II const 

Xj u 13(n') ::; dist (D',oD") Ilull 13(nll
) 

where D' is a subdomain of D". 

In order to estimate the integral operator (8), one exhausts the given domain 
D by a family of sub domains Ds , 0 < S < So. Assign to each x a (uniquely 
determined) index s(x) such that x belongs to the boundary of Ds(x)' Then 
one can contruct the conical domain 

1\1[ = {(t,x): xED, 0 S t < TJ(so s(x))} 

in the t, x-space and height equals TJSo, where TJ will be fixed later. Using 
the interior estimate mentioned above, one can show that the operator is 
contractive provided TJ is small enough. Applying the contraction-mapping 
principle, one has thus proved that the initial value problem (6), (7) is locally 
solvable. The initial function SO has to satisfy the associated equation Qso = 

O. On the other hand, the constructed solution u( t, x) satisfies also the 
associated equation for each t. 
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The above approach to the initial value problem (6), (7) (see [?]) generalizes 
a construction given by W. Walter in his paper [?]. 

Interior estimates can be found by boundary integral representations and 
are for different norms possible in the case of elliptic equations, in general. 
Concerning associated pairs, two types of problems can be solved. Either F 
is given, and one has to determine an associated equation Qu = 0 in which 
the initial value problem is solvable. Or Q is given, and one determines all 
cF for which solutions rp of Qrp = 0 are admissible initial functions. 

If F is given, it can happen that there exist several associated equations. In 
some cases it is then even possible to solve ill-posed initial value problems 
(see [?]). 

Sufficient conditions for associated pairs can be obtained by comparison of 
coefficients (after one has eliminated superfluous derivatives using the asso­
ciated equation Qu = 0). Substituting special solutions, one can sometimes 
show that the obtained conditions are also necessary. In the paper [7], for 
instance, all linear first order systems for two desired real-valued functions 
are determined which are associated to the Cauchy-Riemann system. 

In the case of the Cauchy-Riemann system the necessary interior estimate fol­
lows from Cauchy's Integral Formula. Analogously, for monogenic functions 
the interior estimate can be obtained from the Poisson Integral Formula for 
harmonic functions because monogenic functions are solutions of the Laplace 
equation. 

The construction of associated pairs in the framework of Clifford analysis 
will by illustrated by the next section. 

5 An example. Associated pairs in Clifford 
analysis 

Let n ba a domain in R 3 , and let Q be the generalized Cauchy-Riemann 
operator in R 3 , that is, 
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where u = Uo + Ul el + U2e2 + U12el e2 is a Clifford algebra valued function. 
Consider operators of the form 

Fu _ A(O)(t, x) ~u 
uXo 

A (I)( ) OU t, x .Q 

UXI 
A (2)( ) OU t, x .Q 

UX2 

whose coefficients are Clifford algebra valued. This operator is associated to 
the Cauchy-Riemann operator if (for each fixed t) it transforms monogenic 
functions into monogenic functions, that is, Du = 0 implies D(Fu) = O. The 
equation Du = 0 implies 

ou ou ou 
oXo = -e1

oX1 - e2 OX2 . 

Similarly, one can express the mixed second derivatives 02U/OXOOXI and 
02U/OXOOX2 by 02U/ OXI , 02U/OXI0X2 and 02U/OX~. Taking into account 
these relations, it follows that D(Fu)can be expressed as a linear combina­
tion of 

ou ou 02U 
and 

OXl' OX2' OXI' OXI0X2 ox§' 

Equating its coefficients to zero, one gets a sufficient condition for F to be 
associated to the Cauchy-Riemann operator. The 2 coefficients of the first 
order derivatives of u lead to the two equations 

DA(I) = DA(O) . el 

DA(2) = DA(O) . e2. 

Rewriting A (k) componentwise, 

A(k) = A6
k
) + Ai

k
)el + A~k)e2 + Ai~)ele2' k = 0,1,2, 

(9) 
(10) 

the 3 coefficients of the second order derivatives show that the Ay) (k 
0,1,2, j = 0, 1,2,12) have to satisfy 5 relations: 

A (I) - A(O) A(I) - _A(O) 
1 - 12, 12 - 2 

A (2) - A(O) A(2) - A(O) A(2) - A(O) 
1 - 12, 2 - 12, 12 - l' 

So the 5 coefficients on the left-hand side of these equations can be eliminated 
from the equations (9), (10). Doing this, one obtains 8 homogeneous (linearly 
independent) equations for the first order derivatives of 

A (O) A(O) A(O) A(O) A(l) A(l) A(2) 
o , 1 , 2 , 12, 0 , 2 , 0 . 
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If these equations are satisfied, then F is associated to the generalized 
Cauchy-Riemann operator in R3. In order to construct admissible asso­
cient operators, we assume that the desired coefficients are linear functions 
in the spacelike variales Xo, Xl and X2. Then the 8 sufficient relations for 
associated pairs lead to a linear and homogeneous system for the coefficients 
of the above mentioned A)k). Since the rank of this system is equal to 8, one 
finds 21-8=13 linearly independent associated operators F whose coefficients 
are linear functions in the spacelike variables. Note, however, that the free 
coefficients can be chosen as arbitrary (continuous) functions in t. 

If the right-hand side F of (6) and the generalized Cauchy-Riemann operator 
D of Clifford analysis form an associated pair, then each monogenic function 
zp is an admissible initial function (7). 
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